如果确定开关电源电感值
开关电源经典公式

开关电源中的公式1, 电感的电压公式dt dI LV ==TI L ∆∆,推出ΔI =V ×ΔT/L 2, 电感存储的能量用峰值电流计算21×L ×I 2PK3,H =B/μ→B =μH ,μ是材料的磁导率。
空气磁导率μ0=4π×10-7H/m 也称磁场强度,场强,磁化力,叠加场等。
单位A/m4,磁通量:通过一个表面上B 的总量 Φ=⎰•SB ds ,如果B 是常数,则Φ=BA ,A 是表面积。
单位是特斯拉(T )或韦伯每平方米Wb/m 25, 安培环路定律,矢量H 沿闭合曲线积分,等于包围此曲线的电流代数总和∑⎰=I dl H ,电流和电磁场的方向符合右手螺旋定则。
6,电磁感应定律,法拉第定律和楞次定律的合称:N 匝线圈的感应电动势e =-N t∆∆φ,电感线圈可以近似表示为e=-tNBA∆,A 为线圈面积。
线圈感应电流产生的磁通总是阻止外加磁场的变化,保持原磁场。
7, 电感的自感:总磁通Ψ=N Φ,与电流i 成正比,Ψ=Li =N Φ,L =i N φ,e =-N t∆∆φ,所以,e =-t i L ∆∆=-L dtdi。
自感总是阻止电流的变化,保持线圈的磁通不变。
一匝线圈的感应电动势为-t ∆∆φ,N 匝线圈为-N t∆∆φ,所以总磁通或磁链Ψ=N Φ8, 电感储能:W =⎰t uidt 0=⎰t idt dt Ldi 0=⎰iLidi 0=21Li 2 9, 磁芯储能。
如右图 1-9N 匝磁环,磁导率为μ,内外径分别为d 和D ,内外径之比接近1,磁路的平均长度l =∏*( D+d )/2,磁环截面积为A ,均匀磁环。
加电压u感应电压e =-u =N t ∆∆φ=NA dtdB由安培环路定律∑⎰=I dl H 得,H l =Ni ,i =NHl输入到磁场的能量为We =⎰t uidt 0=⎰t dt NHldt NAdB 0*We =⎰BHlAdB 0=V ⎰BHdB 0,式中B 为最终达到的最大值,V =A l 为磁环体积。
开关电源的设计及计算

开关电源的设计及计算1.先计算BUCK 电容的损耗(电容的内阻为R buck 假设为350m Ω,输入范围为85VAC~264VAC,频率为50Hz ,P OUT =60W,V OUT =60W ):电容的损耗:P buck =R buck *I buck,rms 2I buck,rms =I in,min1**32−cline t F t c :二极管连续导通的时间t c =linelineF VpeakV e F **2)min(arcsin *41π−=3ms其中:V min =linein ch in in in F C D P V V *)1(***2min ,min ,−−V peak =2*V in,min其图中的T1就是下面公式中t c或:V min =η*)*21(**2**2min ,min ,in c line o in in C t F P V V −−所以(假设最低输入电压时,输入电流=0.7A):I buck,rms =I in,min1**32−cline t F =0.7*13*50*32−=1.3A P buck =350m*1.32=0.95W第一步计算电容损耗是为了使用其中的t c 值,电容的容量一般通用范围选2~3μ/W ,固定电压为1μ/W2.输入交流整流桥的计算(假设V TO =0.7V,R d =70m Ω)在同一个时间内有两个二极管同时导通,半个周期内两个二极管连续导通I d,rms =c line in t F I **3min ,=m3*50*37.0=1.04AP diodes =2*(V TO *2min ,in I +R d *I d,rms 2)=2*(0.7*27.0+70m*1.042)=640mW 一个周期内桥堆损耗为:P BR=2*P diodes =2*640m=1.28W桥堆功耗超过1.5W 时,我个人认为应加散热器(特别是电源的使用环境温度较高时)变压器和初级开关MOS :反激式开关电源有两种模式CCM 和DCM ,各有优缺点。
开关电源电感选型计算

开关电源电感选型计算开关电源电感是一种重要的元件,用于存储能量和滤波。
正确选择合适的电感对于开关电源的性能和稳定性至关重要。
我们需要确定电感的额定电流。
额定电流是指电感所能承受的最大电流。
一般来说,电感的额定电流应大于电路中最大负载电流的1.2倍,以保证电感的正常工作。
接下来,我们需要确定电感的工作频率范围。
开关电源工作频率一般在几十kHz到几MHz之间,不同的工作频率需要选择不同的电感。
然后,我们需要根据开关电源的输出功率来确定电感的大小。
电感的大小决定了开关电源的输出电流波形的平滑程度。
一般来说,输出功率越大,电感的大小也应越大。
开关电源电感的电感值还应满足以下要求:1. 电感的直流电阻应尽可能小,以减小功率损耗;2. 电感的铁芯材料应具有较高的饱和磁感应强度和较低的磁滞损耗;3. 电感的铁芯材料应具有较低的温升和较高的工作温度范围。
根据以上要求,我们可以计算出电感的具体数值。
计算方法如下:1. 首先,根据开关电源的输出功率和工作频率,确定电感的工作电流。
