一元一次方程---调配问题
一元一次方程应用_调配问题含答案

一元一次方程应用——分配问题1.课外活动中一些学生分组参加活动.原来每组6人.后来重新编组.每组10人.这样比原来减少4组.问这些学生共有多少人?2.一个车间加工轴杆和轴承.每人每天平均可以加工轴杆12根或者轴承16个.1根轴杆与2个轴承为一套.该车间共有90人.应该怎样调配人力.才能使每天生产的轴承和轴杆正好配套?3.皖蒙食品加工厂收购了一批质量为1000kg的某种山货.根据市场需求对其进行粗加工和精加工处理.已知精加的这种山货质量比粗加工的质量的3倍还多200kg.求粗加工的这种山货的质量.4.马年新年即将来临.七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个.那么比计划多了7个;如果每人做5个.那么比计划少了13个.该小组计划做多少个“中国结”?5.某车间有22名工人.每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母.为使每天生产的螺钉和螺母刚好配套.应安排生产螺钉和螺母的工人各多少名?6.某人原计划用26天生产一批零件.工作两天后因改变了操作方法.每天比原来多生产5个零件结果提前4天完成任务.问原来每天生产多少个零件?这批零件有多少个?7.把一些图书分给某班学生阅读.如果每人分3本.则剩余20本;如果每人分4本.则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?8.《九章算术》中有一道阐述“盈不足术”的问题.原文如下:今有人共买物.人出八.盈三;人出七.不足四.问人数.物价各几何?译文为:现有一些人共同买一个物品.每人出8元.还盈余3元;每人出7元.则还差4元.问共有多少人?这个物品的价格是多少?请解答上述问题.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)10.在手工制作课上.老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人.其中男生人数比女生人数少2人.并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底.为了使每小时剪出的筒身与筒底刚好配套.应该分配多少名学生剪筒身.多少名学生剪筒底?11.某校组织学生种植芽苗菜.三个年级共种植909盆.初二年级种植的数量比初一年级的2倍少3盆.初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?12.为迎接6月5日的“世界环境日”.某校团委开展“光盘行动”.倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加.七(1)班参加的人数比七(2)班多10人.请问七(1)班和七(2)班各有多少人参加“光盘行动”?13.列方程解应用题《九章算术》中有“盈不足术”的问题.原文如下:“今有共買羊.人出五.不足四十五;人出七.不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊.每人出5元.则差45元;每人出7元.则差3元.求人数和羊价各是多少?14.暑假.某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动.如图是划船须知.(1)他们一共租了10条船.并且每条船都坐满了人.那么大、小船各租了几只?(2)他们租船一共花了多少元钱?15.列方程或方程组解应用题:在“五一”期间.小明、小亮等同学随家长一同到某公园游玩.下面是购买门票时.小明与他爸爸的对话(如图).试根据图中的信息.解答下列问题:(1)小明他们一共去了几个成人.几个学生?(2)请你帮助小明算一算.用哪种方式购票更省钱?参考答案与试题解析1.【分析】设这些学生共有x人.先表示出原来和后来各多少组.其等量关系为后来的比原来的少2组.根据此列方程求解.【解答】解:设这些学生共有x人.根据题意.得﹣=4.解得x=60.答:这些学生共有60人.【点评】此题考查的知识点是一元一次方程的应用.其关键是找出等量关系及表示原来和后来各多少组.难度一般.2.【分析】设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据1根轴杆与2个轴承为一套列出方程.求出方程的解即可得到结果.【解答】解:设x个人加工轴杆.(90﹣x)个人加工轴承.才能使每天生产的轴承和轴杆正好配套.根据题意得:12x×2=16(90﹣x).去括号得:24x=1440﹣16x.移项合并得:40x=1440.解得:x=36.则调配36个人加工轴杆.54个人加工轴承.才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用.找出题中的等量关系是解本题的关键.3.【分析】等量关系为:精加工的山货总质量+粗加工的山货总质量=1000kg.把相关数值代入计算即可.【解答】解:设粗加工的该种山货质量为x千克.则精加工(3x+200)千克.由题意得:x+(3x+200)=1000.解得:x=200.答:粗加工的该种山货质量为200千克.【点评】本题考查一元一次方程的应用.得到山货总质量的等量关系是解决本题的关键.难度一般.4.【分析】设小组成员共有x名.由题意可知计划做的中国结个数为:(6x﹣7)或(5x+13)个.令二者相等.即可求得x的值.可得小组成员个数及计划做的中国结个数.【解答】解:设小组成员共有x名.则计划做的中国结个数为:(6x﹣7)或(5x+13)个∴6x﹣7=5x+13解得:x=20.∴6x﹣7=113.答:计划做113个中国结.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系列出方程.再求解.5.【分析】设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系.就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母.则(22﹣x)人生产螺钉.由题意得2000x=2×1200(22﹣x).解得:x=12.则22﹣x=10.答:应安排生产螺钉和螺母的工人10名.12名.【点评】此题主要考查了一元一次方程的应用.列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.【分析】设原来每天生产x个零件.