广东省2020年佛山市中考数学模拟试题(含答案)
2020年广东中考数学模拟试卷(含答案和解析)

24.如图,抛物线 y=ax2+2x+c(a<0)与 x 轴交于点 A 和点 B(点 A 在原点的左侧,点 B 在原点的右侧), 与 y 轴交于点 C,OB=OC=3.
(1)求该抛物线的函数解析式; (2)如图 1,连接 BC,点 D 是直线 BC 上方抛物线上的点,连接 OD,CD,OD 交 BC 于点 F,当 S△COF: S△CDF=3:2 时,求点 D 的坐标.
2020 年广东名校中考数学学科线上一模试卷(二十)
一.选择题(共 10 小题)
1.﹣2 的倒数是( )
A. 2
B. ﹣2
【答案】D
1
C.
2
1
D. ﹣
2
【解析】 【分析】
根据倒数的定义,若两个数的乘积是 1,我们就称这两个数互为倒数.
【详解】解:∵﹣2×(﹣ 1 )=1, 2
∴﹣2 的倒数是﹣ 1 . 2
【点睛】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长 BA 与 l2 交于点 E,运用平行线的性质及三角形外角的性质解决问题.
6.某公司销售部有 7 个职员,他们 5 月份的工资分别是 5300 元、5800 元、5300 元、5500 元、5800 元、6500
故选:D.
【点睛】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒
【2020精品中考数学提分卷】2020佛山市初三一模数学试卷(一)+答案

2020年广东省佛山中考数学试卷(一)一.选择题(共10小题,满分30分,每小题3分)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣52.下列计算正确的是()A.x2•x3=x6B.(x2)3=x5C.3﹣=2D.x5﹣x2=x3 3.一元一次不等式组的解集在数轴上表示正确的是()A.B.C.D.4.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=55°,则∠2的度数是()A.35°B.25°C.65°D.50°5.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.6.某车间20名工人每天加工零件数如表所示:每天加工零 4 5 6 7 8件数人数 3 6 5 4 2这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,57.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2108.某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,=1.732).A.585米B.1014米C.805米D.820米9.如图,在直角坐标系中,四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,若点A的坐标为(0,8),则圆心M的坐标为()A.(4,5)B.(﹣5,4)C.(﹣4,6)D.(﹣4,5)10.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD 边于点F,则sin∠FCD=()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.﹣的绝对值是,倒数是.12.要使代数式有意义,x的取值范围是.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.14.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+=.15.已知⊙O的半径为26cm,弦AB∥CD,AB=48cm,CD=20cm,则AB、CD之间的距离为.16.在直角坐标系内,设A(0,0),B(4,0),C(t+4,4),D(t,4)(t为实数),记N为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N的值可能为.三.解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC.19.(10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.20.(10分)车辆经过润扬大桥收费站时,4个收费通道A、B、C、D中,可随机选择其中一个通过.(1)一辆车经过此收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.21.(12分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A种零件的数量和用600元购买B种零件的数量相等.(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?22.(12分)如图,AB是⊙O的直径,点D在⊙O上,OC∥AD交⊙O于E,点F在CD 延长线上,且∠BOC+∠ADF=90°.(1)求证:;(2)求证:CD是⊙O的切线.23.(12分)如图,已知点A在反比函数y=(k<0)的图象上,点B在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=(k<0)的图象上,点Q在直线y=x﹣3的图象上,P、Q两点关于y轴对称,设点P的坐标为(m,n),求+的值.24.(14分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.25.(14分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.2020年广东省佛山中考数学试卷(一)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.【解答】解:A、原式=x5,错误;B、原式=x6,错误;C、原式=2,正确;D、原式不能合并,错误,故选:C.3.【解答】解:第一个不等式的解集为:x>﹣3;第二个不等式的解集为:x≤2;所以不等式组的解集为:﹣3<x≤2.在数轴上表示不等式组的解集为:.故选:C.4.【解答】解:∵直线a∥b,∴∠1=∠3=55°,∵AC⊥AB,∴∠BAC=90°,∴∠2=180°﹣∠BAC﹣∠3=35°,故选:A.5.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.6.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.7.【解答】解:由题意得,x(x﹣1)=210,故选:B.8.【解答】解:过点D作DF⊥AC于F.在直角△ADF中,AF=AD•cos30°=300米,DF=AD=300米.设FC=x,则AC=300+x.在直角△BDE中,BE=DE=x,则BC=300+x.在直角△ACB中,∠BAC=45°.∴这个三角形是等腰直角三角形.∴AC=BC.∴300+x=300+x.解得:x=300.∴BC=AC=300+300.∴山高是300+300﹣15=285+300≈805米.故选:C.9.【解答】解:过点M作MD⊥AB于D,连接AM,设⊙M的半径为R,∵四边形OABC为正方形,顶点A,C在坐标轴上,以边AB为弦的⊙M与x轴相切,点A的坐标为(0,8),∴DA=4,AB=8,DM=8﹣R,AM=R,又∵△ADM是直角三角形,根据勾股定理可得AM2=DM2+AD2,∴R2=(8﹣R)2+42,解得R=5,∴M(﹣4,5).故选:D.10.【解答】解:∵四边形ABCD为正方形,∴∠A=∠B=90°,AB=BC=CD=AD,∴AD与BC都与半圆O相切,又CF与半圆相切,∴AF=EF,CB=CE,设AB=BC=CD=AD=4a,AF=EF=x,∴FC=EF+EC=4a+x,FD=AD﹣AF=4a﹣x,在Rt△DFC中,由勾股定理得:FC2=FD2+CD2,∴(4a+x)2=(4a﹣x)2+(4a)2,整理得:x=a,∴FC=4a+x=5a,FD=4a﹣x=3a,∴在Rt△DFC中,sin∠FCD==.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:﹣的绝对值是,倒数是﹣,故答案为:;﹣.12.【解答】解:由题意得:x≥0,且x﹣1≠0,解得:x≥0且x≠1,故答案为:x≥0且x≠1.13.【解答】解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.14.【解答】解:∵a是方程x2﹣3x+1=0的根,∴a2﹣3a+1=0,则a2﹣3a=﹣1,a2+1=3a,所以原式=﹣1+1=0,故答案为:0.15.【解答】解:有两种情况.如图.过O作AB、CD的垂线EF,交AB于点F,交CD 于点E.∴EF就是AB、CD间的距离.∵AB=48cm,CD=20cm,根据垂径定理,得CE=DE=10cm,AF=BF=24cm,∵OD=OB=26cm,∴在直角三角形OED和直角三角形OBF中,∴OE=24cm,OF=10cm(勾股定理),∴①EF=24+10=34cm②EF=24﹣10=14cm.故答案为:34或14cm.16.【解答】解:当t=0时,平行四边形ABCD内部的整点有:(1,1);(1,2);(1,3);(2,1);(2,2);(2,3)(3,1);(3,2);(3,3)共9个点,所以N(0)=9,此时平行四边形ABCD是矩形,当平行四边形ABCD是一般平行四边形时,将边AD,BC变动起来,结合图象得到N(t)的所有可能取值为11,12.综上所述:N的值可能为:9或11或12.故答案为:9或11或12.三.解答题(共9小题,满分102分)17.【解答】解:,①+②×3得:10x=50,解得:x=5,把x=5代入②得:y=3,则方程组的解为.18.【解答】证明:∵DF⊥AE于F,∴∠DFE=90°在矩形ABCD中,∠C=90°,∴∠DFE=∠C,在矩形ABCD中,AD∥BC∴∠ADE=∠DEC,∵AE=AD,∴∠ADE=∠AED,∴∠AED=∠DEC,∠DFE=∠C=90°,又∵DE是公共边,∴△DFE≌△DCE(AAS),∴DF=DC.19.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).20.【解答】解:(1)选择A通道通过的概率=,故答案为:;(2)设两辆车为甲,乙,如图,两辆车经过此收费站时,会有16种可能的结果,其中选择不同通道通过的有12种结果,∴选择不同通道通过的概率==.21.【解答】解:(1)设B种零件的单价为x元,则A零件的单价为(x+30)元.=,解得x=60,经检验:x=60 是原分式方程的解,x+30=90.答:A种零件的单价为90元,B种零件的单价为60元.(2)设购进A种零件m件,则购进B种零件(200﹣m)件.90m+60(200﹣m)≤14700,解得:m≤90,m在取值范围内,取最大正整数,m=90.答:最多购进A种零件90件.22.【解答】证明:(1)连接OD.∵AD∥OC,∴∠BOC=∠OAD,∠COD=∠ODA,∵OA=OD,∴∠OAD=∠ODA.∴∠BOC=∠COD,∴=;(2)由(1)∠BOC=∠OAD,∠OAD=∠ODA.∴∠BOC=∠ODA.∵∠BOC+∠ADF=90°.∴∠ODA+∠ADF=90°,即∠ODF=90°.∵OD是⊙O的半径,∴CD是⊙O的切线.23.【解答】解:(1)由题意B(2,﹣1),∵×2×AB=4,∴AB=4,∵AB∥y轴,∴A(2,﹣5),∵A(2,﹣5)在y=的图象上,∴k=﹣10.(2)设P(m,﹣),则Q(﹣m,﹣),∵点Q在y=x﹣3上,∴﹣=﹣m﹣3,整理得:m2+3m﹣10=0,解得m=﹣5或2,当m=﹣5,n=2时,+=﹣,当m=2,n=﹣5时,+=﹣,故+=﹣.24.【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.25.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.。
