求值域经典例题

合集下载

换元法求值域

换元法求值域
解:变形为 u
3 4
x2
x
3 4
(
x
2)2 3
1 3
,而由
y2
x
x2 4
0得
x [0, 4] ; 所 以
u x2 y2 值域为[0,16].
四、换元法
换元法是求函数值域的重要方法,其目的是通过换元把复杂的函数化为常见、简单的函 数.
(一)一般换元
1.形如 y a[ f (x)]2 bf (x) c(a 0) 或可化为此形的
于是 r2
1
2
3 2
sin 2
[72 , 2] ,所以
f
(x,
y)
x2
y2
r2
[
2 7
, 2].
5.形如 y ax b k cx2 dx e 及其变式的
686
典型例题:求函数 y 2x 1 2 x2 2x 3 的值域.
解 : 函 数 化 为 y 2x 1 2
4 (x 1)2
,设
设 f (x) t 化为二次函数的条件值域,然后再求.
典型例题:若 f (x) 1 log2 x(1 x 4) ,求函数 g(x) f (x2 ) [ f (x)]2 的值域.
解:变形为
g(x)
log
2 2
x
4 log2
x
2
;因为
f
(x)
的定义域为[1, 4] ,则
f
(x2 )
的定义
域为[2, 1] [1, 2] ,[ f (x)]2 的定义域为[1, 4] ,所以 g(x) 的定义域为[1, 2] .设 log2 x t ,
1.若
x,
y
R
,且
x