表示出所有零件的个数.进而得出等式求出即可.【解答】解:设原来每天生产x个零件.根据题意可得:26x=2x+(x+5)×20.解得:x=25.故26×25=650(个).答:原来每天生产25个零件.这批零件有650个.【点评】此题主要考查了一元一次方程的应用.根据题意表示出零件的总个数是解题关键.7.【分析】(1)设这个班有x名学生.根据这个班人数一定.可得:3x+20=4x﹣25.解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生.这批图书共有155本.【点评】解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程.再求解.8.【分析】根据这个物品的价格不变.列出一元一次方程进行求解即可.【解答】解:设共有x人.可列方程为:8x﹣3=7x+4.解得x=7.∴8x﹣3=53(元).答:共有7人.这个物品的价格是53元.【点评】本题考查了一元一次方程的应用.解题的关键是明确题意.找出合适的等量关系.列出相应的方程.9.某单位计划“五一”期间组织职工到东江湖旅游.如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆.并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆.问有无可能使每辆车刚好坐满?如有可能.两种车各租多少辆?(此问可只写结果.不写分析过程)【分析】(1)先设该单位参加旅游的职工有x人.利用人数不变.车的辆数相差1.可列出一元一次方程求出.(2)可根据租用两种汽车时.利用假设一种车的辆数.进而得出另一种车的数量求出即可.【解答】解:(1)设该单位参加旅游的职工有x人.由题意得方程:.解得x=360;答:该单位参加旅游的职工有360人.(2)有可能.因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人.正好坐满.【点评】此题主要考查了一元一次方程的应用.解题关键是要读懂题目的意思.根据题目给出的条件.找出合适的等量关系.列出方程再求解.10.【分析】(1)设七年级(2)班有女生x人.则男生(x﹣2)人.根据全班共有44人建立方程求出其解即可;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x人.则男生(x﹣2)人.由题意.得x+(x﹣2)=44.解得:x=23.∴男生有:44﹣23=21人.答:七年级(2)班有女生23人.则男生21人;(2)设分配a人生产筒身.(44﹣a)人生产筒底.由题意.得50a×2=120(44﹣a).解得:a=24.∴生产筒底的有20人.答:分配24人生产筒身.20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用.一元一次方程的解法的运用.解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.11.【分析】设初一年级种植x盆.则初二年级种植(2x﹣3)盆.初三年级种植(2x ﹣3+25)盆.根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆.依题意得:x+(2x﹣3)+(2x﹣3+25)=909.解得.x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量.直接设要求的未知量或间接设一关键的未知量为x.然后用含x的式子表示相关的量.找出之间的相等关系列方程、求解、作答.即设、列、解、答.12.【分析】首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动.由此列一元一次方程求解.【解答】解:设七(2)班有x人参加“光盘行动”.则七(1)班有(x+10)人参加“光盘行动”.依题意有(x+10)+x+48=128.解得x=35.则x+10=45.答:七(1)班有45人参加“光盘行动”.七(2)班有35人参加“光盘行动”.【点评】此题考查的知识点是一元一次方程组的应用.关键是先确定相等关系.然后列方程求解.13.【分析】可设买羊人数为未知数.等量关系为:5×买羊人数+45=7×买羊人数+3.把相关数值代入可求得买羊人数.代入方程的等号左边可得羊价.【解答】解:设买羊为x人.则羊价为(5x+45)元钱.5x+45=7x+3.x=21(人).5×21+45=150(元).答:买羊人数为21人.羊价为150元.【点评】本题考查了一元一次方程的应用.找准等量关系.正确列出一元一次方程是解题的关键.14.【分析】(1)设大船租了x只.则小船租了(10﹣x)只.那么6x+4(10﹣x)就等于该班总人数;(2)他们租船一共花了10x+8×(10﹣5)元.【解答】解:(1)设大船租了x只.则小船租了(10﹣x)只.则6x+4(10﹣x)=50解得:x=5.答:大、小船各租了5只;(2)他们租船一共花了10×5+8×5=90元.答:他们租船一共花了90元.【点评】列方程解应用题的关键是正确找出题目中的相等关系.用代数式表示出相等关系中的各个部分.把列方程的问题转化为列代数式的问题.15.【分析】(1)设去了x个成人.则去了(12﹣x)个学生.根据爸爸说的话.可确定相等关系为:成人的票价+学生的票价=400元.据此列方程求解;(2)计算团体票所需费用.和400元比较即可求解.【解答】解:(1)设去了x个成人.则去了(12﹣x)个学生.依题意得40x+20(12﹣x)=400.解得x=8.12﹣x=4;答:小明他们一共去了8个成人.4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400.∴按团体票购票更省钱.【点评】考查利用方程模型解决实际问题.关键在于设求知数.列方程.此类题目贴近生活.有利于培养学生应用数学解决生活中实际问题的能力.。
一元一次方程的应用(调配问题)

调配后
等量关系
108+x
54-x
牧场面积=林场面积的20%
例2、在甲处劳动的工人有27人,在乙处劳动 的工人有19人,现在另调20人去支援,使得 甲处的人数为乙处的2倍,应调往甲、乙两处 各多少人? 分析:可设调往甲组x人
甲组 乙组 19 19+20-x来自调配前 调配后 等量关系
1、调配问题两种类型: (1)从甲往乙调,此时总人数不变; (2)从外面调人给甲乙,此时总人数增加. 2、调配问题解题策略:
通过列表得到调配后的数量,列出方程.