广东省佛山市2020年中考数学模拟试卷解析版

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是( )A. -|-3|=-3B. 30=0C. 3-1=-3D. =±32.如图,AB∥CD,∠CDE=140°,则∠A的度数为( )A. 140°B. 60°C. 50°D. 40°3.估计+1的值在( )A. 2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间4.一元二次方程x2-6x-5=0配方后可变形为( )A. (x-3)2=14B. (x-3)2=4C. (x+3)2=14D. (x+3)2=45.点P(2,-3)关于原点对称的点的坐标是( )A. (-2,-3)B. (2,3)C. (-2,3)D. (-3,2)6.下列运算正确的是( )A. x2•x3=x6B. (-2x2)2=-4x4C. (x3)2=x6D. x5÷x=x57.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为( )A. y=3(x-2)2-1B. y=3(x-2)2+1C. y=3(x+2)2-1D. y=3(x+2)2+18.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sin A的值为().A. B. C. D.9.如图是反比例函数y=在第二象限内的图象,若图中的矩形OABC的面积为2,则k的值为( )A. -2B. 2C. 4D. -410.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )A. -1B. 3-C. +1D. -1二、填空题(本大题共6小题,共18.0分)11.若3a=5b,则=______.12.太阳半径约为696 000千米,数字696 000用科学记数法表示为______.13.分解因式:x3y-xy3=______.14.不等式2x-1>3的解集是______.15.已知α是锐角,且tan(90°-α)=,则α=______.16.抛物线y=2(x-3)2+4的顶点坐标是______.三、解答题(本大题共9小题,共67.0分)17.方程x2-4=0的解是______.18.解方程:x2-4x+1=0.19.计算:tan60°-|-2sin30°|-2cos245°20.在△ABC中,AB=AC(1)求作一点P,使点P为△ABC的外接圆圆心.(保留作图痕迹,不写作法)(2)若∠A=50°,求∠PBC的度数.21.“六•一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以下是根据抽查结果绘制出的不完整的统计表和扇形图:类别儿童玩具童车童装抽查件数90______ ______请根据上述统计表和扇形图提供的信息,完成下列问题:(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?22.如图,在扇形OAB中,∠AOB=90°,半径OA=2,将扇形OAB沿过点B的直线折叠,使点O恰好落在弧AB上的点D处,折痕为BC,求图中阴影部分的面积.23.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(-2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.24.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.25.矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(10,0)、C(0,3),直线与BC相交于点D,抛物线y=ax2+bx经过A、D两点.(1)求抛物线的解析式;(2)连接AD,试判断△OAD的形状,并说明理由.(3)若点P是抛物线的对称轴上的一个动点,对称轴与OD、x轴分别交于点M、N,问:是否存在点P,使得以点P、O、M为顶点的三角形与△OAD相似?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:A、-|-3|=-3,此选项正确;B、30=1,此选项错误;C、3-1=,此选项错误;D、=3,此选项错误.故选:A.A、根据绝对值的定义计算即可;B、任何不等于0的数的0次幂都等于1;C、根据负整数指数幂的法则计算;D、根据算术平方根计算,直接求9的算术平方根即可.再比较结果即可.本题考查了绝对值、零指数幂、算术平方根、负整数指数幂,解题的关键是掌握这些运算的运算法则.2.【答案】D【解析】解:∵∠CDE=140°,∴∠ADC=180°-140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.3.【答案】B【解析】解:∵2<3,∴3<+1<4,故选:B.首先确定在整数2和3之间,然后可得+1的值在3 到4 之间.此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.4.【答案】A【解析】解:x2-6x-5=0,x2-6x=5,x2-6x+9=5+9,(x-3)2=14,故选:A.先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.5.【答案】C【解析】解:已知点P(2,-3),则点P关于原点对称的点的坐标是(-2,3),故选:C.根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了关于原点的对称点的性质,正确把握横纵坐标的关系是解题关键.6.【答案】C【解析】解:A、原式=x5,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.故选:C.分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可.本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.7.【答案】C【解析】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(-2,-1),所得抛物线为y=3(x+2)2-1.故选:C.先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.8.【答案】B【解析】【分析】本题考查的是锐角三角函数的定义及勾股定理,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.根据勾股定理求出BC,根据正弦的定义计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sin A==,故选B.9.【答案】A【解析】解:因为反比例函数y=,且矩形OABC的面积为2,所以|k|=2,即k=±2,又反比例函数的图象y=在第二象限内,k<0,所以k=-2.故选:A.过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形面积S 是个定值|k|,再由反比例的函数图象所在象限确定出k的值.本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.10.【答案】D【解析】解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM-DM=-1,∵四边形EDGF是正方形,∴DG=DE=-1.故选:D.利用勾股定理求出CM的长,即ME的长,有DE=DG,可以求出DE,进而得到DG的长.本题考查了正方形的性质和勾股定理的运用,属于基础题目.11.【答案】【解析】解:∵3a=5b,∴=.故答案为.根据=,则有ac=bd求解.本题考查了比例的性质:若=,则ac=bd.12.【答案】6.96×105【解析】解:696000=6.96×105.故答案为:6.96×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中696 000有6位整数,n=6-1=5.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】xy(x+y)(x-y)【解析】解:x3y-xy3,=xy(x2-y2),=xy(x+y)(x-y).首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】x>2【解析】解:2x-1>3,移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得:x>2,故答案为:x>2.移项后合并同类项得出2x>4,不等式的两边都除以2即可求出答案.本题主要考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键.15.【答案】30°【解析】解:∵tan(90°-α)=,∴90°-α=60°,∴α=30°.故答案为:30°.先求出90°-α的度数,然后求出α的度数.本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.【答案】(3,4)【解析】解:抛物线y=2(x-3)2+4的顶点坐标是(3,4),故答案为:(3,4).直接根据二次函数的顶点式进行解答即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.17.【答案】±2【解析】解:x2-4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.首先移项可得x2=4,再两边直接开平方即可.