工作电流一般为输出功率除以输出电压;2. 然后,根据电感的工作电流和额定电流的比值,确定电感的安全系数。
安全系数一般为1.2到1.5之间;3. 接下来,根据电感的安全系数和工作电流,计算出电感的额定电流;4. 根据电感的额定电流和工作频率,确定电感的工作电感值。
工作电感值一般为额定电流除以工作频率。
我们还需要注意一些其他因素来选择合适的电感。
例如,开关电源的尺寸和重量限制,以及成本因素等。
开关电源电感的选型计算方法包括确定额定电流、工作频率范围,根据输出功率确定电感大小,并考虑电感的直流电阻、铁芯材料特性和安全系数等。
选择合适的电感对于确保开关电源的性能和稳定性至关重要。
开关电源计算参考

根据技术指标的要求,输入功率约为62.5W,则原边峰值电流为:Ipk=2Po/(Vin(max)Dmax)=0.69A (1)式中:Po为输出功率,50W;Vin(max)为交流电压的最大值(取240V)经过整流后得到的直流电压的数值,取288V;Dmax为最大占空比,取0.5。
变压器的初级电感量为:Lp=Vin(max)×Dmax/(Ipk×f)=4.02 mH (2)式中:Vin(max)为交流电压的最小值(取185V)经过整流后得到的直流电压的数值,取222V;Dmax为最大占空比,取0.5;f为工作频率,40 kHz。
利用AP法选择最小尺寸的磁芯Ae×Ac=Lp×Lpk×106/(j×Ke×Kc×△Bmax ) = 15.7×103mm4 (3)式中:Lp为前面计算的变压器初级电感量;Ipk为原边峰值电流;j为电流密度(A/mm2 ),这里取为3;Ke为铁芯截面有效系数,选用铁氧体铁芯,Ke=0.98;Kc为铁芯窗口的有效利用系数,取0.3;△Bmax为磁通密度的最大变化量,取0.2据此可选EI33型磁芯,其Ae=9.7×12.7=123.19mm2,Ac=7.3×19.2=140.16mm2(其Ae×Ac=17.3×103mm4)导线截面积为Sx=Iin(max)/j=0.28/3=0.09 mm2 (4)可选择直径为0.41 mm的漆包线。
初级匝数为:Np= Vs×ton/(△Bac×Ae)=123 (5)式中:Vs为原边所加的直流电压的平均值,取264V;ton为最大占空比下的开通时间,为1.2×12.5×10-6s。
次级匝数为Ns=Np×U2/U1=24.6,取25。
式中:U2/U1为变压器原副边的电压比,根据经验数值以及所选开关管的耐压值(500 V),设定原副边的电压比为5:1)。
几种开关电源变压器设计计算方法

RCC方式电源变压器设计计算方法在RCC設計中,一般先設定工作頻率,如為50K,然後設定工作DUTY在90V入力,最大輸出時為0.5假設設計一功率為12V/1A1. 最大輸出電流為定格電流的1.2~1.4倍,取1.3倍.2. 出力電力Pout = V out × Iout = 12V×1.3A = 15.6W3. 入力電力Pin = Pout/∩=22.3W(RCC效率∩一般設在65%~75% , 取70%)4. 入力平均電流Iin=Pin/Vdc(INmin)=22.3/85*1.2=0.22( Vin(DCmin) = Vac(Inmin)×1.2)5. T=1/swF=1/50K=20uS Ton=Toff=10uS6. Ipk=Iin入力平均電流*2/DUTY=0.22*2/0.5=0.887. 一次側電感量Lp=Vin(DCmin)*Ton/Ipk=102*10/0.88=1159uH取1160uH8. 選擇磁芯,根据磁芯規格,選擇EI28. Ae=0.85CM^2 動作磁通=2000~2800取2000(當然,這是很保守的作法)9. Np=Ipk*Lp*K/Ae*▲Bm=(0.88*1160*100)/(0.85*2000)=60Ts10. Ns=(Vout+Vf)*Np/Vin(DCmin)=7.6 取8Ts11. 輔助電壓取5V(電晶體) 如功率管使用MOSFET則應設為11V12. Vin(DCmin)/Np=Vb/Nb----Nb=2.94 取3Ts故變壓器的構造如下:Lp=1160uHNp=60TsNs=7TsNb=3Ts以上采用三明治繞法:三明治繞法詳解:所謂三明治就是夾層繞法,因結構如同三明治一樣,所以叫三明治繞法.通常會有兩種繞法:1. 一次側平均法,就是a.最底層繞上一半的圈數,b.然後再繞二次側,c.再繞一次側的另一半.d.再繞Vcc. 最常用的做法還會在二次側上下兩層各加一銅箔或繞線屏蔽.在小功率上會起到Y電容的效果,所以說在小功率上有些人說可以不用Y電容,其實在整體成本上沒有太大的差別.2. 屏蔽繞法, 就是a.最底層繞上與二次相同的圈數,b.然後再繞二次側,c.再繞一次側的其它圈數.d.再繞Vcc. 這種方式很少加屏蔽.當然還有很多種不同的配對方式.但基本原理是一樣的.三明治的真正用意就是減小漏感,人為的在一次與二次之間加上一個寄生電容.用三明治繞法不可以短路为什么?(短路指输出短路保护) 设计参数选取有问题。
开关电源学习笔记(含推导公式)

《开关电源》笔记三种基础拓扑(buckboostbuck-boost )的电路基础:1,电感的电压公式V L dI=L I,推出 I =V × T/Ldt T 2,sw 闭合时,电感通电电压 VON ,闭合时间tONsw 关断时,电感电压 VOFF ,关断时间 tOFF3,功率变换器稳定工作的条件:ION = I OFF 即,电感在导通和关断时,其电流变化相等。
