函数值域的求法(精选例题)
函数值域的求法及例题

函数值域的求法在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法.[例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2|(5)y =2x -3+134-x(6)y =2224)1(5+++x x x(7)y =521+-x x(8)y =1223222++--x x x x(9)y =3-2x -x 2x ∈[-3,1](10)y =21322+-x x分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域.对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域.对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域.解:(1)y ∈R(2)y ∈{1,0,-1}(3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1]时,得y ∈[-1,8](4)对于y =|x +1|-|x -2|的理解,从几何意义入手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3-3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3](5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域.∵4x -13≥0 ∴x ∈[413,+∞)令t =134-x 则得:x =4132+t∴y =21t 2+t +27∴y =21(t +1)2+3∵x ≥413∴t ≥0根据二次函数图象可得y ∈[27,+∞)(6)∵函数定义域为x ∈R 由原函数可化得:y =22222224)1(5)1()1(5+++=+++x x x x x x=2222222222)1(11)1(5)1()1(5+-+++=+++x x x x x x =111)1(5222++-+x x 令t =112+x∵x ∈R ∴t ∈(0,1] ∴y =5t 2-t +1=5(t -101)2+2019根据二次函数的图象得当t =101时y min =2019当t =1时,y max =5 ∴函数的值域为y ∈[2019,5](7)∵y =-21+5227+x∵5227+x ≠0 ∴y ≠-21∴函数y 的值域为y ∈(-∞,-21)∪(-21,+∞) (8)由y =1223222++--x x x x 得x ∈R 且可化为:(2y -1)x 2+2(y +1)x +(y +3)=0 ∴当y ≠21时,Δ=[2(y +1)]2-4(2y -1)(y +3)≥0 ∴y 2+3y -4≤0 ∴-4≤y ≤1且y ≠21 又当y =21时,2(1+21)x +(21+3)=0 得:x =-67,满足条件∴函数的值域为y ∈[-4,1] (9)∵-3≤x ≤1 ∴-2≤x +1≤2∴|x +1|≤2即(x +1)2≤4∴y =3-2x -x 2=-(x +1)2+4∈[0,4] ∴函数值域为y ∈[0,4](10)由y =21322+-x x 可知,x ∈R 且yx 2+2y =3x 2-1即(3-y )x 2=2y +1若y =3时,则有0=7,这是不可能的. ∴y ≠3 得:x 2=y y -+312 ∵x 2≥0 ∴yy -+312≥0 解得:-21≤y <3 ∴函数值域为y ∈[-21,3) 评述:(1)求函数的值域是一个相当复杂的问题,它没有现成的方法可套用,要结合函数表达式的特征,以及与所学知识联系,灵活地选择恰当的方法.(2)对于以上例题也可以采取不同的方法求解每一个值域,请读者不妨试一试.(3)除以上介绍的方法求函数值域外,随着学生的继续学习,我们今后还会有“反函数”法、“单调性”法、“三角换元”法、“不等式”法及“导数法”等.二、二次函数(含参数)在区间上的值域问题 [例2]、求下列函数的值域 (1)]1,0(1222∈-++=x a ax x y(2)]1,[142+∈++=t t x x x y三、含参数的其他值域问题[例3]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3.练习一、选择题1.函数y =x 2+x1(x ≤-21)的值域是( )A.(-∞,-47]B.[-47,+∞)C.[2233,+∞)D.(-∞,-3223]2.函数y =x +x 21-的值域是( )A.(-∞,1] B.(-∞,-1]C.RD.[1,+∞)一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数, ∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1(x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].。
值域_求值域的方法大全及习题加详解

