浅谈开关电源输出电感的设计

合集下载

开关电源输出端电感详解

开关电源输出端电感详解

开关电源输出端电感详解开关电源是一种广泛使用的电力转换技术,其输出端的电感是其中一个重要组成部分。

开关电源输出端的电感主要起到滤波、储能和稳定电流的作用,下面将对其进行更详细的介绍。

一、开关电源输出端电感的作用滤波作用:开关电源输出端的电感可以有效地滤波。

当电感靠近开关电源的输出端口时,它可以过滤掉输出信号中的高频噪声,使输出信号更加纯净。

储能作用:开关电源输出端的电感还可以起到储能的作用。

当电流通过电感时,电感会将一部分电能转化为磁能,并将其储存起来。

在需要时,电感可以将储存的磁能再次转化为电能,从而满足电路中负载的需求。

稳定电流作用:开关电源输出端的电感还可以稳定电流。

由于开关电源的输出存在波动性,而电感可以抑制这种波动,从而保持输出电流的稳定性。

二、开关电源输出端电感的工作原理开关电源输出端电感的工作原理主要基于楞次定律,即“感应电流的磁场总是会阻碍引起感应电流的磁通量的变化”。

当电流通过电感时,电感会产生一个自感电动势,这个自感电动势可以阻碍电流的变化,从而起到滤波和稳定电流的作用。

具体而言,当电流增加时,自感电动势会阻碍电流的增加,从而减缓电流的增长速度,使得电流不会突然增大。

当电流减小时,自感电动势会阻碍电流的减小,从而减缓电流的减小速度,使得电流不会突然减小。

这样,电感可以有效地平滑电流波动,从而保持输出电流的稳定性。

此外,电感还可以将电路中的交流电转化为磁能,并将其储存起来。

当负载需要能量时,电感可以将储存的磁能再次转化为电能,以满足负载的需求。

三、开关电源输出端电感的选型在选择开关电源输出端的电感时,需要根据电路的具体要求和负载的特点进行合理选择。

电感容量的选择:电感容量是选择电感的重要因素之一。

如果电容量过小,可能无法满足电路的要求,无法有效滤波和稳定电流;如果电容量过大,可能会导致电路过度反应,甚至产生反向电动势。

因此,需要根据电路的具体要求选择合适的电感容量。

工作电压的选择:根据电路的工作电压选择合适的电感。

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1

开关电源中变压器及电感设计1开关电源中变压器及电感设计1一、变压器设计1.根据电源输出需求确定变压器的额定功率和工作频率。

2.计算变压器的变比。

变压器的变比决定了输入电压和输出电压之间的关系。

通常变压器的变比为输入和输出电压之比的倒数,即输出电压/输入电压。

3.根据变比计算次级匝数。

变压器的次级匝数等于输入匝数乘以变比。

4.根据次级匝数计算主绕组匝数。

主绕组匝数等于次级匝数除以变比。

5.计算主绕组和次级绕组的截面积。

主绕组的截面积一般比次级绕组大,以满足输送更大电流。

6.计算铁芯截面积。

铁芯截面积的大小关系到变压器的能量传输效率,一般选择铁芯截面积略大于主绕组的截面积。

7.选择合适的铁芯材料和线材材料。

铁芯材料的导磁性能和线材材料的电阻等参数会影响变压器的损耗和效率。

8.进行变压器的相关参数计算和模拟。

可以使用相关软件进行变压器参数的计算和仿真,以评估变压器的性能。

9.制作变压器的绕组和组装。

根据计算结果进行绕线并组装变压器。

10.进行变压器的测试和调整。

使用仪器测试变压器的性能,并根据测试结果调整变压器的参数,以满足设计要求。

二、电感设计1.根据电源输出需求确定电感的额定电流和工作频率。

2.根据电感的额定电流和工作频率计算电感的感值。

电感的感值和额定电流和工作频率之间有一定的关系,可以根据公式进行计算。

3.根据感值计算电感的绕组数。

电感的绕组数决定了电感的电流走向和电感的大小。

4.选择合适的磁芯和线材材料。

合适的磁芯材料和线材材料会影响电感的损耗和效率。

5.进行电感的相关参数计算和模拟。

可以使用相关软件进行电感参数的计算和仿真,以评估电感的性能。

6.制作电感的绕组和组装。

根据计算结果进行绕线并组装电感。

7.进行电感的测试和调整。

使用仪器测试电感的性能,并根据测试结果调整电感的参数,以满足设计要求。

总结:变压器和电感的设计是开关电源设计中关键的一环,直接影响到电源的性能和稳定性。