那么由 1,2的公式可知,V ON=L × ION/ tON ,VOFF =L ×ΔIOFF/ tOFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4,周期T ,频率f ,T =1/f ,占空比D =tON/T =tON/(tON +tOFF )→tON =D/f =TD →t OFF =(1-D )/f电流纹波率r P5152r =I/IL =2IAC/IDC 对应最大负载电流值和最恶劣输入电压值I =Et/L μHEt =V × T (时间为微秒)为伏微秒数, L μH 为微亨电感,单位便于计算r =Et/(IL ×L μH )→IL ×L μH =Et/r →L μH =Et/(r*IL )都是由电感的电压公式推导出来r 选值一般 0.4比较合适,具体见P53 电流纹波率r = I/IL =2IAC/IDC 在临界导通模式下,IAC =IDC ,此时r =2 见P51r =I/IL =VON ×D/LfI L =V O FF×(1-D )/LfI L →L =V ON ×D/rfI L 电感量公式:L =V O FF×(1-D )/rfI L =V ON ×D/rfI L设置r 应注意几个方面:A,I PK =(1+r/2)×IL ≤开关管的最小电流,此时 r 的值小于0.4 ,造成电感体积很大。
开关电源的电感计算
开关电源的电感计算电感峰值电流的计算
开关电源的电感量计算
最大输入电压值Vi=12+12*10%=13.2V
对应的占空比为:D=V o/Vi=5/13.2=0.379,其中V o为输出电压值。
当开关管导通时,电感器上的电压为UL=Vi-V o=13.2-5=8.2V
当开关管关断时,电感上的电压为UL=-V o-Vd=-5.3V
由电感上电压计算公式UL=L(di/dt),dt=D/F可得:L=(D*UL)/(F*di)
D:占空比
F:开关频率
di:纹波电流(一般设定为最大输出电流的10%~30%)
UL:开关管开通时,电感两端电压
上题可得:L=(8.2*0.379)/(300*103*0.3)=34.5uH
当开关管导通时,电感两端电压UL=Vi=5+5*10%=5.5V
当开关管关断时,电感两端电压UL=V o+Vd-Vi=6.8V
由电感上电压计算公式UL=L(di/dt),dt=D/F可得:L=(D*UL)/(F*di)上题可得:L=(5.5*0.542)/(300*103*0.45)=22.1uH。
估算电感在开关电源中的损耗
估算电感在开关电源中的功耗开关电源的功耗是多方面的,包括功率MOSFET损耗、输入/输出电容损耗、控制器静态功耗以及电感损耗。
本文主要讨论电感损耗。
众所周知,电感损耗包括两方面:其一是与磁芯相关的损耗,即传统的铁损;其二是与电感绕组相关的损耗,即通常所谓的铜损。
功率电感在开关电源中作为一种储能元件,开关导通期间存储磁能,开关断开期间把存储的能量传送给负载。
磁滞特性是磁芯材料的典型特性,正是它产生电感磁芯的损耗。
导磁率越大,磁滞曲线越窄,磁芯功耗越小。
图1 电感功耗的等效模型电感磁芯中的功耗电感在一个开关周期内由于磁场强度改变产生的能量损耗是在开关导通期间输入电感的磁能与开关断开期间输出磁能之间的差值。
如果用ET代表一个开关周期电感的能量,则:。
根据安培定律:和法拉第定律:,上述等式中的ET为:。
随着电感电流减小,磁场强度减弱,而磁感应强度从另一回路返回并变小。
在此期间,大部分能量传送给负载,而存储能量和传送能量之间的差值即为损失的能量。
而磁芯由于磁滞特性引起的功耗是上述能量损耗乘以开关频率。
该损耗大小与艬n有关,对于大多数铁氧体材质磁芯而言,n介于2.5~3之间。
到目前为止,上述磁芯储能和损耗的推导与结论都基于下列条件:磁芯工作在非饱和区;开关频率在磁芯正常工作范围内。
电感磁芯除了上述的磁滞损耗外,第二种主要损耗是涡流损耗。
感应涡流在磁芯中流动将产生I2×R(或V2/R)的功耗。
如果把磁芯想象为一个高阻值元件RC,那么,在RC将产生感应电压,根据法拉第定律,,其中AC为磁芯的有效截面积,因此功耗为:,由此可见,磁芯由于涡流导致的功耗与磁芯中单位时间内磁通变化量的平方成正比。
另外,由于磁通变化量直接与所加电压成正比,所以,磁芯的涡流功耗与电感电压和占空比成正比,即:,其中VL为电感电压,tAPPLIED为一个开关周期(TP)中开关的导通(ON)或截止(OFF)时间。
由于磁芯材料的高阻特性,通常涡流损耗比磁滞损耗小得多,通常数据手册中给出的磁芯损耗包括涡流损耗和磁滞损耗。
开关电源电感大小计算]
为开关电源选择合适的电感感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。
电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。
换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。