宝典训练A:40页练习题
例1、某班学生分为两组参加植树活动,甲组 有17人,乙组有25人.后来由于需要,又从甲 组抽调部分学生去乙组,结果乙组人数是甲组 的2倍,从甲组抽调了多少学生去乙组?
分析:可设从甲组抽调了x人去乙组
甲组 乙组 25 25+x
调配前 调配后 等量关系
17
17-x 乙=2甲
1.某班学生分为两组参加学校活动,第一组有 28人,第二组有38人.现在重新分组,需要从 第二组调多少人到第一组,能使第一组人数是 第二组的2倍?
分析:可设从第二组抽调了x人去第一组
第一组 调配前 28 第二组 38
调配后
等量关系
28+x
38-x
第一组人数=第二组的2倍
2.某生产队有林场108公顷,牧场54公顷,现 要栽培一种新的果树,把一部分牧场改造成林 场,使牧场面积是林场面积的20%,问改为林 场的牧场面积是多少?
分析:可设把x公顷牧场改造为林场
27
27+x
甲处的人数=乙处的2倍
动手试一试
3.甲仓库有粮食72吨,乙仓库原有粮食54吨, 现又调入42吨,问如何分配,能使乙仓库的粮 食是甲仓库的一半? 4.甲队原有68人,乙队有44人,现又调入42 人给这两队,为了使乙队人数是甲队人数的四 分之三,应调往甲、乙两队各多少人?
一元一次方程的应用——调配与配套问题_

一元一次方程的应用——调配与配套问题一、选择题(本题共计 4 小题,每题 3 分,共计12分,)1. 某个工厂有技术工12人,平均每天每人可加工甲种零件24个或乙种零件15个,2个甲种零件和3个乙种零件可以配成一套,设安排x个技术工生产甲种零件,为使每天生产的甲乙零件刚好配套,则下面列出方程中正确的有( )个①24x2=15(1−x)3;②32×24x=15(12−x);③3×24x=2×15(12−x);④2×24x+3×15(12−x)=1.A.3B.2C.1D.02. 如图,学校实验室需要向某工厂定制一批三条腿的桌子,已知该工厂有24名工人,每人每天可以生产20块桌面或300条桌腿,1块桌面需要配3条桌腿,为使每天生产的桌面和桌腿刚好配套,设安排x名工人生产桌面,则下面所列方程正确的是()A.20x=3×300(24−x)B.300x=3×20(24−x)C.3×20x=300(24−x)D.20x=300(24−x)3. 某车间有33名工人,每人每天可以生产1200个螺钉或1800个螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有名工人生产螺钉,则可列方程为().A.B.C.D.4. 鸡兔同笼,上数有20个头,下数有50条腿,可知鸡兔和数量分别为()A.5和15B.15和5C.12和8D.8和12二、填空题(本题共计 5 小题,每题 3 分,共计15分,)5. 把一些图书分给某班学生阅读,如果每人分4本,则剩余19本;如果每人分5本,则还缺28本,则这个班有________名学生.6. 《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车无人乘坐,若每2人共乘一车,最终剩余9个人无车可乘,则有________辆车,________人.7. 我国明代数学家程大位所著的《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.则该店有客房________间.8. 清人徐子云《算法大成》中有一首名为“寺内僧多少”的诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.诗的大意是:在巍巍的大山和茂密的森林之中,有一座千年古寺,寺中有364只碗,要是3个和尚共吃一碗饭,4个和尚共喝一碗粥,这些碗刚好用完,问寺内有多少和尚?设有和尚x人,由题意可列方程为:________.9. 列方程(组)解应用题:某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.则该店有客房________间.三、解答题(本题共计 10 小题,每题 10 分,共计100分,)10. 一个车间加工轴杆和轴承,每人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?11. 如图所示的是一个由1个茶壶和6只茶杯组成的茶具,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做4个茶壶或12只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少千克紫砂泥做茶杯,恰好配成这种茶具多少套?12. 某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.若购买这两类球的总金额为4600元,篮球,足球各买了多少个?13. 我国民间流传着许多趣味算题,它们多以顺口溜的形式表达,其中,《孙子算经》中记载了这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?14. 把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.这个班有多少学生?15. 古籍《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的译文为:如果每间客房住满7人,那么有7人无房可住;如果每间客房都住满9人,那么正好空出一间房.则该店有客房几间,房客几人?16. 某机械厂加工车间有110名工人,平均每人每天加工大齿轮16个或者小齿轮12个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大,小齿轮,才能使每天加工的大小齿轮刚好配套?17. 以绳测井.若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5米;如果将绳子折成四等份,一份绳长比井深多1尺.