在设计过程中,需根据电源输出需求确定额定功率和工作频率,并计算变压器和电感的相关参数。

浅谈开关电源输出电感的设计

浅谈开关电源输出电感的设计

浅谈开关电源输出电感的设计――DC/DC 电路中电感的选择原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载翻译:frm(注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。

本文还包括对同步DC/DC及异步DC/DC概念的解释。

)本文PDF文档下载简介在开关电源的设计中电感的设计为工程师带来的许多的挑战。

工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。

本文专注于解释:电感上的DC电流效应。

这也会为选择合适的电感提供必要的信息。

理解电感的功能电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。

虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。

在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。

另一端通过开关频率切换连接到输入电压或GND。

在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。

在状态2过程中,电感连接到GND。

由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。

如果是后一种方式,转换器就称为“同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。

在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。

对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。

相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。

对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。

我们利用电感上电压计算公式:V=L(dI/dt)因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。

开关电源电感计算总结

开关电源电感计算总结

开关电源电感计算总结第一篇:开关电源电感计算总结开关电源电感选择1.开关电源选择主要控制两个参数:一个是电感peak current,即电感的峰值电流不能超过电感的饱和电流。

峰值电流可通过调节电感量等来控制,可以通过电感平均电流加上(电感纹波电流/2)来衡量。

一个是inductor peak to peak ripple 即电感纹波电流,即△I,根据公式:△I=VS*D/(FS*L)**(此公式为近似公式,如手册有公式可按手册上计算)可以根据纹波电流要求计算出电感量。

一般△I按电感DC current即电感平均电流来计算,具体取的百分比手册会给出一般10%-40%。

电感的DC current计算公式:IDC =VOUT*IOUT/(VIN*η),η为转换效率电感的纹波电流越大,电感上耗散的功率就越大,增加EMI同时也会造成输出的纹波越大,又由于△I与电感成反比,从这个角度看,电感越大越好。

但是,电感越大,会造成开关电源反馈回路增益降低,降低系统的工作带宽,可能导致系统工作不稳定,而且还存在电感越大,尺寸越大的问题。

电感过小会降低输出电流,效率,产生较大的输入纹波。

因此,在选择电感式,要从功耗和电感尺寸、电感量上折中选择。

2.电感计算流程先列出已知参数VOUT ,VIN, IOUT,FS,η计算IDC,根据需要定△I计算电感量L3.其他电感的选择还存在一个参数的选择:电感的直流阻抗,这个参数影响开关电源的转换效率。

电感的直流阻抗与封装形式有关,与尺寸成反比。

第二篇:电感教案1.3常用电子元器件———电感器第___周课时___节执教者:___【教学目标】一、知识与技能1、了解电感器的种类,基本特性参数,表示方法及选用常识。