电感为磁性元件,自然有磁饱和的问题。
有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。
大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。
但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。
杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。
如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。
当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:1. 当电感L中有电流I流过时,电感储存的能量为:E=0.5×L×I2 (1)2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:V=(L×di)/dt (2)由此可看出,纹波电流的大小跟电感值有关。
3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。
电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。
只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。
计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。
从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×R ESR。
开关电源变压器参数设计步骤详解(精)
V Imin (V
固定输
入:100/115
已知
2~3
(2~3×P O
≥
90通用输入:85~265已知
2~3 (2~3×P O ≥
90固定输入:230±35已知
1
P O
≥
240
步骤5根据Vimin和V OR来确定最大占空比
Dmax
V OR
D m a x = ×100% V OR +V I m i n -V D S (O N
0.6
1
步骤7确定初级波形的参数
①
输入电流的平均值I A VG P O
I A VG=
ηV Imin
②
初级峰值电流I P I A VG
I P =
(1-0.5K RP ×Dmax
③
初级脉动电流I R ④
初级有效值流I RMS u(V
初级感应电压V OR (V
钳位二极管反向击穿电压V B (V
固定输入:100/115 60 90通用输入:85~265 135 200固定输入:230±35
①
设定MOSFET的导通电压V DS(ON ②
应在u=umin时确定Dmax值,Dmax随u升高而减小步骤6确定初级纹波电流I R与初级峰值电流I P的比值K RP ,K RP =I R /I P
u(V
K RP
最小值(连续模式最大值(不连续模式
固定输入:100/115 0.4 1通用输入:85~265 0.44 1固定输入:230±35
步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3根据u ,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果确定开关电源电感值
开关电源电感器是开关电源设备的重要元器件,它是利用电磁感应的原理进行工作的。
它的作用是阻交流通直流,阻高频通低频(滤波),也就是说高频信号通过电感线圈时会遇到很大的阻力,很难通过,而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。
电感线圈对直流电的电阻几乎为零。
本文将阐明为非隔离式开关电源(SMPS)选用电感器的基本要点。
所举实例适合超薄型表面贴装设计的应用,像电压调节模块(VRM)和负载点(POL)型电源,但不包括基于更大底板的系统。
图1所示为一个降压拓扑结构开关电源的架构,该构架广泛应用于输出电压小于输入电压的开关电源系统。
在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。
根据楞次定律,di=E*dt/L,流过电感器的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。
由于流过负载电阻RL的电流稳定增加,输出电压成正比增大。
在达到预定的电压或电流限值时,开关电源控制集成电路将开关断开,从而使电感周围的磁场衰减,并使偏置二极管D1正向导通,从而继续向输出电路供给电流,直至开关再度接通。
这一循环反复进行,而开关的次数由控制集成电路来确定,并将输出电压调控在要求的电压值上。
图2所示为在若干个开关循环周期内,流过电感器和其它降压拓扑电路元件上的电压和电流波形。
电感值对于在开关电源开关断开期间保持流向负载的电流很关键。
所以必须算出保持降压变换器输出电流所必需的最小电感值,以确保在输出电压和输入电流处于最差条件下,仍能够为负载供应足够的电流。
为确定最小的电感值,。