此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.18.【答案】解:x2-4x+1=0x2-4x+4=3(x-2)2=3x-2=∴x1=2+,x2=2-;【解析】根据配方法可以解答此方程.本题考查解一元二次方程-配方法,解答本题的关键是会用配方法解方程的方法.19.【答案】解:原式=×-|-2×|-2×,=3-|-1|-2×,=3-1-1,=1.【解析】首先代入特殊角的三角函数值,然后再计算绝对值和乘方,再算乘法,后算加减即可.此题主要考查了实数的运算,关键是掌握特殊角的三角函数值.20.【答案】解:(1)如图,点P即为△ABC的外接圆圆心;(2)∵AB=AC,∠BAC=50°,∴AD⊥BC,∠BAD=BAC=25°,∵PA=PB,∴∠BPD=2∠BAP=50°,∵∠BDP=90°,∴∠PBD=90°-50°=40°.即∠PBC=40°答:∠PBC的度数为40°.【解析】(1)根据三角形外心是三角形三条边的垂直平分线的交点即可求得点P;(2)根据等腰三角形的性质,∠A=50°,即可求∠BPD的度数,进而求得∠PBC的度数.本题考查了作图-复杂作图,解决本题的关键是掌握等腰三角形的性质、三角形的外接圆与外心.21.【答案】(1)75;135;(2)根据题意得出:=0.85.答:从该超市这三类儿童用品中随机购买一件买到合格品的概率是0.85.【解析】解:(1)解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135,儿童玩具占得百分比是×100%=30%,童装占得百分比1-30%-25%=45%,如图;类别儿童玩具童车童装抽查件数9075135;(2)见答案.(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是×100%,童装占得百分比1-30%-25%=45%,即可补全统计表和统计图;(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可.本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图能够清楚地表示各部分所占的百分比.22.【答案】解:连接OD.根据折叠的性质,CD=CO,BD=BO,∠DBC=∠OBC,∴OB=OD=BD,即△OBD是等边三角形∴∠DBO=60°,∴∠CBO=∠DBO=30°,∵∠AOB=90°,∴OC=OB•tan∠CBO=2×=,∴S△BDC=S△OBC=×OB×OC=×2×=,S扇形AOB==π,∴阴影部分的面积为:S扇形AOB-S△BDC-S△OBC=π---=.【解析】首先连接OD,由折叠的性质,可得CD=CO,BD=BO,∠DBC=∠OBC,则可得△OBD是等边三角形,继而求得OC的长,即可求得△OBC与△BCD的面积,又在扇形OAB中,∠AOB=90°,半径OA=2,即可求得扇形OAB的面积,继而求得阴影部分面积.此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.23.【答案】解:(1)∵A(-2,1),∴将A坐标代入反比例函数解析式y2=中,得m=-2,∴反比例函数解析式为y=-;将B坐标代入y=-,得n=-2,∴B坐标(1,-2),将A与B坐标代入一次函数解析式中,得,解得a=-1,b=-1,∴一次函数解析式为y1=-x-1;(2)设直线AB与y轴交于点C,令x=0,得y=-1,∴点C坐标(0,-1),∴S△AOB=S△AOC+S△COB=×1×2+×1×1=;(3)由图象可得,当y1<y2<0时,自变量x的取值范围x>1.【解析】(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;将B坐标代入反比例解析式中求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出a与b的值,即可确定出一次函数解析式;(2)设直线AB与y轴交于点C,求得点C坐标,S△AOB=S△AOC+S△COB,计算即可;(3)由图象直接可得自变量x的取值范围.本题属于反比例函数与一次函数的交点问题,涉及的知识有:待定系数法求函数解析式,三角形面积的求法,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.【解析】(1)根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.25.【答案】解:(1)由题意得,点D的纵坐标为3,∵点D在直线y=x上,∴点D的坐标为(9,3),将点D(9,3)、点A(10,0)代入抛物线可得:,解得:,故抛物线的解析式为:y=-x2+x.(2)∵点D坐标为(9,3),点A坐标为(10,0),∴OA=10,OD==3,AD==,从而可得OA2=OD2+AD2,故可判断△OAD是直角三角形.(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,此时∠POM=∠DOA,∠OPM=∠ODA,故可得△OPM∽△ODA,OP=OA=5,即可得此时点P的坐标为(5,0).②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,由题意可得,点M的横坐标为5,代入直线方程可得点M的纵坐标为,故可求得OM=,∵∠OP′M+∠OMN=∠DOA+∠OMN=90°,∴∠OP′M=∠DOA,∴△P′OM∽△ODA,故可得=,即=,解得:MP′=,又∵MN=点M的纵坐标=,∴P′N=-=15,即可得此时点P′的坐标为(5,-15).综上可得存在这样的点P,点P的坐标为(5,0)或(5,-15).【解析】(1)根据题意可得出点D的纵坐标为3,代入直线解析式可得出点D的横坐标,从而将点D和点A的坐标代入可得出抛物线的解析式.(2)分别求出OA、OD、AD的长度,继而根据勾股定理的逆定理可判断出△OAD是直角三角形.(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,利用相似的性质分别得出点P 的坐标即可.此题考查了二次函数的综合题,解答本题的关键是结合直线解析式求出点D的坐标,得出抛物线的解析式,在第三问的解答中要分类讨论,不要漏解.。
广东省佛山市2020年中考数学模拟试卷解析版

有解,则 a 的取值范围是______.
14. 如图所示,在△ABC 中,D、E 分别为 AB、AC 的中点,延长 DE 到 F,使 EF=DE,若 AB=10,BC=8,则四边形 BCFD 的周长 =______.
15. 如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点 得到第二个矩形,按照此方法继续下去.已知第一个矩形的两条邻边长分别为 6 和 8,则第 n 个菱形的周长为______ .
16. 已知 a,b,c 是△ABC 的三边长,a,b 满足|a-7|+(b-1)2=0,c 为奇数,则 c=______ .
17. 如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕 AC 的 中点 D 逆时针旋转 90°得到△A'B′C',其中点 B 的运动路径 为 ,则图中阴影部分的面积为______.
A. 3
B. 4
C. 6
D. 7
6. 在平面直角坐标系中,若点 P(-3,a)与点 Q(b,-4)关于 x 轴对称,则 a+b 的
值为( )
A. -7
B. 7
C. 1
D. -1
7. 若一元二次方程 x2-2x+m=0 有两个不相同的实数根,则实数 m 的取值范围是( )
A. m≥1
B题,共 12.0 分) 18. 计算:
第 2 页,共 16 页
19. 先化简,再求值:( +
)÷ ,其中 x= .
四、解答题(本大题共 6 小题,共 48.0 分) 20. 某校在一次大课间活动中,采用了三种活动形式:A 跑步,B 跳绳,C 做操,该校
学生都选择了一种形式参与活动. (1)小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,列 出了两幅不完整的统计图,利用图中所提供的信息解决以下问题: ①小杰共调查统计了______人;②请将图 1 补充完整;③图 2 中 C 所占的圆心角的 度数是______; (2)假设被调查的甲、乙两名同学对这三项活动的选择是等可能的,请你用列表 格或画树状图的方法求一下两人中至少有一个选择“A”的概率.
2020年广东省佛山市中考数学模拟试卷及答案

2020年广东省佛山市中考数学模拟试卷
(本卷满分120分,考试时间100分钟)
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.
1.﹣的相反数是()
A.1.5 B .C.﹣1.5 D .﹣
2.有理数a,b在数轴上对应点的位置如图,下列各式正确的是()
A.a+b<0 B.a﹣b<0 C.a•b>0 D .>0
3.下列图形既是轴对称图形,又是中心对称图形的是()
A.三角形B.菱形C.角D.平行四边形
4.今年“五一”假期,我市某主题公园共接待游客77 800人次,将77 800用科学记数法表示为()
A.0.778×105B.7.78×104C.77.8×103D.778×102
5.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()
A.35°B.45°C.55°D.65°
6.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()
A.9分 B.8分 C.7分 D.6分
7.在平面直角坐标系中,点(1,5)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC 的值为()
第1 页共13 页。
2020年广东省佛山市禅城区中考数学一模试卷(含答案解析)