2、掌握电感器的使用方法和使用时注意的事项。

3、掌握电感器的几种常用标志方法。

二、过程与方法1、学会用学过的知识和技能解决新问题的方法。

2、利用初中学过的知识来联系新知识,掌握新知识。

开关电源电感选型计算

开关电源电感选型计算

开关电源电感选型计算开关电源电感是一种重要的元件,用于存储能量和滤波。

正确选择合适的电感对于开关电源的性能和稳定性至关重要。

我们需要确定电感的额定电流。

额定电流是指电感所能承受的最大电流。

一般来说,电感的额定电流应大于电路中最大负载电流的1.2倍,以保证电感的正常工作。

接下来,我们需要确定电感的工作频率范围。

开关电源工作频率一般在几十kHz到几MHz之间,不同的工作频率需要选择不同的电感。

然后,我们需要根据开关电源的输出功率来确定电感的大小。

电感的大小决定了开关电源的输出电流波形的平滑程度。

一般来说,输出功率越大,电感的大小也应越大。

开关电源电感的电感值还应满足以下要求:1. 电感的直流电阻应尽可能小,以减小功率损耗;2. 电感的铁芯材料应具有较高的饱和磁感应强度和较低的磁滞损耗;3. 电感的铁芯材料应具有较低的温升和较高的工作温度范围。