函数值域的求法及例题

函数值域的求法及例题

函数值域的求法在函数概念的三要素中,定义域和对应法则是最基本的,值域是由定义域和对应法则所确定,因此,研究值域仍应注重函数对应法则的作用和定义域对值域的制约,以下试举例说明常用方法.[例1]:求下列函数的值域 (1)y =1-2x (x ∈R ) (2)y =|x |-1 x ∈{-2,-1,0,1,2} (3)y =x 2+4x +3 (-3≤x ≤1) (4)y =|x +1|-|x -2|(5)y =2x -3+134-x(6)y =2224)1(5+++x x x(7)y =521+-x x(8)y =1223222++--x x x x(9)y =3-2x -x 2x ∈[-3,1](10)y =21322+-x x分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域. 对于(1)(2)可用“直接法”根据它们的定义域及对应法则得到(1)(2)的值域. 对于(3)(4)可借助数形结合思想利用它们的图象得到值域,即“图象法”. 对于(5)(6)可借用整体思想利用“换元法”求得值域.对于(7)可将其分离出一个常数,即利用“分离常数法”求得它的值域. 对于(8)可通过对“Δ”的分析,即利用“判别式”法求得其值域.对于(9)(10)可“通过中间函数的值域去求所求函数的值域”这一方法即“中间媒介法”求得其值域.解:(1)y ∈R(2)y ∈{1,0,-1}(3)画出y =x 2+4x +3(-3≤x ≤1)的图象,如图所示,当x ∈[-3,1]时,得y ∈[-1,8](4)对于y =|x +1|-|x -2|的理解,从几何意义入手,即利用绝对值的几何意义可知,|x +1|表示在数轴上表示x 的点到点-1的距离,|x -2|表示在数轴上表示x 的点到点2的距离,在数轴上任取三个点x A ≤-1,-1<x B <2,x C ≥c ,如图所示,可以看出|x A +1|-|x A -2|=-3-3<|x B +1|-|x B -2|<3,|x C +1|-|x C -2|=3,由此可知,对于任意实数x ,都有-3≤|x +1|-|x -2|≤3所以函数y =|x +1|-|x -2|的值域为y ∈[-3,3](5)对于没有给定自变量的函数,应先考查函数的定义域,再求其值域.∵4x -13≥0 ∴x ∈[413,+∞)令t =134-x 则得:x =4132+t∴y =21t 2+t +27∴y =21(t +1)2+3∵x ≥413∴t ≥0根据二次函数图象可得y ∈[27,+∞)(6)∵函数定义域为x ∈R 由原函数可化得:y =22222224)1(5)1()1(5+++=+++x x x x x x=2222222222)1(11)1(5)1()1(5+-+++=+++x x x x x x =111)1(5222++-+x x 令t =112+x∵x ∈R ∴t ∈(0,1] ∴y =5t 2-t +1=5(t -101)2+2019根据二次函数的图象得当t =101时y min =2019当t =1时,y max =5 ∴函数的值域为y ∈[2019,5](7)∵y =-21+5227+x∵5227+x ≠0 ∴y ≠-21∴函数y 的值域为y ∈(-∞,-21)∪(-21,+∞) (8)由y =1223222++--x x x x 得x ∈R 且可化为:(2y -1)x 2+2(y +1)x +(y +3)=0 ∴当y ≠21时,Δ=[2(y +1)]2-4(2y -1)(y +3)≥0 ∴y 2+3y -4≤0 ∴-4≤y ≤1且y ≠21 又当y =21时,2(1+21)x +(21+3)=0 得:x =-67,满足条件∴函数的值域为y ∈[-4,1] (9)∵-3≤x ≤1 ∴-2≤x +1≤2∴|x +1|≤2即(x +1)2≤4∴y =3-2x -x 2=-(x +1)2+4∈[0,4] ∴函数值域为y ∈[0,4](10)由y =21322+-x x 可知,x ∈R 且yx 2+2y =3x 2-1即(3-y )x 2=2y +1若y =3时,则有0=7,这是不可能的. ∴y ≠3 得:x 2=y y -+312 ∵x 2≥0 ∴yy -+312≥0 解得:-21≤y <3 ∴函数值域为y ∈[-21,3) 评述:(1)求函数的值域是一个相当复杂的问题,它没有现成的方法可套用,要结合函数表达式的特征,以及与所学知识联系,灵活地选择恰当的方法.(2)对于以上例题也可以采取不同的方法求解每一个值域,请读者不妨试一试.(3)除以上介绍的方法求函数值域外,随着学生的继续学习,我们今后还会有“反函数”法、“单调性”法、“三角换元”法、“不等式”法及“导数法”等.二、二次函数(含参数)在区间上的值域问题 [例2]、求下列函数的值域 (1)]1,0(1222∈-++=x a ax x y(2)]1,[142+∈++=t t x x x y三、含参数的其他值域问题[例3]已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时,求函数f (x )的最小值.(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.知识依托:本题主要通过求f (x )的最值问题来求a 的取值范围,体现了转化的思想与分类讨论的思想.错解分析:考生不易考虑把求a 的取值范围的问题转化为函数的最值问题来解决.技巧与方法:解法一运用转化思想把f (x )>0转化为关于x 的二次不等式;解法二运用分类讨论思想解得.(1)解:当a =21时,f (x )=x +x21+2∵f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=27.(2)解法一:在区间[1,+∞)上,f (x )=xax x ++22 >0恒成立⇔x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞)∵y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,当且仅当y min =3+a >0时,函数f (x )>0恒成立,故a >-3.解法二:f (x )=x +xa+2,x ∈[1,+∞)当a ≥0时,函数f (x )的值恒为正;当a <0时,函数f (x )递增,故当x =1时,f (x )min =3+a ,当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立,故a >-3.练习一、选择题1.函数y =x 2+x1(x ≤-21)的值域是( )A.(-∞,-47]B.[-47,+∞)C.[2233,+∞)D.(-∞,-3223]2.函数y =x +x 21-的值域是( )A.(-∞,1] B.(-∞,-1]C.RD.[1,+∞)一、1.解析:∵m 1=x 2在(-∞,-21)上是减函数,m 2=x1在(-∞,-21)上是减函数, ∴y =x 2+x1在x ∈(-∞,-21)上为减函数,∴y =x 2+x1(x ≤-21)的值域为[-47,+∞).答案:B2.解析:令x 21-=t (t ≥0),则x =212t -.∵y =212t -+t =-21 (t -1)2+1≤1∴值域为(-∞,1].。