2020年⼴东省佛⼭市禅城区中考数学⼀模试卷(含答案解析)2020年⼴东省佛⼭市禅城区中考数学⼀模试卷⼀、选择题(本⼤题共10⼩题,共30.0分)1.?4的倒数是()A. 4B. ?4C. 14D. ?142.如图所⽰的图案中,轴对称图形的个数是()A. 1B. 2C. 3D. 43.⼗九⼤中指出,过去五年,我国经济建设取得重⼤成就,经济保持中⾼速增长,在世界主要国家中名列前茅,国内⽣产总值从五⼗四万亿元增长到⼋⼗万亿元,稳居世界第⼆,⼋⼗万亿元⽤科学记数法表⽰为80000000000000元()A. 8×1014元B. 0.8×1014元C. 80×1012元D. 8×1013元4.下列运算正确的是()A. 3a?1=13aB. a2+2a=3a3C. (?a)3?a2=?a6D. (?a)3÷(?a)2=?a5.如图,AB//CD,直线EF分别交AB,CD于M,N两点,将⼀个含有45°⾓的直⾓三⾓尺按如图所⽰的⽅式摆放,若∠EMB=75°,则∠PNM等于()A. 15°B. 25°6.多项式(a?b)3?4ab(b?a)因式分解结果正确的是()A. (a?b)(a+b)2B. (a?b)3C. (a+2b)2D. (a?2b)2 .7.如图,AB为⊙O的直径,点C,D在⊙O上.若∠CAB=25°,则∠D的度数为()A. 85oB. 105oC. 115oD. 130o8.对⾓线互相平分且相等的四边形⼀定是()A. 等腰梯形B. 矩形C. 菱形D. 正⽅形9.某次⽐赛中,15名选⼿的成绩如图所⽰,则这15名选⼿成绩的众数和中位数分别是()A. 98,95B. 98,98C. 95,98D. 95,9510.已知抛物线y=ax2+bx+c(a≠0)的图象如图所⽰,则下列结论中:①a>0,②a+b+c=2,③bc<0,④a?b+c>0,正确的有()C. ①②④D. ②③④⼆、填空题(本⼤题共6⼩题,共18.0分)11.若⼀个多边形的每⼀个外⾓都为30°,则该多边形的内⾓和为________°.12.已知反⽐例函数y=k?5的图象,在每个象限内y随x的增⼤⽽增⼤,x则k的取值范围是______ .13.如图,△A′B′C′是△ABC以点O为位似中⼼经过位似变换得到的,若△A′B′C′的⾯积与△ABC的⾯积⽐是4:9,则OB′:OB=______.14. 如果⼀元⼆次⽅程2x 2+3x +m =0有两个相等的实数根,那么实数m 的值为________.15. 如图,在四个⼩正⽅体搭成的⼏何体中,每个⼩正⽅体的棱长都是1,则该⼏何体的三视图的⾯积之和是______.16. 已知扇形AOB 的半径OA =4,圆⼼⾓为90°,则扇形AOB 的⾯积为______.三、计算题(本⼤题共4⼩题,共24.0分)17. 计算:√12?|√3?2|+(2016?2√3)0?4cos60°+(13)?1.18. 先化简,再计算:(x +2?5x?2)÷x?3x?2,其中x =3?√5.19. 如图,已知梯形ABCD 中,AD//BC ,CA 平分∠BCD ,AD =12,BC =22,CE =10,(1)试说明:AB =DE ,(2)求CD 的长.20.某商场销售⼀批同型号的彩电,第⼀个⽉售出50台,为了减少库存,第⼆个⽉每台降价500元将这批彩电全部售出,两个⽉的销售量的⽐是9:10,已知第⼀个⽉的销售额与第⼆个⽉的销售额相等,这两个⽉销售总额超过40万元.(1)求第⼀个⽉每台彩电销售价格;(2)这批彩电最少有多少台?四、解答题(本⼤题共5⼩题,共40.0分)21.如图,点A是∠MON边OM上⼀点,AE//ON.(1)尺规作图:作∠MON的⾓平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)求证:△AOB是等腰三⾓形.22.某兴趣⼩组为了了解本校学⽣参加课外体育锻炼情况,随机抽取本校40名学⽣进⾏问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)补全条形统计图.(2)该校共有1200名学⽣,请估计全校学⽣中经常参加课外体育锻炼并喜欢的项⽬是乒乓球的⼈数有多少⼈?(3)若在“乒乓球”、“篮球”、“⾜球”、“⽻⽑球”项⽬中任选两个项⽬成⽴兴趣⼩组,请⽤列表法或画树状图的⽅法求恰好选中“乒乓球”、“篮球”这两个项⽬的概率.[(x?2)2+n]与x轴交于点A(m?2,0)和B(2m+3,0)(点A在点B的左侧),23.如图,抛物线y=?35与y轴交于点C,连接BC.(1)求m,n的值;(2)点N为抛物线上的⼀动点,且位于直线BC上⽅,连接CN,BN.求△NBC⾯积的最⼤值.24.在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.(1)若∠BAC=α,直接写出∠BCD的度数(⽤含α的代数式表⽰);(2)求AB,BC,BD之间的数量关系;(3)当α=30°时,直接写出AC,BD的关系.25.如图,⊙O为等边△ABC的外接圆,其半径为1,P为AB?上的动点(P点不与A、B重合),连接AP,BP,CP.(1)求证:PA+PB=PC;(2)求四边形APBC⾯积的最⼤值.-------- 答案与解析 --------1.答案:D解析:【分析】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键,乘积是1的两数互为倒数.【解答】.解:?4的倒数是?14故选D.2.答案:B解析:【分析】本题考查轴对称图形概念的理解,判断⼀个图形是不是轴对称图形的关键是能不能找到⼀条直线,沿这条直线对折,直线两旁的部分能够完全重合.根据轴对称图形的概念解答.【解答】解:第⼀个图形不是轴对称图形,第⼆个图形是轴对称图形,第三个图形是轴对称图形,第四个图形不是轴对称图形,综上所述,是轴对称图形的是第⼆、三共2个图形.故选B.3.答案:D解析:解:80000000000000元=8×1013元,故选:D.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n 为整数,表⽰时关键要正确确定a 的值以及n的值.4.答案:D解析:【分析】本题主要考查幂的运算,解题的关键是掌握合并同类项法则、幂的乘⽅、同底数幂的乘除法.分别根据负整数指数幂、合并同类项法则、同底数幂的乘除法逐⼀计算即可判断.【解答】,此选项错误;解:A.3a?1=3aB.a2与2a不是同类项,不能合并,此选项错误;C.(?a)3?a2=?a5,此选项错误;D.(?a)3÷(?a)2=?a,此选项正确.故选D.5.答案:C解析:解:∵AB//CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM?∠DNP=30°,故选:C.根据平⾏线的性质得到∠DNM=∠BME=75°,由等腰直⾓三⾓形的性质得到∠PND=45°,即可得到结论.本题考查了平⾏线的性质,等腰直⾓三⾓形的性质,熟练掌握平⾏线的性质是解题的关键.6.答案:A解析:[分析]先提取公因式,然后化简,再利⽤公式法进⾏因式分解,即可得出答案[详解]解:原式=(a?b)3+4ab(a?b)=(a?b)[(a?b)2+4ab]=(a?b)(a2?2ab+b2+4ab)=(a?b)(a2+2ab+b2)。
2020年广东省佛山市中考数学模拟试卷(2)

2020年广东省佛山市中考数学模拟试卷(2)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与152.(3分)随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.×1011 B.×107C.×1012 D.×103 3.(3分)如图,几何体的主视图是()A.B.C.D.4.(3分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分,全班40名同学参加了此次竞赛,他们的得分情况如下表所示,已知这40名同学的成绩的众数是70.成绩(分)5060y8090100人数x3131073则全班40名同学的成绩的中位数是()A.70 B.75 C.80 D.855.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.(3分)不等式﹣3x+6≤4﹣x的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°8.(3分)已知△ABC中,∠C=90°,AC=3,BC=4,则△ABC的外心与顶点C的距离为()A.1 B.C.3 D.59.(3分)已知关于x的一元二次方程(a﹣1)x2+2(a+2b)x+4b+2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上都可能10.(3分)如图,Rt△ABC中,AB=4,BC=2,正方形ADEF的边长为2,F、A、B在同一直线上,正方形ADEF向右平移到点F与B 重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图象表示正确的是()A.B.C.D.二.填空题(共7小题,满分28分,每小题4分)11.(4分)把多项式x2y﹣6xy+9y分解因式的结果是.12.(4分)已知实数a、b在数轴上对应点的位置如图所示,则﹣a b.(填“<”“>”或“=”)13.(4分)用剪刀剪去一个多边形的一个角,所得的新的多边形的内角和为900°,则原多边形的边数为.14.(4分)若x﹣2y=1,则1+2x﹣4y=.15.(4分)如图,某景区门口的柱子上方挂着一块景点宣传牌CD,宣传牌的一侧用绳子AD和BC牵引着两排小风车,经过测量得到如下数据:AM=2米,AB=4米,∠MAD=45°,∠MBC=30°,则CD的长度约为米.(√3≈,结果精确到米)x与反比例16.(4分)如图,在平面直角坐标系中,直线l1:y=−12的图象交于A,B两点(点A在点B左侧),已知A点的函数y=kkx沿y向上平移后的直线l2与反比纵坐标是1;将直线l1:y=−12在第二象限内交于点C,如果△ABC的面积为3,则平例函数y=kk移后的直线l2的函数表达式为.17.(4分)⊙O的内接正方形的边长为a和外切正三角形的边长为b,=.则kk三.解答题(共3小题,满分18分,每小题6分))﹣1−√(−2)2+√1818.(6分)计算:(√3−1)0+(1319.(6分)先化简,再求值.(5k+3kk2−k2+8kk2−k2)÷1k2k+kk2,其中a=√2,b=1.20.(6分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于12kk长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是A.矩形B.菱形C.正方形D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.四.解答题(共3小题,满分24分,每小题8分)21.(8分)十二中为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为万元,乙队为万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天22.(8分)小明用两组相同的卡片,每组两张,卡片数字分别标有1和2,从每组卡片中各摸出一张称为一次次验,小明共计做了400次试验,并将卡片上取数字和的情况制成如图所示的频数分布直方图.(1)请计算两张卡片数字之和为3的频率为多少(2)能否根据(1)中结果估计两张卡片上数字之和为3的概率.(3)你能用列表的方法计算其理论概率吗23.(8分)如图,在正方形ABCD中,点E是BC边的中点,将△DCE 沿DE折叠,使点C落在点F处,延长EF交AB于点G,连接DG、BF.(1)求证:DG平分∠ADF;(2)若AB=12,求△EDG的面积.五.解答题(共2小题,满分20分,每小题10分)24.(10分)如图示,AB是⊙O的直径,点F是半圆上的一动点(F 不与A,B重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF 于点AF.