根据以上要求,我们可以计算出电感的具体数值。

计算方法如下:1. 首先,根据开关电源的输出功率和工作频率,确定电感的工作电流。

工作电流一般为输出功率除以输出电压;2. 然后,根据电感的工作电流和额定电流的比值,确定电感的安全系数。

安全系数一般为1.2到1.5之间;3. 接下来,根据电感的安全系数和工作电流,计算出电感的额定电流;4. 根据电感的额定电流和工作频率,确定电感的工作电感值。

工作电感值一般为额定电流除以工作频率。

我们还需要注意一些其他因素来选择合适的电感。

例如,开关电源的尺寸和重量限制,以及成本因素等。

开关电源电感的选型计算方法包括确定额定电流、工作频率范围,根据输出功率确定电感大小,并考虑电感的直流电阻、铁芯材料特性和安全系数等。

选择合适的电感对于确保开关电源的性能和稳定性至关重要。

开关电源中电感气隙的设计与研究

开关电源中电感气隙的设计与研究

开关电源中电感气隙的设计与研究摘要:开关电源中的电感器扮演着电压平滑和电流波形整形的重要角色。

为了提高电感器的效率和性能,电感气隙的设计非常重要。

本文将探讨电感气隙的设计与研究,并分析其对开关电源的影响。

1.引言开关电源是一种将输入直流电转换为输出脉冲电流的电子设备。

在开关电源中,电感器起着平滑输出电压和滤波电流的作用。

为了提高电感器的效率和性能,需要进行精确而合理的设计。

2.电感气隙的原理电感气隙是指在电感器的铁芯上设置的一段空隙。

电感器通过改变气隙的大小可以改变其感应能力和电感值。

当电感气隙变大时,电感器的电感值和感应能力会降低,而当电感气隙变小时,电感值和感应能力会增加。

因此,通过设计和调整电感气隙的大小,可以控制电感器的性能和工作特性。

3.电感气隙的设计要点(1)气隙长度:气隙长度是电感气隙设计中的重要参数。

气隙长度的选择应根据具体应用需求以及电感器的工作电流和电源电压来确定。

一般来说,气隙长度应尽量小,以避免磁通漏磁引起的能量损耗和磁滞损耗。

(2)气隙形状:气隙的形状也会对电感器的性能产生影响。

一般常见的气隙形状包括直线型、等效长方形型和圆环型。

不同形状的气隙会对电感器的感应能力和频率响应曲线产生不同的影响。

因此,在设计中应根据具体应用需求和设计要求选择合适的气隙形状。

(3)气隙材料:气隙材料的选择也非常重要。

一般来说,气隙材料应具有较高的导磁性和绝缘性能,以提高电感器的效率和可靠性。

常见的气隙材料包括Ni-Zn磁粉、铁氧体和纪录材料等。

4.电感气隙的研究方法(1)实验研究:通过实验手段来研究电感气隙的影响。

可以通过改变气隙的长度和形状,测量电感器的电感值和感应能力,进而分析气隙对电感器性能的影响。

(2)仿真模拟:通过使用电磁学仿真软件,建立电感器的数学模型,模拟电感气隙在不同工作条件下的磁场分布和电感特性。

通过仿真模拟,可以更加直观地分析电感气隙的影响,并进行优化设计。

5.电感气隙的应用案例以开关电源中的输出电感器为例,通过设计合适的气隙,可以提高电感器的效率和性能。

华为 正激式开关电源输出电感器设计步骤

华为 正激式开关电源输出电感器设计步骤

I pk I o (max)
6. 计算能量处理能力,以 J(焦耳)为单位
W

2 LI pk
2
(J)
4
7. 计算电状态系数 K e 0.145 Po Bm 10 8. 计算磁芯几何常数 Kg(cm5)
W2 Kg (α=1) K e
9. 根据 Kg 由上表选择磁芯: 磁路长度 MPL(cm) ,铁心质量 Wtfe(g) ,铜质量 Wtcu(g),平均匝长 MLT(cm),磁芯面积 Ac(cm2),窗口 面积 Wa(cm2),面积积 Ap(cm4),磁芯几何常数 Kg(cm5), 表面积 At(cm2),磁导率μ,每 1000 匝毫亨数 AL。 10. 计算绕组匝数 N 1000 11. 计算电流的有效值 I rms
0.4 NI pk r 104 MPL
(T)
15. 计算需要的导线裸面积 Aw(B)=Irms/J(cm2)
16. 计算需要的导线股数 Sn= Aw(B)/Aw 17. 计算新的每厘米微欧数 (New)μΩ/cm=(μΩ/cm)/Sn (μΩ/cm=1.7/ Aw) 18. 计算绕组电阻(Ω) R=(MLT)N( (New)μΩ/cm)×10-6 19. 计算绕组铜损 PCu=I2rmsR(W) 20. 计算磁场强度 H(单位奥斯特 Oe) H=0.4πNIpk/MPL 21. 计算交流磁通密度 BAC BAC=0.4π△I/2×10-4×μr/MPL(T) 22. 计算本设计下的调整率α=PCu/Po×100% 23. 计算每千克瓦特 W/Kg=kfmBnAC 24. 计算磁芯损失 PFe=(mW/g)WtFe×10-3 25. 计算总损失 P∑=PFe+PCu 26. 计算表面积功率耗散密度ψ=PΣ/At(W/cm2) 27. 计算温升 Tr=450ψ0.826(℃) 28. 计算窗口利用系数 Ku=NSnAw(B)/Wa