数学-值域的10种求法(学生版)

数学-值域的10种求法(学生版)

函数值域1基本初等函数的值域(1)y=kx+b(k≠0)的值域是R.;当a<0时,值域为(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为y y≥4ac−b24a.y y≤4ac−b24a.(3)y=k x(k≠0)的值域是y y≠0(4)y=a x(a>0且a≠1)的值域是(0,+∞).(5)y=log a x(a>0且a≠1)的值域是R.2函数值域的求解方法方法归纳观察法根据最基本函数值域(如x2≥0,a x>0及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.方法归纳配方法对于形如y=ax2+bx+c a≠0的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.方法归纳图像法(数形结合)根据所给数学式子的特征,构造合适的几何模型.方法归纳基本不等式法注意使用基本不等式的条件,即一正、二定、三相等.方法归纳换元法(代数换元与三角换元)分为三角换元法与代数换元法,对于形y=ax+b+cx+d的值城,可通过换元将原函数转化为二次型函数.方法归纳分离常数法对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.方法归纳判别式法把函数解析式化为关于x的-元二次方程,利用一元二次方程的判别式求值域,一般地,形如y=Ax+博观而约取 厚积而薄发B ,ax 2+bx +c 或y =ax 2+bx +cd x 2+ex +f的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).方法归纳单调性法先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如y =ax +b +cx +d 或y =ax +b +cx +d 的函数,当ac >0时可利用单调性法.方法归纳有界性法充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.方法归纳导数法先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.1.例题精讲题型一:观察法1函数y =1x +1-1的值域是( )A.-∞,-1B.+1,+∞C.-∞,-1 ∪-1,+∞D.-∞,+∞2下列函数中,值域为0,+∞ 的是( )A.y =x 2B.y =2xC.y =2xD.y =log 2x3下列函数中,函数值域为(0,+∞)的是( )A.y =(x +1)2,x ∈(0,+∞) B.y =log 2x ,x ∈(1,+∞)C.y =2x -1D.y =2x -1题型二:配方法1函数的y =-x 2-6x -5值域为()A.0,+∞B.0,2C.2,+∞D.2,+∞2函数y =f x 的图象是如图所示的折线段OAB ,其中A 1,2 ,B 3,0 ,函数g x =x ⋅f x ,那么函数g x 的值域为()Ox y 213ABA.0,2B.0,94C.0,32D.0,43已知正实数a ,b ,c 满足2a +b =1,abc +1=2c ,则c 的最大值为()A.12B.23C.815D.2题型三:图像法(数形结合)数形结合:即作出函数的图像,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域。

高中函数值域的经典例题12种求法

高中函数值域的经典例题12种求法

一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(根据算术平方根的性质,先求出√(2-3x) 的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=( y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函或y&gt;1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值x2+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可2]。

此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法函数y=(2x2-2x+3)/(x2-x+1)的值域。

点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*)当y≠2时,由Δ=(y-2)2-4(<x≤10/3当y=2时,方程(*)无解。

高中数学:求函数值域的方法十三种(一)

高中数学:求函数值域的方法十三种(一)