(1)求证:DE与⊙O相切:(2)若AE=8,AB=10,求DE长;(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AF•EF的最大值.x2+bx+c与x轴交于点A、点B(4,25.(10分)如图1,抛物线y=−12x+4经过点C,与x轴交于点D,0),与y轴交于点C;直线y=−43点P是第一象限内抛物线上一动点.(1)求抛物线的解析式;(2)若∠PCB=∠DCB,求△PCD的面积;(3)如图2,过点C作直线l∥x轴,过点P作PH⊥l于点H,将△CPH绕点C顺时针旋转,使点H的对应点H′恰好落在直线CD上,同时使点P的对应点P′恰好落在坐标轴上,请直接写出此时点P 的坐标.2020年广东省佛山市中考数学模拟试卷(2)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与15【解答】解:A、只有符号不同的两个数互为相反数,故A错误;B、都是﹣3,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、互为倒数,故D错误;故选:C.2.(3分)随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.×1011 B.×107C.×1012 D.×103【解答】解:2135亿=2=×1011,故选:A.3.(3分)如图,几何体的主视图是()A.B.C.D.【解答】解:如图,几何体的主视图是:.故选:B.4.(3分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分,全班40名同学参加了此次竞赛,他们的得分情况如下表所示,已知这40名同学的成绩的众数是70.成绩(分)5060y8090100人数x3131073则全班40名同学的成绩的中位数是()A.70 B.75 C.80 D.85【解答】解:由题意得:y=70,x=4,共40个分数,从小到大排列后,处于第20、21位的两个数的平均数为:(70+80)÷2=75分,故中位数是75分,故选:B.5.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.6.(3分)不等式﹣3x+6≤4﹣x的解集在数轴上表示正确的是()A.B.C.D.【解答】解:﹣3x+6≤4﹣x,﹣3x+x≤4﹣6,﹣2x≤﹣2,x≥1,在数轴上表示为:,故选:A.7.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.8.(3分)已知△ABC中,∠C=90°,AC=3,BC=4,则△ABC的外心与顶点C的距离为()A.1 B.C.3 D.5【解答】解:如图:∵在Rt△ABC中,∠C=90°,点O是Rt△ABC的外心,∴OA=OC=OB,又∵∠C=90°,∴AB是⊙O的直径,即点O是AB的中点,AB∴OA=OC=OB=12由勾股定理得AB=5,,∴OC=52即:它的外心与顶点C的距离为5,2故选:B.9.(3分)已知关于x的一元二次方程(a﹣1)x2+2(a+2b)x+4b+2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上都可能【解答】解:∵(a﹣1)x2+2(a+2b)x+4b+2=0,∴a﹣1≠0,解得a≠1,∵关于x的一元二次方程(a﹣1)x2+2(a+2b)x+2(a+2b)=0的二次项系数是a﹣1,一次项系数是2(a+2b),常数项是4b+2,∴△=4(a+2b)2﹣4(a﹣1)(4b+2)=4a2+16ab+16b2﹣16ab﹣8a+16b+8=4(a﹣1)2+4(2b+1)2>0,∴方程有两个不相等的实数根.故选:A.10.(3分)如图,Rt△ABC中,AB=4,BC=2,正方形ADEF的边长为2,F、A、B在同一直线上,正方形ADEF向右平移到点F与B 重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图象表示正确的是()A.B.C .D .【解答】解:当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2 ∴tan ∠CAB =k′k kk′=kkkk∴A 'M =12x其面积y =12x •12x =14x 2故此时y 为x 的二次函数,排除选项D .当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN其面积y =12x •12x −12(x ﹣2)•12(x ﹣2)=x ﹣1 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCNAF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2其面积y =12[12(x ﹣2)+2]×(6﹣x )=−14x 2+x +3 故此时y 为x 的二次函数,其开口方向向下,故排除A 综上,只有B 符合题意. 故选:B .二.填空题(共7小题,满分28分,每小题4分)11.(4分)把多项式x 2y ﹣6xy +9y 分解因式的结果是 y (x ﹣3)2 .【解答】解:原式=y (x 2﹣6x +9)=y (x ﹣3)2, 故答案为:y (x ﹣3)212.(4分)已知实数a 、b 在数轴上对应点的位置如图所示,则﹣a < b .(填“<”“>”或“=”)【解答】解:如图所示:|a |>|b |. ∴﹣a 在b 的左边,∴﹣a<b.故答案为:<.13.(4分)用剪刀剪去一个多边形的一个角,所得的新的多边形的内角和为900°,则原多边形的边数为6或7或8 .【解答】解:由多边形内角和,可得(n﹣2)×180°=900°,∴n=7,∴新的多边形为七边形,原来的多边形可以是六边形,可以是七边形,可以是八边形,故答案为6或7或8.14.(4分)若x﹣2y=1,则1+2x﹣4y= 3 .【解答】解:若x﹣2y=1,1+2x﹣4y=1+2(x﹣2y)=1+2×1=1+2=3故答案为:3.15.(4分)如图,某景区门口的柱子上方挂着一块景点宣传牌CD,宣传牌的一侧用绳子AD和BC牵引着两排小风车,经过测量得到如下数据:AM=2米,AB=4米,∠MAD=45°,∠MBC=30°,则CD的长度约为米.(√3≈,结果精确到米)【解答】解:在Rt△AMD中,∠MAD=45°,∴DM=AM⋅tan45°=2(m),在Rt△BMC中,∠MBC=30°,∴CM=BM⋅tan30°,∵BM=AM+AB=2+4=6(m),≈(m),∴CM=×√33∴CD=CM﹣DM=﹣2≈(米),答:警示牌的高CD为米.16.(4分)如图,在平面直角坐标系中,直线l1:y=−12x与反比例函数y=kk的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是1;将直线l1:y=−12x沿y向上平移后的直线l2与反比例函数y=kk在第二象限内交于点C,如果△ABC的面积为3,则平移后的直线l2的函数表达式为y=−12x+32.【解答】解:直线l2与y轴交于点D,连接DA、DB,如图,当y=1时,−12x=1,解得x=﹣2,则A(﹣2,1),∴B点坐标为(2,﹣1),∵y=−12x沿y向上平移得到直线l2,∴可设直线l2的解析式为y=−12x+b,则D(0,b),∵l1∥l2,∴S△DAB=S△CAB=3,即S△DAO+S△BOD=3,∴12×b×2+12×b×2=3,解得b=32,∴直线l2的解析式为y=−12x+32.故答案为y=−12x+32.17.(4分)⊙O的内接正方形的边长为a和外切正三角形的边长为b,则kk =√66.【解答】解:如图,连接GE、OA;则GE必过点O;∵△ABC为⊙O的外切正三角形,∴OE⊥AB,∠OAE=∠OAH=12×60°=30°;∵四边形EFGH为⊙O的内接正方形,∴EF=FG=a,∠EFG=90°,由勾股定理得:EG2=EF2+FG2=2a2,∴EG =√2a ,EO =√2k2;在直角△AOE 中, ∵tan30°=kkkk, ∴AE =√62a ;同理可求BE =√62a ,∴AB =√6a ,即该圆外切正三角形边长为√6a , ∴k k=√66,故答案为:√66.三.解答题(共3小题,满分18分,每小题6分) 18.(6分)计算:(√3−1)0+(13)﹣1−√(−2)2+√18 【解答】解:原式=1+3﹣2+3√2 =2+3√2.19.(6分)先化简,再求值.(5k+3kk2−k2+8kk2−k2)÷1k2k+kk2,其中a=√2,b=1.【解答】解:原式=5k+3k−8kk2−k2÷1kk(k+k)=5(k−k)(k+k)(k−k)•ab(a+b)=5ab,当a=√2,b=1时,原式=5√2.20.(6分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于12kk长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是BA.矩形B.菱形C.正方形D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∵AB=AF,∴四边形ABEF是菱形.故答案为:B;(2)①∵四边形ABEF是菱形,且周长为40,∴AB=AF=40÷4=10.∵BF=10,∴△ABF是等边三角形,∴∠ABF=60°,∴∠ABC=2∠ABF=120°;②∵AF=10,∴OF=5.∵AE垂直平分BF,∴AO=√2−kk2=5√3,∴AE=2AO=10√3.四.解答题(共3小题,满分24分,每小题8分)21.(8分)十二中为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为万元,乙队为万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),则甲工程队每天能完成绿化的面积为2xm2,根据题意得:400k −4002k=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:×,+1800−100k50解得:y≥50,3天.答:至少应安排甲队工作50322.(8分)小明用两组相同的卡片,每组两张,卡片数字分别标有1和2,从每组卡片中各摸出一张称为一次次验,小明共计做了400次试验,并将卡片上取数字和的情况制成如图所示的频数分布直方图.(1)请计算两张卡片数字之和为3的频率为多少(2)能否根据(1)中结果估计两张卡片上数字之和为3的概率.(3)你能用列表的方法计算其理论概率吗【解答】解:(1)203;400(2)估计203;400(3)数字和为3的概率是,列表如下:第一次12第二次1(1,1)(1,2)2(2,1)(2,2)23.(8分)如图,在正方形ABCD中,点E是BC边的中点,将△DCE 沿DE折叠,使点C落在点F处,延长EF交AB于点G,连接DG、BF.(1)求证:DG平分∠ADF;(2)若AB=12,求△EDG的面积.