张占松,蔡宣三.开关电源的原理与设计

张占松,蔡宣三.开关电源的原理与设计

张占松,蔡宣三.开关电源的原理与设计开关电源是一种非线性电源,它的主要特点是具有高效率、小体积、轻重量、稳定性好等优点,因此被广泛地应用于各个领域。

开关电源的原理是实现对输入电源电流的高速开/关,通过电感储存能量,使输出电压保持稳定。

本文将介绍开关电源的基本原理和设计方法。

一、基本原理开关电源的基本组成部分包括输入端、输出端、开关器、能量存储元件和控制电路。

输入端一般接入AC或DC电源,输出端连接负载电阻或电源。

开关器的作用是将电源电流高速开/关,这里采用的常见开关器有MOSFET和IGBT等。

这些器件可以实现快速开关以及高效能的转换,从而实现高效的能源转换。

能量存储元件一般使用电感器或电容器,其作用是将输入电能储存为磁场或电场,并在开关器关闭时将其释放,从而保持输出电压稳定。

控制电路主要包括PWM调制器、反馈电路和保护电路。

PWM调制器的作用是产生一定频率和占空比的脉冲信号,控制开关器的开/关时间,从而实现电压的稳定输出。

反馈电路的作用是检测负载端的电压变化并调整PWM调制器输出的脉冲信号,使输出电压保持稳定。

保护电路主要是用于保护开关器、负载端和控制电路,例如过压,过流和短路等情况。

二、设计方法开关电源设计的关键是确定开关器、电感器或电容器的参数,以及PWM调制器的频率和占空比等参数。

下面介绍一些重要的设计步骤。

1. 确定输出参数首先需要确定输出电压和电流的参数,即电源需要提供给负载端的电压和电流。

这取决于负载端的需求以及与之匹配的开关器和能量存储元件的能力。

2. 选择开关器和能量存储元件根据输出参数确定适合的开关器和能量存储元件。

选择开关器时需要考虑它的导通电阻、频率响应、容错限制和工作温度等特性。

电感器和电容器的选择与开关器特性有关,例如电感器的选取应该考虑其电感值和最大电流能力,电容器的选取应该考虑其耐压能力和损耗电流等因素。

3. 设计PWM调制器根据输出参数确定PWM调制器的频率和占空比等参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

――DC/DC 电路中电感的选择原文:Fairchild Semiconductor AB-12:Insight into Inductor Current 下载翻译:frm(注:只有充分理解电感在DC/DC电路中发挥的作用,才能更优的设计DC/DC电路。

本文还包括对同步DC/DC及异步DC/DC概念的解释。

)本文PDF文档下载简介在开关电源的设计中电感的设计为工程师带来的许多的挑战。

工程师不仅要选择电感值,还要考虑电感可承受的电流,绕线电阻,机械尺寸等等。

本文专注于解释:电感上的DC电流效应。

这也会为选择合适的电感提供必要的信息。

理解电感的功能电感常常被理解为开关电源输出端中的LC滤波电路中的L(C是其中的输出电容)。

虽然这样理解是正确的,但是为了理解电感的设计就必须更深入的了解电感的行为。

在降压转换中(Fairchild典型的开关控制器),电感的一端是连接到DC输出电压。

另一端通过开关频率切换连接到输入电压或GND。

在状态1过程中,电感会通过(高边“high-side”)MOSFET连接到输入电压。

在状态2过程中,电感连接到GND。

由于使用了这类的控制器,可以采用两种方式实现电感接地:通过二极管接地或通过(低边“low-side”)MOSFET接地。

如果是后一种方式,转换器就称为“同步(synchronus)”方式。

现在再考虑一下在这两个状态下流过电感的电流是如果变化的。

在状态1过程中,电感的一端连接到输入电压,另一端连接到输出电压。

对于一个降压转换器,输入电压必须比输出电压高,因此会在电感上形成正向压降。

相反,在状态2过程中,原来连接到输入电压的电感一端被连接到地。

对于一个降压转换器,输出电压必然为正端,因此会在电感上形成负向的压降。

我们利用电感上电压计算公式:V=L(dI/dt)因此,当电感上的电压为正时(状态1),电感上的电流就会增加;当电感上的电压为负时(状态2),电感上的电流就会减小。