求值域方法函数值域的求法方法有好多,主要是题目不同,或者说稍微有一个数字出现问题,对我们来说,解题的思路可能就会出现非常大的区别.这里我主要弄几个出来,大家一起看一下吧. 函数的值域取决于定义域和对应法则,求函数的值域要注意优先考虑定义域常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例1、求函数1,[1,2]y x x =∈的值域。
(★★)例2、求函数x 3y -=的值域。
(★★) 答案:值域是:]3,[-∞ 【同步练习1】函数221xy+=的值域. (★★)解:}210{≤<y y(2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的X 围;配方法是求二次函数值域最基本的方法之一。
例1、求函数225,y x x x R =-+∈的值域。
(★★)例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
(★★★) 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]例3、求()()22log 26log 62log 222222-+=++=x x x y 。
(★★★★)(配方法、换元法)解:………所以当41=x 时,y 有最小值-2。
故所求函数值域为[-2,+∞)。
例4、设02x ≤≤,求函数1()4321xx f x +=-+的值域.解:12()4321(23)8xx x f x +=-+=--,02x ∵≤≤,24x 1∴≤≤.∴当23x =时,函数取得最小值8-;当21x =时,函数取得最大值4-,∴函数的值域为[84]--,. 评注:配方法往往需结合函数图象求值域. 例5、求函数13432-+-=x x y 的值域。
求值域的方法大全及习题

求值域的方法大全及习题求值域方法常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例1、求函数1,[1,2]y x x=∈的值域。
例2、 求函数x 3y -=的值域。
【同步练习1】函数221xy +=的值域.(2)、配方法:二次函数或可转化为形如cx bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例1、求函数225,y x x x R=-+∈的值域。
例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例3、求()()22log 26log 62log222222-+=++=x x x y 。
(配方法、换元法) 例4、设02x ≤≤,求函数1()4321xx f x +=-+g 的值域.例5、求函数13432-+-=x x y 的值域。
(配方法、换元法)例6、求函数xx y 422+--=的值域。
(配方法)1、求二次函数242y x x =-+-([]1,4x ∈)的值域.2、求函数342-+-=x x e y 的值域.3、求函数421,[3,2]x xy x --=-+∈-的最大值与最小值.4、求函数])8,1[(4log 2log 22∈⋅=x xx y 的最大值和最小值. 5、已知[]0,2x ∈,求函数12()4325x xf x -=-⋅+的值域. 6、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
(3)、换元法:(三角换元法)有时候为了沟通已知与未知的联系,我们常常引进一个(几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向,这就是换元法.在求值域时,我们可以通过换元将所给函数化成值域容易确定的另一函数,从而求得原函数的值域. 例1、求()f x x =【同步练习3】求函数xx y 21--=的值域。
求值域的方法大全及习题

求值域方法常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例1、求函数1,[1,2]y x x =∈的值域。
例2、 求函数x 3y -=的值域。
【同步练习1】函数221xy +=的值域.(2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例1、求函数225,y x x x R =-+∈的值域。
例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例3、求()()22log 26log 62log 222222-+=++=x x x y 。
(配方法、换元法)例4、设02x ≤≤,求函数1()4321x x f x +=-+g的值域.例5、求函数13432-+-=x x y 的值域。
(配方法、换元法)例6、求函数x x y 422+--=的值域。
(配方法) 【同步练习2】1、求二次函数242y x x =-+-([]1,4x ∈)的值域.2、求函数342-+-=x x e y 的值域.3、求函数421,[3,2]xx y x --=-+∈-的最大值与最小值.4、求函数])8,1[(4log 2log 22∈⋅=x xx y 的最大值和最小值. 5、已知[]0,2x ∈,求函数12()4325x x f x -=-⋅+的值域.6、若,42=+y x 0,0>>y x ,试求y x lg lg +的最大值。