2
2
26
又 ∵ 在 [m, n] 上 当
x
增大时
f (x)





f (x)max f (n) f (x)min f (m)
3n 3m
m 4, n 0
解得
评注:解法 2 利用闭区间上的最值不超过整个定义域上的最值,缩小了 m ,n 的取值范围,
避开了繁难的分类讨论,解题过程简洁、明了。
(2) 求函数 y x(x a) 在 x [1 , 1] 上的最大值。
【解析】(1)二次函数的对称轴方程为 x a ,
当 a
1 2
即a
1 时, 2
f ( x )max
f ( 2 ) 4a 5 ;
当 a 1 2
即 a1 2
时,
f ( x )max f ( 1 ) 2a 2

f ( x )max 42aa52,,aa2121 。
y
x2 x2 x
x 1
x2 x x2
11 x 1
1
(x
1 1)2
3
不妨令:
24
f (x) (x 1)2 3 , g(x) 24
1 ( f (x) 0) 从而 f (x)
f
(
x)
3,
4
注意:在本题中应排

f
(x)
0 ,因为
f
(x)
作为分母。所以
g(x) 0,
3 4

y
1,1
3
f (x)max f (x)min
f (1) f (n)
3n 3m
,无解
④若
,则
f f
( x) max ( x) min

求函数值域典型例题

求函数值域典型例题

求函数值域典型例题一、函数点调性法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

利用函数在给定的区间上的单调递增或单调递减求值域。

例1. 求函数1y x=的值域。

解:∵0x ≠ ∴ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域。

解:∵0x ≥ 3x 3,0x ≤-≤-∴ 故函数的值域是:]3,[-∞ 练习1:求函数, 故。

∴函数的值域为[ 3 ,+∞) 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

练习2:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5}) 练习3:① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+=x x y ④xx y += 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5]②∵),0[4+∞∈-x ∴,2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2}③1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y即函数的值域是 { y| y ∈R 且y ≠1}(此法亦称分离常数法) ④当x>0,∴x x y 1+==2)1(2+-xx 2≥, 当x<0时,)1(x x y -+--==-2)1(2----xx -≤ ∴值域是 ]2,(--∞[2,+∞).(此法也称为配方法)函数xx y 1+=的图像为:例3 求函数y =+-25x log31-x (2≤x ≤10)的值域解:令y 1=25-x ,2y =log31-x ,则 y 1 , 2y 在[ 2, 10 ]上都是增函数。