通过电感的电流如图2所示:通过上图我们可以看到,流过电感的最大电流为DC电流加开关峰峰电流的一半。

上图也称为纹波电流。

根据上述的公式,我们可以计算出峰值电流:其中,t on是状态1的时间,T是开关周期(开关频率的倒数),DC为状态1的占空比。

警告:上面的计算是假设各元器件(MOSFET上的导通压降,电感的导通压降或异步电路中肖特基二极管的正向压降)上的压降对比输入和输出电压是可以忽略的。

如果,器件的下降不可忽略,就要用下列公式作精确计算:同步转换电路:异步转换电路:其中,Rs为感应电阻阻抗加电感绕线电阻的阻。

Vf 是肖特基二极管的正向压降。

R是Rs 加MOSFET导通电阻,R=Rs+Rm。

电感磁芯的饱和度通过已经计算的电感峰值电流,我们可以发现电感上产生了什么。

很容易会知道,随着通过电感的电流增加,它的电感量会减小。

这是由于磁芯材料的物理特性决定的。

电感量会减少多少就很重要了:如果电感量减小很多,转换器就不会正常工作了。

当通过电感的电流大到电感实效的程度,此时的电流称为“饱和电流”。

这也是电感的基本参数。

实际上,转换电路中的开关功率电感总会有一个“软”饱和度。

要了解这个概念可以观察实际测量的电感Vs DC电流的曲线:当电流增加到一定程度后,电感量就不会急剧下降了,这就称为“软”饱和特性。

如果电流再增加,电感就会损坏了。

注意:电感量下降在很多类的电感中都会存在。

例如:toroids,gapped E-cores等。

但是,rod core电感就不会有这种变化。

有了这个软饱和的特性,我们就可以知道在所有的转换器中为什么都会规定在DC 输出电流下的最小电感量;而且由于纹波电流的变化也不会严重影响电感量。

在所有的应用中都希望纹波电流尽量的小,因为它会影响输出电压的纹波。

这也就是为什么大家总是很关心DC输出电流下的电感量,而会在Spec中忽略纹波电流下的电感量。

为开关电源选择合适的电感电感是开关电源中常用的元件,由于它的电流、电压相位不同,所以理论上损耗为零。

电感常为储能元件,也常与电容一起用在输入滤波和输出滤波电路上,用来平滑电流。

电感也被称为扼流圈,特点是流过其上的电流有“很大的惯性”。

换句话说,由于磁通连续特性,电感上的电流必须是连续的,否则将会产生很大的电压尖峰。

电感为磁性元件,自然有磁饱和的问题。

有的应用允许电感饱和,有的应用允许电感从一定电流值开始进入饱和,也有的应用不允许电感出现饱和,这要求在具体线路中进行区分。

大多数情况下,电感工作在“线性区”,此时电感值为一常数,不随着端电压与电流而变化。

但是,开关电源存在一个不可忽视的问题,即电感的绕线将导致两个分布参数(或寄生参数),一个是不可避免的绕线电阻,另一个是与绕制工艺、材料有关的分布式杂散电容。

杂散电容在低频时影响不大,但随频率的提高而渐显出来,当频率高到某个值以上时,电感也许变成电容特性了。

如果将杂散电容“集中”为一个电容,则从电感的等效电路可以看出在某一频率后所呈现的电容特性。

当分析电感在线路中的工作状况或者绘制电压电流波形图时,不妨考虑下面几个特点:1. 当电感L中有电流I流过时,电感储存的能量为:E=0.5×L×I2 (1)2. 在一个开关周期中,电感电流的变化(纹波电流峰峰值)与电感两端电压的关系为:V=(L×di)/dt (2)由此可看出,纹波电流的大小跟电感值有关。

3. 就像电容有充、放电电流一样,电感器也有充、放电电压过程。

电容上的电压与电流的积分(安·秒)成正比,电感上的电流与电压的积分(伏·秒)成正比。

只要电感电压变化,电流变化率di/dt也将变化;正向电压使电流线性上升,反向电压使电流线性下降。

计算出正确的电感值对选用合适的电感和输出电容以获得最小的输出电压纹波而言非常重要。

从图1可以看出,流过开关电源电感器的电流由交流和直流两种分量组成,因为交流分量具有较高的频率,所以它会通过输出电容流入地,产生相应的输出纹波电压dv=di×R ESR。

这个纹波电压应尽可能低,以免影响电源系统的正常操作,一般要求峰峰值为10mV~500mV。

图1:开关电源中电感电流。

纹波电流的大小同样会影响电感器和输出电容的尺寸,纹波电流一般设定为最大输出电流的10%~30%,因此对降压型电源来说,流过电感的电流峰值比电源输出电流大5%~15%。

最大输入电压值为13.2V,对应的占空比为:D=Vo/Vi=5/13.2=0.379 (3)其中,Vo为输出电压、Vi为输出电压。

当开关管导通时,电感器上的电压为:V=Vi-Vo=8.2V (4)当开关管关断时,电感器上的电压为:V=-Vo-Vd=-5.3V (5)dt=D/F (6)把公式2/3/6代入公式2得出:升压型开关电源的电感选择对于升压型开关电源的电感值计算,除了占空比与电感电压的关系式有所改变外,其它过程跟降压型开关电源的计算方式一样。