问绳长、井深各是多少尺?18. 我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?19. 《孙子算经》是我国古代重要的数学著作.书中记载这样一个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这个问题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?请用方程解答上述问题.参考答案与试题解析一元一次方程的应用——调配与配套问题一、选择题(本题共计 4 小题,每题 3 分,共计12分)1.【答案】A【考点】由实际问题抽象出一元一次方程【解析】利用生成的甲种零件个数:乙种零件个数=2:3,列出方程,变形即可得到答案. 【解答】解:设安排x个技术工生产甲种零件,则安排(12−x)个技术工生产乙种零件,由于2个甲种零件和3个乙种零件可以配成一套,故生成的甲种零件个数:乙种零件个数=2:3,故24x15(12−x)=23,化简可得24x2=15(12−x)3或32×24x=15(12−x)或3×24x=2×15(12−x),故①②③正确.故选A.2.【答案】C【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设安排x名工人生产桌子面,则安排(24−x)名工人生产桌子腿,依题意,得:3×20x=300(24−x).故选C.3.【答案】B【考点】由实际问题抽象为分式方程由实际问题抽象出一元一次方程一元一次方程的应用——调配与配套问题【解析】由已知可得生产螺钉的工人为×人,则生产螺母的工人为(33−x)人,根据一个螺钉需两个螺母的数量关系找出螺钉与螺母的等量关系:螺母的总数为螺钉总数的两倍,即可求解.【解答】:生产螺钉的工人为∼人,工人总数为:33人,生产螺母的工人为(33−x)人,:一个螺钉需两个螺母配套,每人每天可生产螺钉1200个或螺母1800个,为使每天生产的螺钉和螺母刚好配套,则生产螺母的总数为螺钉总数的两倍,可列等量关系式为:2×1200x=1800×(33−x)故选:B.4.【答案】B【考点】一元一次方程的应用——调配与配套问题【解析】设鸡的数量为x只,兔的数量则为:(20−x)只,结合下数有50条腿,进而得出等式求出即可.【解答】解:设鸡的数量为x只,兔的数量则为:(20−x)只,根据题意可得:2x+4(20−x)=50,解得:x=15,则20−15=5,即鸡的数量为15只,兔的数量则为:5只.故选B.二、填空题(本题共计 5 小题,每题 3 分,共计15分)5.【答案】47【考点】一元一次方程的应用——工程进度问题一元一次方程的应用——调配与配套问题由实际问题抽象出一元一次方程【解析】可设有∼名学生,根据总本数相等和每人分4本,剩余19本,每人分5本,缺28本可列出方程,求解即可.【解答】解:设这个班有》名学生,根据题意得:4x+19=5x−28解得:x=47故答案为:47.6.【答案】15,39【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15,2x+9=2×15+9=39(人).故有39人,15辆车.故答案为:15;39.7.【答案】8【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.故答案为:8.8.【答案】x 3+x4=364【考点】一元一次方程的应用——调配与配套问题【解析】读懂题中的诗句,找出条件,共有364只碗,三人共食一碗饭,四人共吃一碗羹.可以列出方程.【解答】解:设有和尚x人,则需要x3只碗装饭,x4只碗装粥,根据题意得x3+x4=364.故答案为:x3+x4=364.9.【答案】8【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.故答案为:8.三、解答题(本题共计 10 小题,每题 10 分,共计100分)10.【答案】解:设x个人加工轴杆,(90−x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90−x),去括号得:24x=1440−16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.【考点】一元一次方程的应用——调配与配套问题【解析】设x个人加工轴杆,(90−x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据1根轴杆与2个轴承为一套列出方程,求出方程的解即可得到结果.【解答】解:设x个人加工轴杆,(90−x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90−x),去括号得:24x=1440−16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.11.【答案】解:设应用x千克紫砂泥做茶壶,(6−x)千克紫砂泥做茶杯,则4x×6=12(6−x),化简得:x=2.∴2×4=8(套).答:应用2千克紫砂泥做茶壶,4克紫砂泥做茶杯,恰好配成这种茶具8套.【考点】一元一次方程的应用——调配与配套问题【解析】设应用x千克紫砂泥做茶壶,y千克紫砂泥做茶杯,恰好配成这种茶具,根据题意列出方程组,即可解答.【解答】解:设应用x千克紫砂泥做茶壶,(6−x)千克紫砂泥做茶杯,则4x×6=12(6−x),化简得:x=2.∴2×4=8(套).答:应用2千克紫砂泥做茶壶,4克紫砂泥做茶杯,恰好配成这种茶具8套.12.【答案】解:设购买篮球x个,购买足球(60−x)个,依题意得:70x+80(60−x)=4600,即4800−10x=4600,解得x=20,60−x=60−20=40.答:购买篮球20个,购买足球40个.