所以y= y 1 +2y 在[ 2 ,10 ]上是增函数。

当x = 2 时,y m in = 32-+log 312-=81, 当x = 10 时,m ax y = 52+log 39=33。

高中函数求值域的九种方法和例题讲解

高中函数求值域的九种方法和例题讲解

之袁州冬雪创作高中函数值域和定义域的大小,是高中数学常考的一个知识点,本文先容了函数求值域最常常使用的九种方法和例题讲解.一.观察法通过对函数定义域、性质的观察,连系函数的解析式,求得函数的值域. 例1求函数y=3+√(2-3x)的值域.点拨:根据算术平方根的性质,先求出√(2-3x)的值域.解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3.∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性.本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷了然,不失为一种巧法.操练:求函数y=[x](0≤x≤5)的值域.(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2求函数y=(x+1)/(x+2)的值域.点拨:先求出原函数的反函数,再求出其定义域.解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}.点评:操纵反函数法求原函数的定义域的前提条件是原函数存在反函数.这种方法体现逆向思维的思想,是数学解题的重要方法之一.操练:求函数y=(10x+10-x)/(10x-10-x)的值域.(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以操纵配方法求函数值域例3:求函数y=√(-x2+x+2)的值域.点拨:将被开方数配方成完全平方数,操纵二次函数的最值求.解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2].此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不单要重视对应关系的应用,而且要特别注意定义域对值域的制约作用.配方法是数学的一种重要的思想方法.操练:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.辨别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用辨别式法求函数的值域.例4求函数y=(2x2-2x+3)/(x2-x+1)的值域.点拨:将原函数转化为自变量的二次方程,应用二次方程根的辨别式,从而确定出原函数的值域.解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*)当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3当y=2时,方程(*)无解.∴函数的值域为2<y≤10/3.点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其辨别式为非负数,可求得函数的值域.常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数.操练:求函数y=1/(2x2-3x+1)的值域.(答案:值域为y≤-8或y>0).五.最值法对于闭区间[a,b]上的持续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与鸿沟值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域.例5已知(2x2-x-3)/(3x2+x+1)≤0,且知足x+y=1,求函数z=xy+3x的值域.点拨:根据已知条件求出自变量x的取值范围,将方针函数消元、配方,可求出函数的值域.解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x 代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上持续,故只需比较鸿沟的大小.当x=-1时,z=-5;当x=3/2时,z=15/4.∴函数z的值域为{z∣-5≤z≤15/4}.点评:本题是将函数的值域问题转化为函数的最值.对开区间,若存在最值,也可通过求出最值而获得函数的值域.操练:若√x为实数,则函数y=x2+3x-5的值域为()A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞)(答案:D).六.图象法通过观察函数的图象,运用数形连系的方法得到函数的值域.例6求函数y=∣x+1∣+√(x-2)2的值域.点拨:根据相对值的意义,去掉符号后转化为分段函数,作出其图象.解:原函数化为-2x+1(x≤1)y=3(-1<x≤2)2x-1(x>2)它的图象如图所示.显然函数值y≥3,所以,函数值域[3,+∞].点评:分段函数应注意函数的端点.操纵函数的图象求函数的值域,体现数形连系的思想.是处理问题的重要方法.求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域七.单调法操纵函数在给定的区间上的单调递增或单调递减求值域.例1求函数y=4x-√1-3x(x≤1/3)的值域.点拨:由已知的函数是复合函数,即g(x)=-√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域.解:设f(x)=4x,g(x)=-√1-3x,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-√1-3x 在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}.点评:操纵单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,连系函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域.操练:求函数y=3+√4-x的值域.(答案:{y|y≥3})八.换元法以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域.例2求函数y=x-3+√2x+1的值域.点拨:通过换元将原函数转化为某个变量的二次函数,操纵二次函数的最值,确定原函数的值域.解:设t=√2x+1(t≥0),则x=1/2(t2-1).于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.所以,原函数的值域为{y|y≥-7/2}.点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域.这种解题的方法体现换元、化归的思想方法.它的应用十分广泛.操练:求函数y=√x-1–x的值域.(答案:{y|y≤-3/4}九.构造法根据函数的布局特征,赋予几何图形,数形连系.例3求函数y=√x2+4x+5+√x2-4x+8的值域.点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域.解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形.设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22,KC=√(x+2)2+1.由三角形三边关系知,AK+KC≥AC=5.当A、K、C三点共线时取等号.∴原函数的知域为{y|y≥5}.点评:对于形如函数y=√x2+a±√(c-x)2+b(a,b,c 均为正数),都可通过构造几何图形,由几何的性质,直观了然、方便简捷.这是数形连系思想的体现.操练:求函数y=√x2+9+√(5-x)2+4的值域.(答案:{y|y≥5√2})以上九种是函数求值域最常常使用的方法,下面先容三种特殊情况下求值域的几种方法.十.比例法对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入方针函数,进而求出原函数的值域.例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域.点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数.解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)∴x=3+4k,y=1+3k,∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1.当k=-3/5时,x=3/5,y=-4/5时,zmin=1函数的值域为{z|z≥1}.点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识.操练:已知x,y∈R,且知足4x-y=0,求函数f(x,y)=2x2-y的值域.(答案:{f(x,y)|f(x,y)≥1})十一.操纵多项式的除法例5求函数y=(3x+2)/(x+1)的值域.点拨:将原分式函数,操纵长除法转化为一个整式与一个分式之和.解:y=(3x+2)/(x+1)=3-1/(x+1).∵1/(x+1)≠0,故y≠3.∴函数y的值域为y≠3的一切实数.点评:对于形如y=(ax+b)/(cx+d)的形式的函数都可操纵这种方法.操练:求函数y=(x2-1)/(x-1)(x≠1)的值域.(答案:y≠2)十二.不等式法例6求函数Y=3x/(3x+1)的值域.点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式.解:易求得原函数的反函数为y=log3[x/(1-x)],由对数函数的定义知x/(1-x)>01-x≠0解得,0<x<1.∴函数的值域(0,1).点评:考察函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域.不等式法是重要的解题工具,它的应用非常广泛.是数学解题的方法之一.。