(3)、换元法:(三角换元法)有时候为了沟通已知与未知的联系,我们常常引进一个(几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向,这就是换元法.在求值域时,我们可以通过换元将所给函数化成值域容易确定的另一函数,从而求得原函数的值域.例1、求()f x x =+【同步练习3】求函数x x y 21--=的值域。
高中数学:求函数值域的方法十三种

高中数学:求函数值域的十三种方法
一、观察法(☆
)二、配方法(☆)
三、分离常数法(☆)
四、反函数法(☆)
五、判别式法(☆)
六、换元法(☆☆☆)
七、函数有界性
八、函数单调性法(☆)九、图像法(数型结合法)(☆)十、基本不等式法十一、利用向量不等式十二、一一映射法十三、多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y
f x 的取值范围。
【例1】求函数1y
x 的值域。
【解析】∵0x ,∴
11x ,∴函数1y x 的值域为[1,)。
【例2】求函数x 1
y
的值域。
【解析】∵0x
∴0x 1显然函数的值域是:),0()0,(【例3】已知函数
112x y ,2,1,0,1x ,求函数的值域。
【解析】因为2,1,0,1x ,而331f f ,02
0f f ,11f 所以:3,0,1y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ,则函数的值域为
1|y y 。
二.配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c 的函数的值域问题,均可使用配方法。
【例1】求函数225,[1,2]y x x x 的值域。
【解析】将函数配方得:∵
由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,
故函数的值域是:[4,8] 【变式】已知,求函数的最值。
求函数值域典型例题

求函数值域典型例题一、函数点调性法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
利用函数在给定的区间上的单调递增或单调递减求值域。
例1. 求函数1y x=的值域。
解:∵0x ≠ ∴ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。
解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 练习1:求函数, 故。
∴函数的值域为[ 3 ,+∞) 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
练习2:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5}) 练习3:① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+=x x y ④xx y += 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5]②∵),0[4+∞∈-x ∴,2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2}③1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+==2)1(2+-xx 2≥, 当x<0时,)1(x x y -+--==-2)1(2----xx -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法)函数xx y 1+=的图像为:例3 求函数y =+-25x log31-x (2≤x ≤10)的值域解:令y 1=25-x ,2y =log31-x ,则 y 1 , 2y 在[ 2, 10 ]上都是增函数。
所以y= y 1 +2y 在[ 2 ,10 ]上是增函数。
当x = 2 时,y m in = 32-+log 312-=81, 当x = 10 时,m ax y = 52+log 39=33。
函数值域的求法常考题型含详解
(2) y | x 1 | | x 3 |
【解析】(1)函数的定义域为 R ,当 x ≤ 2 时, y 1 2x 5 ;
当 2 x 3 时, y 2 x 3 x 5 ,当 x 3 时, y 2x 1 5 ,综上,函数的值域为
5, .
(2) y | x 1 | | x 3 | ,当 x 1时, y 2x 2 4 ,
(3) f (x) 2x 4 1 x
【解析】(1)令 t x 1 0 ,则 x t2 1,
所以 y 2x
x 1 2
t2 1
t
2 t
1 4
2
15, t 0 ,
8
所以当 t 1 时,函数取最小值 15 ,
4
8
所以函数 y 2x
x
1
的值域为
15 8
,
;
(2)设 t= 2x 1 ,则 t 0 且 x= t 2 1 , 2
∴y= t2 1 +t= 1 t 12 1 ,在 0, 上为单调递增函数,
2
2
所以
y
1 2
,所以函数的值域为
1 2
,
.
(3)令 t= 1 x ( t 0 ),则 x 1 t 2 ;则 y 2 2t2 4t 2 t 12 4
,因为 t 0 ,所以 y 4 ,则值域为 , 4 .