【考点】一元一次方程的应用——调配与配套问题【解析】(1)设购买篮球x个,购买足球y个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a个篮球,则购买(60−a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x的最大整数解即可.【解答】解:设购买篮球x个,购买足球(60−x)个,依题意得:70x+80(60−x)=4600,即4800−10x=4600,解得x=20,60−x=60−20=40.答:购买篮球20个,购买足球40个.13.【答案】解:设有x个老头,则有(x+1)个梨,由题意,得2x=x+1+2,解得x=3,x+1=4.答:有3个老头,4个梨.【考点】一元一次方程的应用——调配与配套问题【解析】设有x个老头,y个梨,根据“一人一个多一梨,一人两个少二梨”,即可得出关于x、y 的二元一次方程组,解之即可得出结论.【解答】解:设有x个老头,则有(x+1)个梨,由题意,得2x=x+1+2,解得x=3,x+1=4.答:有3个老头,4个梨.14.【答案】解:设这个班有x名学生,根据书的总量相等可得:3x+20=4x−25,解得:x=45.答:这个班有45名学生.【考点】一元一次方程的应用——调配与配套问题【解析】可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.【解答】解:设这个班有x名学生,根据书的总量相等可得:3x+20=4x−25,解得:x=45.答:这个班有45名学生.15.【答案】解:设该店有x间客房,由题意可得7x+7=9x−9,解得x=8,所以房客人数为7x+7=7×8+7=63.答:共有客房8间,房客63人.【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,由题意可得7x+7=9x−9,解得x=8,所以房客人数为7x+7=7×8+7=63.答:共有客房8间,房客63人.16.【答案】解:设每天加工的大齿轮的有x人,则每天加工的小齿轮的有(110−x)人,根据题意可得;2×16x=12(110−x),解得:x=30,则110−30=80(人).答:每天加工的大齿轮的有30人,每天加工的小齿轮的有80人.【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设每天加工的大齿轮的有x人,则每天加工的小齿轮的有(110−x)人,根据题意可得;2×16x=12(110−x),解得:x=30,则110−30=80(人).答:每天加工的大齿轮的有30人,每天加工的小齿轮的有80人.17.【答案】解:设井深为x尺,则绳长为:3(x+5),依题意得:3(x+5)=4(x+1).解得x=11,则4(x+1)=48尺.故井深为11尺,绳长为48尺.【考点】一元一次方程的应用——调配与配套问题【解析】用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多四尺;②绳四折测之,绳多一尺.【解答】解:设井深为x尺,则绳长为:3(x+5),依题意得:3(x+5)=4(x+1).解得x=11,则4(x+1)=48尺.故井深为11尺,绳长为48尺.18.【答案】解:设该店有x间客房,则7x+7=9x−9,解得x=8.7x+7=7×8+7=63.答:共有客房8间,房客63人.【考点】一元一次方程的应用——调配与配套问题【解析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【解答】解:设该店有x间客房,则7x+7=9x−9,解得x=8.7x+7=7×8+7=63.答:共有客房8间,房客63人.19.【答案】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.2x+9=2×15+9=39(人).答:有39人,15辆车.【考点】一元一次方程的应用——调配与配套问题【解析】此题暂无解析【解答】解:设有x辆车,则有(2x+9)人,依题意得:3(x−2)=2x+9.解得,x=15.2x+9=2×15+9=39(人).答:有39人,15辆车.。
一元一次方程——调配问题

车间原来各有多少人?
2、在一次美化校园的活动 中,先安排31人去拔草,18 人去植树,后又增派20人去 支援他们,结果拔草的人数 是植树人数的2倍,求支援 拔草和植树的人数分别是多 少.
总结: 根据调配后的等量关系列方 程解决问题.
2、某车间有2个小组,甲组 是乙组人数的2倍,若从甲组 调12人到乙组,使甲组人数 比乙组人数的一半还多3人, 求原来甲、乙两组人数.
3、将全班45名同学分成两组 植树,要求甲组每人挖5个坑, 乙组每人挖3个坑并植7棵树, 如何分配两组的人数,才能 使挖的坑数与植数的棵数相 等?
4、甲厂有工人57名,乙厂 有工人75名,现需要从两场
中抽调42名工人去支援其他 工厂,且要使抽调后甲厂人
1 数是乙厂人数的 ,求从甲、 2
乙两厂各调出多少人.
5、有甲乙两个蓄水池,甲池 中有水15立方米,乙池中有 水24立方米,现向一个水池 注入一定量的水后,其中一 个水池中的水量是另一个水 5 ,求后注入 池中的水量的 6 水多少立方米.
一元一次方程应用
——调配问题
例1 某班要清理操场,在甲 处清理的有27人,在乙处清 理的有19人,现另外调20人 去支援,使在甲处清理的人 数是乙处的2倍,问:往甲处、 和乙处各调多少人?
例2 某单位按要求清理街面 卫生,在甲区清理的有272
人,在乙区清理的有196人, 如果使乙区清理的人数是甲 区人数的
变式:有甲乙两个蓄水池,甲 池中有水15立方米,乙池中 有水24立方米,现从一个水 池抽一定量的水到另一个水 池使得一个水池中的水量是 5 另一个水池中水量的 6 ,求 抽出多少立方米的水到另一 个水池.