最全函数值域的12种求法(附例题,习题)[1]

最全函数值域的12种求法(附例题,习题)[1]

通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1求函数y=3+√(2-3x)的值域。

点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。

∴函数的知域为.点评:算术xx具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

练习:求函数y=[x](0≤x≤5)的值域。

(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x-10-x)的值域。

(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x+x+2)的值域。

点拨:将被开方数配方成完全平方数,利用二次函数的最值求。

解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。

此时-x2+x+2=-(x-)2+∈[0,∴0≤√-x2+x+2≤函数的值域是点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。

配方法是数学的一种重要的思想方法。

练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、经典例题
例1、求下列函数的值域:
(1)
(2)
(3)
(4)
(5)
(6)
分析:对于形如(1)(2)(3)的函数求值域,基本策略是(ⅰ)化归为的值域;(ⅱ)转化为sinx(或cosx)的二次函数;对于(4)(5)(6)之类含有绝对值的函数求值域,基本策略则是(ⅰ)在适当的条件下考察y2;(ⅱ)转化为分段函数来处理;(ⅲ)运用其周期性、奇偶性或函数图象对称性转化.
解:
(1)

∴,
即所求函数的值域为.
(2)由


注意到这里x∈R,,

∴所求函数的值域为[-1,1].
(3)这里
令sinx+cosx=t
则有
且由
于是有


因此,所求函数的值域为. (4)注意到这里y>0,且


即所求函数的值域为.
(5)注意到所给函数为偶函数,
又当
∴此时
同理,当亦有.
∴所求函数的值域为.
(6)令
则易见f(x)为偶函数,且
∴是f(x)的一个正周期.①
只需求出f(x)在一个周期上的取值范围.
当x∈[0,]时,
又注意到,
∴x=为f(x)图象的一条对称轴②∴只需求出f(x)在[0,]上的最大值.
而在[0,]上,递增.③
亦递增④∴由③④得f(x)在[0,]上单调递增.

即⑤
于是由①、②、⑤得所求函数的值域为.
点评:解(1)(2)运用的是基本化归方法;解(3)运用的是求解关于sinx+cosx与sinxcosx的函数值域的特定方法;解(4)借助平方转化;解(5)(6)则是利用函数性质化繁为简,化暗为明.这一点在解(6)时表现得淋漓尽致.
例2、求下列函数的周期:
(1);
(2);
(3);
(4);
(5)
分析:与求值域的情形相似,求三角函数的周期,首选是将所给函数化为+k的形式,而后运用已知公式.对于含有绝对值的三角函数,在不能利用已有认知的情况下,设法转化为分段函数来处理.
解:
(1)


∴所求最小正周期.
(2)



∴所求周期.
(3)


=.
注意到的最小正周期为,故所求函数的周期为.
(4)
注意到3sinx及-sinx的周期为2,又sinx≥0(或sinx<0)的解区间重复出现的最小正周期为2. ∴所求函数的周期为2.
(5)
注意到sin2x的最小正周期,又sinx≥0(或sinx<0)的解区间重复出现的最小正周期,这里的最小公倍数为.
∴所求函数的周期.
点评:对于(5),令
则由知,是f(x)的一个正周期.①

∴不是f(x)的最小正周期.②
于是由①②知,f(x)的最小正周期为.
在一般情况下,探求上述一类分段函数的周期,仅考虑各段函数的最小正周期的最小公倍数是不够的,还要考虑各分支中的条件区间重复出现的最小正周期.双方结合,方可能获得正确结果.
请大家研究的最小正周期,并总结自己的有关感悟与经验.。

相关文档
最新文档