【解答】解:(1)∵正方形ABCD , ∴∠C =∠A =90°,DC =DA , ∵△DCE 沿DE 对折得到△DFE , ∴DF =DC ,∠DFE =∠C =90°, ∴∠DFG =∠A =90°,DF =DA , 在Rt △ADG 和Rt △FDG 中,{kk =kk kk =kk, ∴Rt △ADG ≌Rt △FDG (HL ),∴∠ADG =∠FDG ,即DG 平分∠ADF ;(2)∵正方形ABCD 中,AB =12,点E 是BC 边的中点, ∴BE =EC =EF =6,设AG =x ,则EG =6+x ,BG =12﹣x ,在Rt △BEG 中,根据勾股定理得,EG 2=BE 2+BG 2, 即(6+x )2=62+(12﹣x )2, 解得x =4,∴EG =6+4=10,∴△EDG 的面积=12EG ×DF =12×10×12=60.五.解答题(共2小题,满分20分,每小题10分)24.(10分)如图示,AB 是⊙O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分∠BAF ,过点D 作DE ⊥AF 交射线AF 于点AF .(1)求证:DE 与⊙O 相切:(2)若AE =8,AB =10,求DE 长;(3)若AB =10,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF •EF 的最大值.【解答】(1)证明:连接OD,如图1所示:∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAF,∴∠OAD=∠FAD,∴∠ODA=∠FAD,∴OD∥AF,∵DE⊥AF,∴DE⊥OD,又∵OD是⊙O的半径,∴DE与⊙O相切:(2)解:连接BD,如图2所示:∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AF,∴∠AED=90°=∠ADB,又∵∠EAD=∠DAB,∴△AED∽△ADB,∴AD:AB=AE:AD,∴AD2=AB×AE=10×8=80,在Rt△AED中,由勾股定理得:DE=√kk2−kk2=√80−8=4;(3)连接DF,过点D作DG⊥AB于G,如图3所示:在△AED和△AGD中,{∠kkk=∠kkk=90°∠kkk=∠kkkkk=kk,∴△AED≌△AGD(AAS),∴AE=AG,DE=DG,∵∠FAD=∠DAB,∴kk̂=kk̂,∴DF=DB,在Rt△DEF和Rt△DGB中,{kk=kkkk=kk,∴Rt△DEF≌Rt△DGB(HL),∴EF=BG,∴AB=AG+BG=AF+EF=AF+EF+EF=AF+2EF,即:x+2y=10,∴y=−12x+5,∴AE•EF=−12x2+5x=−12(x﹣5)2+252,∴AF•EF有最大值,当x=5时,AF•EF的最大值为252.x2+bx+c与x轴交于点A、点B(4,25.(10分)如图1,抛物线y=−12x+4经过点C,与x轴交于点D,0),与y轴交于点C;直线y=−43点P是第一象限内抛物线上一动点.(1)求抛物线的解析式;(2)若∠PCB=∠DCB,求△PCD的面积;(3)如图2,过点C作直线l∥x轴,过点P作PH⊥l于点H,将△CPH绕点C顺时针旋转,使点H的对应点H′恰好落在直线CD上,同时使点P的对应点P′恰好落在坐标轴上,请直接写出此时点P 的坐标.x+4=4【解答】解:(1)∵当x=0时,y=−43∴C (0,4)∵抛物线y =−12x 2+bx +c 过点B (4,0)、C ∴{−8+4k +k =00+0+k =4 解得:{k =1k =4∴抛物线解析式为y =−12x 2+x +4(2)如图1,直线CP 与x 轴交于点G ,过点D 作DE ⊥CB 于点E ,交直线CP 于点F ,连接BF . ∴∠CED =∠CEF =90° 在△CDE 与△CFE 中{∠kkk =∠kkk kk =kk∠kkk =∠kkk∴△CDE ≌△CFE (ASA ) ∴DE =FE ,即BC 垂直平分DF ∴BD =BF∵B (4,0),C (0,4) ∴OB =OC ∴∠OBC =45°∴∠CBF =∠OBC =45° ∴∠DBF =90°∵当y =−43x +4=0时,解得:x =3 ∴D (3,0) ∴BF =BD =4﹣3=1 ∴F (4,1)设直线CF 解析式为y =kx +4 ∴4k +4=1 解得:k =−34∴直线CP :y =−34x +4当y =0时,−34x +4=0,解得:x =163∴G (163,0),DG =163−3=73 ∵{k =−34k +4k =−12k 2+k +4 解得:{k 1=0k 1=4(即点C ),{k 2=72k 2=118 ∴P (72,118)∴S △PCD =S △CDG ﹣S △PDG =12DG •OC −12DG •y P =12DG •(OC ﹣y P )=12×73×(4−118)=4916∴△PCD的面积为4916.(3)①若点P'落在y轴上,如图2,∵△CPH绕点C旋转得△CP'H',H'在直线CD上∴∠PCH=∠P'CH'∵∠OCB=∠BCH=45°∴∠OCB﹣∠OCH'=∠BCH﹣∠PCH即∠DCB=∠PCB由(2)可得此时点P(72,118).②若点P'落在x轴上,如图3,过点H'作MN⊥x轴于点M,交直线l于点N∴四边形OCNM是矩形∴MN=OC=4,∵OD=3,∠COD=90°∴CD=√kk2+kk2=5∴sin∠OCD=kkkk =35,cos∠OCD=kkkk=45,设点P 坐标(p ,−12p 2+p +4)(0<p <4)∴CH '=CH =p ,P 'H '=PH =4﹣(−12p 2+p +4)=12p 2﹣p ∵MN ∥y 轴 ∴∠CH 'N =∠OCD∴Rt △CNH '中,cos ∠CH 'N =kk′kk′=45∴NH '=45CH '=45p ∴MH '=MN ﹣NH '=4−45p ∵∠P 'MH '=∠P 'H 'C =90°∴∠P 'H 'M +∠CH 'N =∠P 'H 'M +∠H 'P 'M =90° ∴∠H 'P 'M =∠CH 'N∴Rt △H 'P 'M 中,sin ∠H 'P 'M =kk′k′k′=35∴4−45k 12k 2−k=35解得:p 1=﹣4(舍去),p 2=103∴−12p 2+p +4=−509+103+4=169∴P (103,169)综上所述,点P坐标为(72,118)或(103,169).。
广东省佛山市2020届中考数学仿真模拟试卷 (含解析)

广东省佛山市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.数据−1,0,0,1,2的中位数是()A. −1B. 0C. 1D. 23.点M(−1,−2)关于x轴对称的点的坐标为()A. (−1,−2)B. (1,−2)C. (−1,2)D. (1,2)4.若多边形的边数增加1,则其内角和的度数()A. 增加180°B. 其内角和为360°C. 其内角和不变D. 其外角和减少5.使式子√3x+2有意义的实数x的取值范围是()A. x≥0B. x>−23C. x≥−32D. x≥−236.若以△ABC各边中点为顶点的三角形的周长是18cm,则△ABC的周长是()A. 9cmB. 36cmC. 54cmD. 72cm7.抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为()A. b=6,c=7B. b=−6,c=−11C. b=6,c=11D. b=−6,c=118.不等式组{3x−1≥x+1x+4<4x−2的解集是()A. x>2B. x≥1C. 1≤x<2D. x≥−19.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.如图,抛物线y=ax2+bx+c与x轴交于点(−1,0),对称轴为x=1,则下列结论中正确的是()A. a>0B. 当x>1时,y随x的增大而增大C. c<0D. x=3是一元二次方程ax2+bx+c=0的一个根二、填空题(本大题共7小题,共28.0分)11.分解因式:3x2−6xy=______ .12.若单项式2a x+1b与−3a3b y+4是同类项,则x y=______.13.已知√2a+8+|b−√3|=0,则ab=______.14.若2x+3y的值为−2,则4x+6y+2的值为______ .BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+2y)(x−2y)+(20xy3−8x2y2)÷4xy,其中x=2018,y=2019.四、解答题(本大题共7小题,共56.0分)19.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.20.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.21. 已知方程组{5x +y =3ax +5y =4与方程组{x −2y =55x +by =1有相同的解,求a 、b 的值.22. 在⊙O 中,弦AB 与弦CD 交于点G ,OA ⊥CD 于点E ,过点B 的直线交CD 的延长线于点F ,且FG =FB .(1)如图1,求证:BF 为⊙O 的切线:(2)如图2,连接BD 、AC ,若BD =BG ,求证:AC//BF ;(3)在(2)的条件下,若,CD =1,求⊙O 的半径.23.某社区去年购买了A,B两种型号的共享单车,购买A种单车共花15000元,购买B种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.(1)求去年购买一辆A种和一辆B种单车各需要多少元?(2)为积极响应政府提出的“绿色发展·低碳出行”号召,该社区决定今年再买A,B两种型号的单车共60辆,恰逢厂家对A,B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B种单车售价比去年购买时降低了10%,如果今年购买A,B两种单车的总量用不超过34000元,那么该社区今年最多购买多少辆B种单车?24.如图,已知直线y=−x+4与反比例函数y=k的图象相交于点A(−2,a),并且与x轴相交于点xB.(1)求a的值.(2)求反比例函数的表达式(3)求△AOB的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:解:从小到大排列为:−1,0,0,1,2,则处于中间位置的是第3个数,所以中位数是0,故选B.先把这组数据从小到大排列起来,再根据中位数的定义进行解答即可.本题考查了中位数的定义:掌握中位数的定义即把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数是解题的关键.3.答案:C解析:解:点M(−1,−2)关于x轴对称的点的坐标为(−1,2).