的定义域和值域.
题型九:已知值域求参数
1、若一次函数 f (x) 的定义域为[3, 2] ,值域为[2, 7] ,则 f (x) ________.
2、若函数
y
x2
3x
4
的定义域为
0,
m
,值域为
25 4
,
4
,则
函数值域的求法(精选例题)
函数值域的求法(精选例题)函数值域的求法1.观察法1) 求函数 $y_1=\dfrac{1}{x^2+1}$ 的值域为 $(0,1]$。
2) 求函数 $y_1=2-x$ 的值域为 $(-\infty,2]$。
2.配方法1) 求函数 $y=x^2-2x+5$,其中 $x\in[-1,2]$ 的值域为$[4,8]$。
2) 求函数 $y=-x^2-6x-5$ 的值域为 $[-\dfrac{23}{4},2]$。
3) 已知 $x,y$ 是关于 $m$ 的方程 $m^2-2am+a+6=0$ 的根,则 $(x-1)^2+(y-1)^2$ 的最小值为 $-\dfrac{12}{4}$。
3.换元法1) 求函数 $y=2x+1+\dfrac{1}{x-1}$ 的值域为 $[3,+\infty)$。
2) 求函数 $y=\dfrac{x+2}{x+3}$ 的值域为 $[1,2)$。
3) 求函数 $y=x^3-x$ 的值域为 $[0,+\infty)$。
4) 求函数 $y=x+1-x$ 的值域为 $(-\infty,+\infty)$。
5) 求函数 $y=\dfrac{x^3-x}{x^4+2x^2+1}$ 的值域为$[0,1]$。
4.分离常数法1) 求函数 $y=\dfrac{x-1}{x+2}$,其中 $x\geq -4$,的值域为 $(-\infty,1]\cup[\dfrac{5}{2},+\infty)$。
2) 求函数 $y=\dfrac{x^2-x+1}{x^2+1}$ 的值域为 $[-\dfrac{1}{3},1]$。
5.判别式法1) 求函数 $y=\dfrac{2x^2-x+2}{x^2+x+1}$ 的值域为$[1,5]$。
2) 求函数 $y=\dfrac{2x^2+4x-7}{x^2+2x-9}$ 的值域为 $[-\dfrac{9}{32},2)$。
3) 已知函数$f(x)=\dfrac{x+a}{x^2+1}$ 的值域为$[1,3]$,求实数 $a,b$ 的值,其中 $a=2$ 或 $a=-2$,$b=6$。
函数值域的求法典例精讲
函数值域的求法典例精讲1、换元法:例1:函数()2f x x =-的值域是()A.[)0,+∞ B.17,8⎡⎫+∞⎪⎢⎣⎭C.5,4⎡⎫+∞⎪⎢⎣⎭D.15,8⎡⎫+∞⎪⎢⎣⎭思路:解析式中只含一个根式,所以可将其视为一个整体换元,从而将解析式转为二次函数,求得值域即可。
解:()f x 的定义域为[)1,+∞令t =0t ∴≥,则21x t =+()2211521248y t t t ⎛⎫∴=+-=-+⎪⎝⎭[)0,t ∈+∞ ()f x ∴的值域为15,8⎡⎫+∞⎪⎢⎣⎭例2(1)函数113x y -=的值域为()A.()0,+∞ B.()()0,11,+∞ C.{}|1x x ≠ D.()1,+∞(2)函数()[]1428,2,2xx f x x +=--∈-的值域为__________(3)函数1ln 1x x e y e +=-的值域为__________思路:(1)本题可视为()3f x y =的形式,所以可将指数进行换元,从而转化为指数函数值域问题:令11t x =-,则()(),00,t ∈-∞+∞ ,所以可得()()30,11,ty =∈+∞ (2)如前文所说,()()214282228xx x x f x +=--=-⋅-,将2x视为一个整体令2x t =,则可将其转化为二次函数求得值域解:()()214282228xx xx f x +=--=-⋅-令2xt =[]2,2x ∈- 1,44t ⎡⎤∴∈⎢⎥⎣⎦()222819y t t t =--=--()f x ∴的值域为[]9,0-(3)所求函数为()ln f x ⎡⎤⎣⎦的形式,所以求得11x x e e +-的范围,再取对数即可。
对11x x e e +-进行变形可得:12111x x xe e e +=+--,从而将1x e -视为一个整体,即可转为反比例函数,从而求得范围解:定义域:()100,xe x ->⇒∈+∞12111x x xe e e +=+-- 令1xt e =-()0,t ∴∈+∞()211,t ∴+∈+∞()1ln 0,1x x e y e +∴=∈+∞-答案:(1)B(2)[]9,0-(3)()0,+∞例3:已知函数()[]23log ,1,4f x x x =+∈,则()()()22g x f x f x =-⎡⎤⎣⎦的值域为()A.[]18,2-- B.[]11,6-- C.[]18,6- D.