1、作业本:①一车间比二车
一元一次方程应用——调配问题含答案

一元一次方程应用——分配问题1.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组10人,这样比原来减少4组.问这些学生共有多少人?2.一个车间加工轴杆和轴承,每人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套?3.皖蒙食品加工厂收购了一批质量为1000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多200kg,求粗加工的这种山货的质量.4.马年新年即将来临,七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.该小组计划做多少个“中国结”?5.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?6.某人原计划用26天生产一批零件,工作两天后因改变了操作方法,每天比原来多生产5个零件结果提前4天完成任务,问原来每天生产多少个零件?这批零件有多少个?7.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.(1)这个班有多少学生?(2)这批图书共有多少本?8.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.9.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)10.在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?11.某校组织学生种植芽苗菜,三个年级共种植909盆,初二年级种植的数量比初一年级的2倍少3盆,初三年级种植的数量比初二年级多25盆.初一、初二、初三年级各种植多少盆?12.为迎接6月5日的“世界环境日”,某校团委开展“光盘行动”,倡议学生遏制浪费粮食行为.该校七年级(1)、(2)、(3)三个班共128人参加了活动.其中七(3)班48人参加,七(1)班参加的人数比七(2)班多10人,请问七(1)班和七(2)班各有多少人参加“光盘行动”?13.列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?14.暑假,某校初一年级(1)班组织学生去公园游玩,该班有50名同学组织了划船活动,如图是划船须知.(1)他们一共租了10条船,并且每条船都坐满了人,那么大、小船各租了几只?(2)他们租船一共花了多少元钱?15.列方程或方程组解应用题:在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)小明他们一共去了几个成人,几个学生?(2)请你帮助小明算一算,用哪种方式购票更省钱?参考答案与试题解析1.【分析】设这些学生共有x人,先表示出原来和后来各多少组,其等量关系为后来的比原来的少2组,根据此列方程求解.【解答】解:设这些学生共有x人,根据题意,得﹣=4.解得x=60.答:这些学生共有60人.【点评】此题考查的知识点是一元一次方程的应用,其关键是找出等量关系及表示原来和后来各多少组,难度一般.2.【分析】设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据1根轴杆与2个轴承为一套列出方程,求出方程的解即可得到结果.【解答】解:设x个人加工轴杆,(90﹣x)个人加工轴承,才能使每天生产的轴承和轴杆正好配套,根据题意得:12x×2=16(90﹣x),去括号得:24x=1440﹣16x,移项合并得:40x=1440,解得:x=36.则调配36个人加工轴杆,54个人加工轴承,才能使每天生产的轴承和轴杆正好配套.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.3.【分析】等量关系为:精加工的山货总质量+粗加工的山货总质量=1000kg,把相关数值代入计算即可.【解答】解:设粗加工的该种山货质量为x千克,则精加工(3x+200)千克,由题意得:x+(3x+200)=1000,解得:x=200.答:粗加工的该种山货质量为200千克.【点评】本题考查一元一次方程的应用,得到山货总质量的等量关系是解决本题的关键,难度一般.4.【分析】设小组成员共有x名,由题意可知计划做的中国结个数为:(6x﹣7)或(5x+13)个,令二者相等,即可求得x的值,可得小组成员个数及计划做的中国结个数.【解答】解:设小组成员共有x名,则计划做的中国结个数为:(6x﹣7)或(5x+13)个∴6x﹣7=5x+13解得:x=20,∴6x﹣7=113,答:计划做113个中国结.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.【分析】设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程求出即可.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),解得:x=12,则22﹣x=10,答:应安排生产螺钉和螺母的工人10名,12名.【点评】此题主要考查了一元一次方程的应用,列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.6.【分析】设原来每天生产x个零件,表示出所有零件的个数,进而得出等式求出即可.【解答】解:设原来每天生产x个零件,根据题意可得:26x=2x+(x+5)×20,解得:x=25,故26×25=650(个).答:原来每天生产25个零件,这批零件有650个.【点评】此题主要考查了一元一次方程的应用,根据题意表示出零件的总个数是解题关键.7.【分析】(1)设这个班有x名学生.根据这个班人数一定,可得:3x+20=4x ﹣25,解方程即可;(2)代入方程的左边或右边的代数式即可.【解答】解:(1)设这个班有x名学生.依题意有:3x+20=4x﹣25解得:x=45(2)3x+20=3×45+20=155答:这个班有45名学生,这批图书共有155本.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.8.【分析】根据这个物品的价格不变,列出一元一次方程进行求解即可.【解答】解:设共有x人,可列方程为:8x﹣3=7x+4.解得x=7,∴8x﹣3=53(元),答:共有7人,这个物品的价格是53元.【点评】本题考查了一元一次方程的应用,解题的关键是明确题意,找出合适的等量关系,列出相应的方程.9.某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)【分析】(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求出.(2)可根据租用两种汽车时,利用假设一种车的辆数,进而得出另一种车的数量求出即可.【解答】解:(1)设该单位参加旅游的职工有x人,由题意得方程:,解得x=360;答:该单位参加旅游的职工有360人.(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.【点评】此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.10.