故选:C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:是多边形的边数为n,则原多边形的内角和为(n−2)⋅180°,边数增加后的多边形的内角和为(n+1−2)⋅180°,∴(n+1−2)⋅180°−(n−2)⋅180°=180°,∴其内角和的度数增加180°.故选:A.根据多边形的内角和公式(n−2)⋅180°列式求解即可.本题考查了多边形的内角和公式,熟记公式是解题的关键.5.答案:D解析:根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式有意义的条件,二次根式的被开方数是非负数.解:由题可得,3x+2≥0,x≥−2,3故选D6.答案:B解析:本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.如图:根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图:∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴BC=2DF,AB=2EF,AC=2DE;∴AB+BC+AC=2EF+2DF+2DE=2(EF+DF+DE)=2×18=36.故选B.7.答案:C解析:此题主要考查了二次函数图象与几何变换,关键是掌握“左加右减,上加下减”的平移规律.根据平移的规律求得解析式,化成一般式即可求得.解:∵抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y= (x+1+2)2+2,即y=x2+6x+11,∴b=6,c=11.故选C.8.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:D解析:解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.11.答案:3x(x−2y)解析:解:3x2−6xy=3x(x−2y).故答案为:3x(x−2y).直接找出公因式提取进而得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:18解析:解:单项式2a x+1b与−3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=−3.∴x y=2−3=1.8.故答案为:18依据同类项的相同字母指数相同列方程求解即可.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:−2解析:解:∵2x+3y=−2,∴原式=2(2x+3y)+2=2×(−2)+2=−2,故答案为:−2.将2x+3y=−2整体代入原式=2(2x+3y)+2即可得出答案.本题主要考查代数式的求值,熟练掌握整体代入的思想是解题的关键.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:(1)1;(2)14解析:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=√2,∴AB=√22BC=1;故答案为:1(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅1180,解得r=14.故答案为:14.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=√2,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=90⋅π⋅1,然后解180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=1AB,2AB=2.5,∴OD=12∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=x2−4y2+5y2−2xy=x2−2xy+y2,=(x−y)2,当x=2018,y=2019时,原式=(2018−2019)2=(−1)2=1.解析:先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.本题主要考查整式的混合运算−化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.答案:解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;×1100=385(人),(2)根据题意得:20+15100答:估计该校1100名学生中一年的课外阅读量超过10本的人数为385人.解析:(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的人数所占的百分比,继而求得答案.此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.20.答案:证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC 是等腰三角形.解析:(1)由“SAS ”可证△ABD≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC =∠OCB ,可得BO =CO ,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.21.答案:解:由题意得出:方程组{5x +y =3x −2y =5的解与题中两方程组解相同,解得:{x =1y =−2, 将x =1,y =−2代入ax +5y =4,解得:a −10=4,∴a =14,将x =1,y =−2,代入5x +by =1,得5−2b =1,∴b =2.解析:根据题意得出方程组{5x +y =3x −2y =5的解与题中两方程组解相同,进而得出x ,y 的值代入另两个方程求出a ,b 的值即可.此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.22.答案:证明:(1)如图,连接OB ,∵FG =FB ,∴∠FGB =∠FBG ,∵OA =OB ,∴∠OAB =∠OBA ,∵OA ⊥CD ,∴∠OAB +∠AGC =90°,又∵∠FGB =∠FBG ,∠FGB =∠AGC ,∴∠FBG+∠OBA=90°,即∠OBF=90°,∴OB⊥FB,∵AB是⊙O的弦,∴点B在⊙O上,∴BF是⊙O的切线;(2)∵BD=BG,∴∠DGB=∠GDB,∵∠CAB和∠BDC都是弧BC所对的圆周角,∴∠CAB=∠BDC,∴∠CAB=∠FGB,∵∠FGB=∠FBG,∴∠CAB=∠GBF,∴AC//FB;(3)∵OA⊥CD,CD=1,∴CE=CD=.∵AC//BF,∴∠ACE=∠F,∴tan∠ACE=tan∠F,∵tan∠F=,∴tan∠ACE=,∴,即,∴AE=.如图,连接OC,设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,即,解得R=,即⊙O的半径为.解析:本题考查的是圆的综合题,涉及到切线的判定,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,熟练掌握和各种几何图形有关的定理及性质是解本题的关键.(1)连接OC,OB,根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)由已知条件易证∠DGB=∠GDB,因为∠CAB和∠BDC都是弧BC所对的圆周角,所以∠CAB=∠BDC,进而可证明∠CAB=∠GBF,则AC//BF;(3)根据垂径定理求得CE=.再根据已知条件易证∠ACE=∠F,所以tan∠F=tan∠ACE=,易求AE的长度.设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,,解方程求出R的值即可.23.答案:解:(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,可得:15000 x−200=1.5×14000x,解得:x=700,经检验x=700是原方程的解,700−200=500,答:去年购买一辆A种和一辆B种单车各需要500元,700元;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,可得;700×(1−10%)m+500×(1+10%)(60−m)≤34000,解得:m≤12.5,∵m是正整数,∴m的最大值是12,答:该社区今年最多购买B种单车12辆.解析:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程:(2)根据总价=单价×数量结合总成本不超过3.4万元,列出关于m的一元一次不等式.(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,根据购买A、B两种单车的总费用不超过34000元,即可得出关于m的一元一次不等式,解之即可得出结论;24.答案:(1)6;(2)y=−12x;(3)12.解析:[分析](1)点A在直线y=−x+4,故点A(−2,a)满足y=−x+4即可(2)用待定系数法,把(1)中点A的坐标代入y=kx即可(3)△AOB的面积=底×高÷2,过A点作AD⊥x轴于D,求出AD,OB即可.[详解]解:(1)将A(−2,a)代入y=−x+4中,得:a=−(−2)+4所以a=6.(2)由(1)得:A(−2,6),将A(−2,6)代入y=kx 中,得到6=k−2即k=−12,所以反比例函数的表达式为:y=−12x,(3)如图:过A点作AD⊥x轴于D;因为A(−2,6)所以 AD =6,在直线y =−x +4中,令y =0,得x =4,所以B(4,0)即OB =4 ,所以△AOB 的面积S =12OB ×AD =12×4×6=12.[点睛]熟练掌握解析式的求法,在进行与线段有关的计算时,注意点的坐标与线段长度的关系.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A 的坐标为(1,0),点B 的坐标为(0,−4),∴OA =1,OB =4,在Rt △OAB 中,AB =√OA 2+OB 2=√17,①当PB =PA 时,PB =√17,∴OP =PB −OB =√17−4,此时点P 的坐标为(0,√17−4),②当PA =AB 时,OP =OB =4,此时点P 的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A 的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB =PA 、PA =AB 两种情况,根据等腰三角形的性质解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省佛山市中考数学模拟试题含答案说明:l .全卷共4页,满分为120分,考试用时为100分钟.2.解答过程写在答题卡上,监考教师只收答题卡.3. 