[]11,2--思路:依题意可知()()()22222223log 3log log 4log 6g x x x x x =+-+=---,所以可将2log x 视为一个整体换元,从而将问题转化为求二次函数值域,但本题要注意的是()g x 的定义域,由已知()f x 的定义域为[]1,4,则()()()22g x f xf x =-⎡⎤⎣⎦的定义域为:21414x x ⎧≤≤⎨≤≤⎩,解得:[]1,2x ∈,而不是[]1,4解:()()22223log 3log g x x x =+-+()222232log log 6log 9x x x ⎡⎤=+-++⎣⎦()222log 4log 6x x =---()f x 的定义域为[]1,4,且()()()22g x f x f x =-⎡⎤⎣⎦21414x x ⎧≤≤∴⎨≤≤⎩,解得:[]1,2x ∈令2log t x =,则[]0,1t ∈()224622y t t t ∴=---=-+-[]11,6y ∴∈--,即()g x 的值域为[]11,6--答案:B 2、数形结合例4:(1)设函数()y f x =定义域为R ,对给定正数M ,定义函数()()()(),,M f x f x M f x M f x M≤⎧⎪=⎨>⎪⎩则称函数()M f x 为()f x 的“孪生函数”,若给定函数()22,20,121,0x x x f x M x ⎧--≤≤⎪==⎨->⎪⎩,则()M y f x =的值域为()A.[]2,1- B.[]1,2- C.(],2-∞ D.(],1-∞-(2)定义{}min ,,a b c 为,,a b c 中的最小值,设(){}2min 23,1,53f x x x x =++-,则()f x 的最大值是__________思路:(1)根据“孪生函数”定义不难发现其图像特点,即以y M =为分界线,()f x 图像在y M =下方的图像不变,在M 上方的图像则变为y M =,通过作图即可得到()M f x 的值域为[]2,1-(2)本题若利用{}min ,,a b c 的定义将()f x 转为分段函数,则需要对三个式子两两比较,比较繁琐,故考虑进行数形结合,将三个解析式的图像作在同一坐标系下,则()f x为三段函数图像中靠下的部分,从而通过数形结合可得()f x 的最大值点为21y x =+与53y x =-在第一象限的交点,即211253x y x y y x=⎧=+⎧⇒⎨⎨==-⎩⎩,所以()max 2f x =答案:(1)A(2)2例5:已知函数()()()()222222,228f x x a x a g x x a x a =-++=-+--+,设()()(){}()()(){}12max ,,min ,H x f x g x H x f x g x ==,(其中{}max ,p q 表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值)记()1H x 的值域为A ,()2H x 的值域为B ,则A B = ______________思路:由()()12,H x H x 的定义可想到其图像特点,即若将()(),f x g x 的图像作在同一坐标系中,那么()1H x 为()(),f x g x 图像中位于上方的部分,而()2H x 为()(),f x g x 图像中位于下方的部分。
高中函数求值域的九种方法和例题讲解
一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数值域的求法
1、(观察法)求下列函数的值域
(1)求函数y 1=121
1x +的值域 (]1,0
(2)求函数y 1=2-x 的值域。
(]2-,∞
2、(配方法)求下列函数的值域
(1)求函数225,[1,2]y x x x =-+∈-的值域 ][84,
(2)求函数y =的值域: ][20,
(3),x y 是关于m 的方程2260m am a -++=的根,则()()2211x y -+-的最小值是(
)
C A.-1241
B.18
C.8
D.43
3、(换元法)求下列函数的值域
(1)21y x =++[)∞+,3 (2)4y x =+ ]
[234,1+
(3)求函数y=32
++x x 的值域
⎢⎣⎡⎥⎦⎤21,0
(4)求函数y = ][2,1
(5)求函数 y=12243++-x x x
x 的值域
⎢⎣⎡⎥⎦⎤41,41-
4、(分离常数法)求下列函数的值域
(1)求值域(1)1
(4)2x y x x -=≥-+ ()⎪⎭⎫⎢⎣⎡∞+∞,,25
1-
(2)求函数122+--=x x x x y 的值域。
⎪⎭⎫⎢⎣⎡
131
-,
5、(判别式法)求下列函数的值域
(1)求函数的值域2222
1x x y x x -+=++ ][51,
(2)求函数3274222++-+=x x x x y 的值域。
⎪⎭⎫⎢⎣⎡
229
-,
(3)已知函数12)(22
+++=x b
ax x f x 的值域是[1,3 ],求实数a ,
b 的值. a=2或-2,b=2
6、(单调性法)求下列函数的值域
(1)求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。
(2)-48f =
(2)设函数f(x)=ln(2x +3)+x 2.求f(x)在区间⎣⎢⎡⎦
⎥⎤-34,14上的最大值和最小值.
max 171()=ln +4216()f f x = min 11(-)=ln 2+24()f f x =
7、(数形结合法)求下列函数的值域
(1)求函数y=4
1362+-x x 4-542++x x 的值域 (]265-,
(2)求函数y=4
12++x x 4-1 - 2
+x x 的值域 ()1,1-
(2
)若(0x y =,求x y -的最大、最小值 ][
12-,
(3)求函数的值域。
⎢⎢⎣⎡⎥⎦⎤4242-, 3x sin x
cos y -=。