【分析】(1)设七年级(2)班有女生x人,则男生(x﹣2)人,根据全班共有44人建立方程求出其解即可;(2)设分配a人生产筒身,(44﹣a)人生产筒底,由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x人,则男生(x﹣2)人,由题意,得x+(x﹣2)=44,解得:x=23,∴男生有:44﹣23=21人.答:七年级(2)班有女生23人,则男生21人;(2)设分配a人生产筒身,(44﹣a)人生产筒底,由题意,得50a×2=120(44﹣a),解得:a=24.∴生产筒底的有20人.答:分配24人生产筒身,20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.11.【分析】设初一年级种植x盆,则初二年级种植(2x﹣3)盆,初三年级种植(2x﹣3+25)盆,根据“三个年级共种植909盆”列出方程并解答.【解答】解:设初一年级种植x盆,依题意得:x+(2x﹣3)+(2x﹣3+25)=909,解得,x=178.∴2x﹣3=3532x﹣3+25=378.答:初一、初二、初三年级各种植178盆、353盆、378盆.【点评】本题考查了一元一次方程的应用.利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.12.【分析】首先确定相等关系:该校七年级(1)、(2)、(3)三个班共128人参加了活动,由此列一元一次方程求解.【解答】解:设七(2)班有x人参加“光盘行动”,则七(1)班有(x+10)人参加“光盘行动”,依题意有(x+10)+x+48=128,解得x=35,则x+10=45.答:七(1)班有45人参加“光盘行动”,七(2)班有35人参加“光盘行动”.【点评】此题考查的知识点是一元一次方程组的应用,关键是先确定相等关系,然后列方程求解.13.【分析】可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(元),答:买羊人数为21人,羊价为150元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.【分析】(1)设大船租了x只,则小船租了(10﹣x)只,那么6x+4(10﹣x)就等于该班总人数;(2)他们租船一共花了10x+8×(10﹣5)元.【解答】解:(1)设大船租了x只,则小船租了(10﹣x)只,则6x+4(10﹣x)=50解得:x=5,答:大、小船各租了5只;(2)他们租船一共花了10×5+8×5=90元.答:他们租船一共花了90元.【点评】列方程解应用题的关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,把列方程的问题转化为列代数式的问题.15.【分析】(1)设去了x个成人,则去了(12﹣x)个学生,根据爸爸说的话,可确定相等关系为:成人的票价+学生的票价=400元,据此列方程求解;(2)计算团体票所需费用,和400元比较即可求解.【解答】解:(1)设去了x个成人,则去了(12﹣x)个学生,依题意得40x+20(12﹣x)=400,解得x=8,12﹣x=4;答:小明他们一共去了8个成人,4个学生.(2)若按团体票购票:16×40×0.6=384∵384<400,∴按团体票购票更省钱.【点评】考查利用方程模型解决实际问题,关键在于设求知数,列方程.此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.。
一元一次方程——调配和分配问题

一元一次方程应用题——调配和分配问题一、学习重点:调配和分配问题:1、找准调配前后的数量关系;2、找数量关系时可借助列表等形式。
需要注意人或者物品的流向,流动之后形成了一种什么样的关系,例如:从甲队调一些人去乙队,其中甲队要减去这些人,而乙队要加上这些人。
再根据题意中给的关系设未知数表示出来。
二、基础练习:1、有甲乙两个运输队,甲队32人,乙队28人,从甲调走5人到乙队,则甲队_____人,乙队____人。
2、有甲乙两个运输队,甲队32人,乙队28人,从甲调走x人到乙队,〔1〕使甲乙两队人数恰好相等,则x=______;〔2〕假设乙队人数恰好是甲队人数的2倍,则x=_____;〔3〕假设乙队人数比甲队人数的4倍还多5人,则x=_____。
例1、某厂一车间有64人,二车间有56人。
现因工作需要,需求第一车间人数是笫二车间人数的一半。
问需从第一车间调多少人到第二车间?练习:甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下來的人数是原乙队人数的一半还多15人。
求甲、乙两队原有人数各多少人?做题:3、4例2、甲车队有15辆汽车,乙车队有28辆汽年,现调来10辆汽分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?练习:甲仓库储粮35吨,乙仓库储粮19吨,现调粮食15吨,应分配给两仓库各多少吨,才能使得甲仓库的粮食数量是乙仓库的两倍?做题:5、6例3、某班同学利用假期参加夏令营活动,分成几个小组,假设每组7人还余1人,假设每组8人还缺6人,问该班分成几个小组,共有多少名同学?练习:学校新进假设干箱教学设备,某班同学去运,假设每人运8箱,还余16箱;假设每人运9箱,还缺少32箱,这批设备共有多少箱?这个班有多少名同学?做题:7、8三、应用题: A卷3、甲车队有50辆汽车,乙车队有41辆汽车,如果要使乙车队数比甲车队车数的2倍还多1辆,应从甲车队调多少辆车到乙车队?4、一车间与二车间总人数为150人,将一车间的15名工人调动到二车间,两车间人数相等,求二车间人数。
3.4实际问题与一元一次方程-调配问题
(2)某车间每天能生产甲种零件100个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套.要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?
解:设生产甲种零件 x 天,依题意,得: 2×100x=3×100(30-x) 解得:x=18 则生产乙种零件的天数为:30-x=12(天) 答:应安排生产甲种零件18天,乙种零件12天.
1200x
2000(22-x)
螺母的数量 = 2×螺钉的数量
(3)、一套仪器由一个A部件和三个B部件构成。用1立 方米钢材可做40个A部件或240个B部件。现要用6立 方米钢材制作这种仪器,应用多少钢材做A部件,多 少钢材做B部件,恰好配成这种仪器多少套?
A部件
归纳小结:
用一元一次方程解决实际问题的基本过程如下:
实际问题
设未知数,列方程
一元一次方程
实际问题的答案
解方程
一元一次方程的解 (x=a)
检验
这一过程包括设、列、解、检、答等步骤, 即设未知数,列方程,解方程,检验所得结果, 确定答案。正确分析问题中的相等关系是列方 程的基础。
解:设 x 张白铁皮做盒身,依题意,得: 2×16x=45×(100-x) 解得:x=60 则做盒底的铁皮为:100-x=40(张) 答:用60张白铁皮做盒身,40张白铁皮做盒底.
方法规律:
生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程。
B部件
钢材(m3)
个数(个/m3)
数量(个)
X
6-X
40
240
40x
240(6-x)
3×40X= 240(6-X)
5.3实际问题与一元一次方程(2)—— 调配问题 课件
解得 y =5或 y =55.