非选择题必须用黑色字迹的钢笔或签字笔作答;画图时用2B 铅笔并描清晰.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上. 1.22y x =+的对称轴是直线( )A. x =2B. x =0C. y =0D. y =22. 抛物线1322+-=)(x y 的顶点坐标是( ) A .(3,1)B .(3,﹣1)C .(﹣3,1)D .(﹣3,﹣1)3. 如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( ) A .120° B .130°C .140°D .150°4. 在Rt △ABC 中,∠C=90°,sinA=54,AC=6cm ,则BC 的长度为( ) A .6cmB .7cmC .8cmD .9cm5. 在Rt △ABC 中, ∠C =90°, 1=a , 3=b ,则∠A ( )A.030 B .045 C .060 D .0906.如图,已知AB 是⊙O 的直径,∠D=40°,则∠CAB 的度数为( ) A .20° B .40° C .50° D .70°7.如图,在Rt △ABC 中,斜边AB 的长为m ,∠A=35°,则直角边BC A .msin35° B .mcos35° C .︒35sin mD .︒35cos m8.已知二次函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是( )A. 4<kB. 4≤kC.4<k 且3≠kD.4≤k 且3≠k 题3图OBAC题6图O CDOBAM题7图C题15图9. 如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的 一动点,则线段的OM 的长的取值范围是( )A.3≤OM≤5B.4≤OM≤5C.3<OM <5D.4<OM <510. 在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( )二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11. 若⊙O 的半径是3,圆心O 到直线l 的距离是2,则直线l 与⊙O 的位置关系是 . 12. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 . 13. 如图,等腰△ABC 的周长是36cm ,底边为10cm ,则底角的正切值是 .14. 如图,扇形OAB 的圆心角为120°,半径为3 cm ,则该扇形的弧长为 cm ,面积为 2cm .(结果保留π)15. 如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知, 不等式ax 2+bx+c <0的解集是 . 16. 抛物线的顶点在(1,-2),且过点(2,3),则函数的关系式: .三、解答题(一)(本大题共3小题,每小题6分,共18分)请在答题卡相应位置上作答. 17.计算:()0012017530cos 32---++-π.Oxy O y Oxy Oxy题13图A120°题14图OAB题18图DO BA18. 如图,AB 为⊙O 的弦,AB=8,OC ⊥AB 于点D ,交⊙O 于点C ,且CD=l ,求⊙O 的半径.19.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半月内获得最大的利润?四、解答题(二)(本大题共3小题,每小题7分,共21分)请在答题卡相应位置上作答.20.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y (m )与水平距离x (m )之间的函数关系式为35321212++-=x x y ,求: (1)铅球的出手时的高度; (2)小明这次试掷的成绩.21.如图所示,A 、B 两城市相距100km ,现计划在这两座城市间修建一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上,已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么? (参考数据:3≈1.732,2≈1.414)22. 如图,A ,B ,C ,D ,P 是⊙O 上的五个点,且∠APB=∠CPD.AB CD题21图题20图与 的大小有什么关系?为什么?五、解答题(三)(本大题共3小题,每小题9分,共27分)请在答题卡相应位置上作答.23.如图,在△ABC 中,AB=AC=10,BC=12,矩形DEFG 的顶点位于△ABC 的边上,设EF=x ,S 四边形DEFG =y . (1)填空:自变量x 的取值范围是___________; (2)求出y 与x 的函数表达式; (3)请描述y 随x 的变化而变化的情况.24. 如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,直线DC 与AB 的延长线相交于P .弦CE 平分∠ACB ,交直径AB 于点F ,连结BE . (1)求证:AC 平分∠DAB ;(2)探究线段PC ,PF 之间的大小关系,并加以证明; (3)若tan ∠PCB=43,BE=25,求PF 的长. 题22图题23图A D G题24图F BDPO CE题25图25. 如图,抛物线经过A (﹣1,0),B (5,0),C (0,25)三点. (1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,请直接.. 写出..点N 的坐标;若不存在,请说明理由.参考答案及评分标准一、选择题(每题3分,共30分) 1 2 3 4 5 6 7 8 9 10 B ADCACADBA二、填空题:(每题4分,共24分)11、相交 12、2(1)3y x =-++ 13、51214、 2π , 3π 15、31<<-x 16、()2152--=x y 三、解答题:(一)(本大题3小题,每小题6分,共18分) 17、解:原式=1523321-+⨯+ …………4分 =152321-++ …………5分 =6 …………6分 18、解:如图:连接OA ,设⊙O 的半径为r ,…………1分 ∵OC ⊥AB 于D ,∴AD=DB=AB=4.……………………………………2分 在Rt △OAD 中,OA 2=AD 2+OD 2∴r 2=(r ﹣1)2+42 ………………………………4分解得:2r=17 ∴r=. …………………………………………5分答:圆的半径是. …………………………6分19. 解:设销售单价提高x 元,销售利润为y 元.…………1分根据题意,得y=(30+x ﹣20)(400﹣20x ) …………………3分=(x+10)(400﹣20x )=﹣20x 2+400x+4000,=﹣20(x-5)2+4500 …………………………………4分a<0 开口向下,y 有最大值当x=5时,y 最大=4500, …………………………………5分 答,销售单价提高5元,才能在半月内获得最大利润4500元.………6分四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解:(1)当x =0时,y=,…………2分答铅球的出手时的高度为m .…………3分 (2)由题意可知,把y=0代入解析式得: ﹣x 2+x+=0,…………4分解得x 1=10,x 2=﹣2(舍去),…………6分 答该运动员的成绩是10米.…………7分21、解:过点P 作PC ⊥AB ,C 是垂足.…………1分 则∠APC=30°,∠BPC=45°, …………2分 AC=PC•tan30°,BC=PC•tan45°. …………3分 ∵AC+BC=AB ,∴PC•tan30°+PC•tan45°=100km, …………4分 ∴PC=100,………………………………5分∴PC=50(3﹣)≈50×(3﹣1.732)≈63.4km >50km .…………6分答:森林保护区的中心与直线AB 的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.…………7分 22、解:与相等.理由如下:…………1分连结OA 、OB 、OC 、OD ,如图,…………2分 ∵所对圆周角∠APB 圆心角∠AOB所对圆周角∠CPD 圆心角∠COD∴∠APB=21∠AOB ∠CPD=21∠COD ,…………4分 ∵∠APB=∠CPD∴∠AOB=∠COD,…………6分∴=.…………7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、解:(1)0<x<12;…………2分(2)如图,过点A作AN⊥BC于点N,交DG于点M…………3分∵AB=AC=10,BC=12,AN⊥BC∴BN=CN=6,AN==8,…………4分∵DG∥BC∴∠ADG=∠ABC , ∠AGD=∠ACB∴△ADG∽△ABC,…………5分,即,∴ MN=8﹣x.…………6分∴y=EF•MN=x(8﹣x)=﹣x2+8x=﹣(x﹣6)2+24;…………7分(3)当0<x<6时,y随x的增大而增大;当x=6时,y的值达到最大值24,当6<x<12时,y随x的增大而减小.…………9分24、解:(1)连接OC.…………1分∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,…………2分∴ OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.…………3分(2)PC=PF.…………4分证明:∵AB是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.…………5分又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.…………6分(3)连接AE.∵∠ACE=∠BCE,∴=,∴AE=BE.又∵AB是直径,∴∠AEB=90°.AB=,∴OB=OC=5.∵∠PCB=∠PAC,∠P=∠P,∴△PCB∽△PAC.…………7分∴.∵tan∠PCB=tan∠CAB=, ∴=.设PB=3x,则PC=4x,在Rt△POC中,(3x+5)2=(4x)2+52,解得x1=0,.…………8分∵x>0,∴,∴PF=PC=.…………9分25. 解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.…………2分∴抛物线的解析式为:y=x2﹣2x﹣;…………3分(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,…………4分连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,…………5分∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);…………6分(3)存在.符合条件的点N的坐标为:(4,﹣),(2+,)或(2﹣,).…9分。