以图3为例进行计算,假设开关频率为300kHz、输入电压范围5V±10%、输出电流为500mA、效率为80%,则最大纹波电流为450mA,对应的占空比为:D=1-Vi/Vo=1-5.5/12=0.542 (7)图3:升压型开关电源的电路图。

当开关管导通时,电感器上的电压为:V=Vi=5.5V (8)当开关管关断时,电感器上的电压为:V=Vo+Vd-Vi=6.8V (9)把公式6/7/8代入公式2得出:请注意,升压电源与降压电源不同,前者的负载电流并不是一直由电感电流提供。

当开关管导通时,电感电流经过开关管流入地,而负载电流由输出电容提供,因此输出电容必须有足够大的储能容量来提供这一期间负载所需的电流。

但在开关管关断期间,流经电感的电流除了提供给负载,还给输出电容充电。

一般而言,电感值变大,输出纹波会变小,但电源的动态响应也会相应变差,所以电感值的选取可以根据电路的具体应用要求来调整以达到最理想效果。

开关频率的提高可以让电感值变小,从而让电感的物理尺寸变小,节省电路板空间,因此目前的开关电源有往高频发展的趋势,以适应电子产品的体积越来越小的要求有了上面对电感的认识,下面就作开关电源的分析与应用:楞次定律相关内容:在直流供电的时候,由于线圈的自感作用,线圈将产生一个自感电动势,此电动势将阻碍线圈电流的增加,所以在通电的一瞬间,电路电流可以认为是0,此时电路全部压降全落在线圈上,然后电流缓慢增加,线圈端电压缓慢下降直到为零,暂态过程结束在转换器的开关运行中,必须保证电感不处在饱和状态,以确保高效率的能量存储和传递。

饱和电感在电路中等同于一个直通DC通路,故不能存储能量,也就会使开关模式转换器的整个设计初衷功亏一篑。

在转换器的开关频率已经确定时,与之协同工作的电感必须足够大,并且不能饱和。

开关电源中的电感确定:开关频率低,由于开和关的时间都比较长,因此为了输出不间断的需要,需要把电感值加大点,这样可以让电感可以存储更多的磁场能量。

同时,由于每次开关比较长,能量的补充更新没有如频率高时的那样及时,从而电流也就会相对的小点。

这个原理也可以用公式来说明:L=(dt/di)*u LD=Vo/Vi,降压型占空比 D=1- Vi/Vo,升压型占空比dt=D/F ,F=开关频率di=电流纹波所以得L=D*u L /(F*di),当F开关频率低时,就需要L大一点;同意当L设大时,其他不变情况下,则纹波电流di就会相对减小在高的开关频率下,加大电感会使电感的阻抗变大,增加功率损耗,使效率降低。

同时,在频率不变条件下,一般而言,电感值变大,输出纹波会变小,但电源的动态响应(负载功耗偶尔大偶尔小,在大小变化之间相应慢)也会相应变差,所以电感值的选取可以根据电路的具体应用要求来调整以达到最理想效果问题:电感啸叫:基本理念是听觉范围内的谐波才会被听到.但是一般开关电源开关频率只要不在20K范围内,其谐波含量均不会引起较大噪声.但是这个理论是基于开关电源开关频率比较稳定的情况下. 所以说,如果开关电源占空比不稳定,其产生的谐波就有可能在20K之内并且幅度较大,这样就能引起听觉效应.解决方法有两个:一、从根本解决,占空比的不稳定一般是控制环路的小信号被噪声干扰.DC/DC的占空比需要调节到很稳定;二、如果是电感响,也有可能是磁芯的磁滞伸缩引起的.可对电感浸胶.。

相关文档
最新文档