综上所述,倒入的果汁的体积是5或55毫升.
课后作业
1. 已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是
乙煤场的2倍,需要从甲煤场运煤到乙煤场.设从甲煤场运煤x吨到乙煤
场,则列方程为(
C
)
A. 518=2(106+x)
B. 518-x=2×106
C. 518-x=2(106+x)
1. 甲、乙两个组共有60人,甲组加入14人,乙组退出10人后,两个
组人数相等,设甲组原来有 x 人,则所列方程是(
A. 14+ x =60- x -10
B. 14+ x =60- x
C. 14- x =60+ x
D. 14+ x =60- x +10
A
)
2. (2024·西安模拟)某校开展“垃圾分类”为主题的实践活动,将参与
答:应从甲调给乙18本图书.
1. 甲车队有汽车100辆,乙车队有汽车68辆,根据情况需要甲车队的
汽车和乙车队的汽车相等,问需要从甲车队调多少辆汽车到乙车队?
解:设需要从甲车队调 x 辆汽车到乙车队.
由题意,得100- x =68+ x .解得 x =16.
答:需要从甲车队调16辆汽车到乙车队.
例2 某厂甲车间有工人34人,乙车间有工人Leabharlann 2人.应从甲车间调多少
由题意,得(120- x )= (180+ x )或 (120- x )=(180+ x ).
解得 x =-5(舍去)或 x =-55(舍去).
②设乙瓶中的果汁倒入甲瓶中的果汁的体积是 y 毫升.
由题意,得(120+ y )= (180- y )或 (120+ y )=(180- y ).
列一元一次方程解应用题——调配问题
初一数学学案 执笔人:姜苹苹
让省思成为我们的习惯 在省思中获取前进动力
第二章 列方程解应用题
第1课时 人员调配问题
1. 会将文字语言转换成数学符号,理解语句,能写出等量关系,正确写出解题过程。
2. 学法指导:原有人数、调出人数,剩余人数,三者关系,给出一组量,两组等量关系。
【任务1】翻译语句:
为了丰富我们学校学生业余生活,合唱团准备在初一年级招募15名同学,1班学生共32人,2班学生31人,体委曹新鹏上操时候发现1班剩下的学生和2班剩下学生的一样多,你知道从我们班抽多少同学去了合唱团吗?
翻译语句,列出等量关系式:
招募15名同学: 1班剩下的学生和2班剩下学生的一样多:
1班学生共32人: 2班学生31人 。
学生试着画出理解本题的思维导图: 根据导图写出解题过程:
【任务2
变式1:为了丰富我们学校学生业余生活,合唱团准备在初一年级招募15名同学,1班学生共32
人,2班学生31人,体委曹新鹏上操时候发现1班剩下的学生是2班剩下学生的2倍,你知道从我们班抽多少同学去了合唱团吗?
变式2:为了丰富我们学校学生业余生活,合唱团准备在初一年级招募一些同学,1班学生32人,2班学生31人,从1班抽走的学生是2班抽走学生的2倍,体委曹新鹏上操时候发现1班剩下的学生与2班剩下学生一样多,你知道从我们班抽多少同学去了合唱团吗?
甲班有45人,乙班有39人,现从甲、乙两班各抽调一些同学去参加歌咏比赛。
如果从甲班抽调了15人,那么甲班剩余人数恰好是乙班剩余人数的2倍。
问从乙班抽调了多少人参加歌咏比赛?
让省思成为我们的习惯在省思中获取前进动力。
一元一次方程的实际问题-调运、配套、行程、工程、图表(答案)
2
4
x 400
答:A 县与 B 市之间的路程为 400 千米
(3)设 AB 的路程为 x 千米时,两种运输方式的费用相同
85 x 2400 = 53 x 1700
4
2
x 400 3
当 x< 400 时,汽车运输划算 3
当 x 400 两种运输方式费用相同 3
x> 400 时,火车运输划算 3
公司每日需付费用 1400 元,在规定的时间内:A、请甲工程队单独完成此项工程;
B、请乙工程队单独完成此项工程;C、请甲、乙两个工程队合作完成此项工程,
试问:以哪一种方案花钱最少?
解:(1) 设甲的工作效率为 x
8x+18( 1 -x)=1,解得 x= 1
12
20
∴1-1 =1
12 20 30
答:甲工程队单独完成需 20 天,乙工程队单独完成需 30 天
B. 4x 18 5x 30
C. 4x 18 5x 30
D. 4x 18 5x 30
例 3.武汉市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上银杏树,
要求路的两端各栽一棵,并且每两棵树的问隔相等.如果每隔 5 米栽 1 棵,则树
苗缺 21 棵;如果每隔 6 米栽 1 棵,则树苗正好用完.设原有树苗 x 棵,则根据
题意列出方程正确的是( A )
A.5(x+21-1)=6(x-1)
B.5(x+21)=6(x-1)
C.5(x+21-1)=6x
D.5(x+21)=6x
例 4.油桶制造厂的某车间生产圆形铁片和长方形铁片,两个圆形铁片和一个长
方形铁片可以制造成一个油桶(如图).已知该车间有工人 42 人,每
个工人平均每小时可以生产圆形铁片 120 片或者长方形铁片 80 片.