用二分法求方程的近似解(1) 必修一教案30

合集下载

高中数学3.1.2用二分法求方程近似解教学设计新人教A版必修1

高中数学3.1.2用二分法求方程近似解教学设计新人教A版必修1

《用二分法求方程的近似解》教学设计一.教学目标情感态度和价值观目标:培养探索问题的能力和合作交流的精神,体会数学在实际生活中的应用价值,感受精确与近似的相对统一。

知识与技能目标:能够借助计算器用二分法求方程的近似解,了解二分法是求方程近似解的常用方法,理解二分法的步骤和思想。

过程与方法目标:进一步体会方程和函数的转化思想,在应用二分法求解方程的近似解的过程中,体会算法的思想和“逐步逼近”的思想。

二.教学重点掌握用二分法求给定方程的近似解三.教学难点二分法的概念,精确度的概念,二分法实施步骤中的算法思想四.教学准备(前置作业)五.教学过程精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

高一《用二分法求方程的近似解》数学教案

高一《用二分法求方程的近似解》数学教案

高一《用二分法求方程的近似解》数学教案高一《用二分法求方程的近似解》数学教案通过本节课的学习,使学生在知识上学会用二分法求方程的近似解,从中体会函数与方程之间的联系;在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.这就要求学生除了能熟练地运用计算器演算以外,还要能借助几何画板4.06中文版中的绘制新函数功能画出基本初等函数的图象,掌握Microsoft Excel软件一些基本的操作。

下面和一起看看有关高一《用二分法求方程的近似解》数学教案。

教学目标知识与技能通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.过程与方法能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.情感、态度、价值观体会数学逼近过程,感受精确与近似的相对统一.教学重点通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学难点恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.教材分析本节课注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数零点之间的关系.在此基础上,再介绍求函数零点的近似值的二分法,并在总结用二分法求函数零点的步骤中渗透算法的思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在阅读与思考中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献.教学媒体分析多媒体微机室、Author).2.给定精确度,用二分法求函数零点近似值的步骤如下:(1)确定区间,,验证0,给定精确度;(2)求区间,的中点;(3)计算:1若=,则就是函数的零点;2若0,则令=(此时零点);3若0,则令=(此时零点);(4)判断是否达到精确度;即若,则得到零点近似值(或);否则重复步骤2-4.结论: 由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解.思考:为什么由,便可判断零点的近似值为(或)?师:阐述二分法的逼近原理,引导学生理解二分法的算法思想,明确二分法求函数近似零点的具体步骤.师:分析条件0、精确度、区间中点及的意义.生:结合求函数在区间(2,3)内的零点,理解二分法的算法思想与计算原理.AuthorA2+2*A2-6,得到与A2相应的函数值.第八步:然后双击(或拖动)B2的填充柄,得到与第一列相应的函数值.生:观察所得函数值,所以零点在区间(2.5,3)内.第九步:重复上述操作:将A1、B1、C1复制到A7、B7、C7,把精确度设为0.25,在A8、B9分别输入2.5、2.75,选中这两个单元格后,按住鼠标左键并向下方拖动填充柄到单元格内出现填充值3.25时为止,完成自动填充.复制B2到B8,得到与A8相应的函数值,然后双击(或拖动)B8的填充柄,得到与第一列相应的函数值.生:观察所得函数值,所以零点在区间(2.5,2.75)内.Microsoft Excel软件环节教学内容设计师生双边互动信息技术应用结论:借助信息技术求方程近似解(函数零点)的步骤如下:1.利用函数性质或借助计算机、计算器画出函数图象,确定函数零点所在的大致区间;2.利用然后用Microsoft Excel软件逐步计算解答.第十步:重复上述过程,将精确度设为上次操作的一半,直到小于0.01为止,特别地,这时可以将区间端点作为零点的近似值.生:观察所得函数值,并且精确度为0.00781250.01,所以零点在区间(2.53125 ,2.5390625)内,*=2.53125可以为函数的零点.生:认真思考,运用所学知识寻求确定方程近似解的方法,并进行讨论、交流、归纳、概括、评析形成结论.Microsoft Excel软件例题:借助计算器或计算机用二分法求方程的近似解(精确度0.1)解:(略). 打开几何画板打开Excel尝试练习:1. 借助计算器或计算机,用二分法求函数的零点(精确度0.1)2. 借助计算器或计算机,用二分法求方程的近似值(精确度0.01)师:首先利用几何画板4.06中文版软件画出函数图象,确定函数零点所在的大致区间,然后用Microsoft Excel软件逐步计算解答.生:独立完成解答,并进行交流、讨论、评析.Authorternet查找有关高次代数方程的解的研究史料,追寻阿贝尔(Abel)和伽罗瓦(Galois),增强探索精神,培养创新意识.3.谈谈通过学习求函数的零点和求方程的近似解,对数学有了哪些新的认识?将你这节课的收获与感受写成一篇小报告或小论文的形式,发表在学校的数学论坛上.师:继续激发学生学习数学的热情;感受数学文化方面的熏陶;充分地利用学校资源进行后续学习和交流.Authorware7.02课件展示。

2019-2020年高中数学用二分法求方程的近似解教案1(I)新课标人教版必修1(A)

2019-2020年高中数学用二分法求方程的近似解教案1(I)新课标人教版必修1(A)

2019-2020年高中数学用二分法求方程的近似解教案1(I)新课标人教版必修1(A)教学目的:引导学生探究发现求一元方程近似解的常用方法,鼓励学生能够应用二分法来解决有关问题,在教学过程中注重培养学生探究问题的能力,让学生能够初步理解算法思想。

教学过程:一、提出问题能否求解方程式 lgx=3-x ;x2-2x-1=0,x3+3x-1=0; 能否解出这个方程的近似解?(创设问题情景,激发学生探究热情)二、探究解法不解方程,如何求方程x2-2x-1=0的一个正的近似解(精确到0.1)?(探究离不开问题,问题式教学有赖于教师对问题情景的创设,以及对问题的呈现方式)让学生先自行探求,并进行组织交流。

(倡导学生积极主动,勇于探索的学习方式,有助于发挥学生学习的主动性。

)(2)师生共同探讨交流,引出借助函数f(x)=x2-2x-1的图象,能够缩小根所在区间,并根据f(x)<0,f(3)>0,可得出根所在区间为(2,3)。

(3)引发学生思考,如何进一步有效缩小根所在的区间(4)共同探讨各种方法,引导学生探寻出通过不断对分区间,将有助于问题的解法。

(5)用图例演示根所在区间不断被缩小的过程,加深学生对上述方法的理解。

2.让学生简述上述求方程近似解的过程,(通过自己的语言表达,有助于学生对概念、方法的理解)3.揭示二分法定义三、自行探究问题:利用计算器,求方程lgx=3-x的近似解(精确到0.1)(本例鼓励学生自行尝试,即能否利用二分法来求解本例,此处教师仅仅是引导学生如何把问题进行有效转化。

要让学生体验解题遇阻时的困惑以及解决问题的快乐,感受数学学习的乐趣。

)四、归纳总结在求解上述两类不同类型方程近似解的基础上,引导学生归纳二分法求解方程f(x)=0(或g(x)=h(x))近似解的基本步骤:寻找解所在区间图像法函数状态法不断二分解所在的区间根据精确度得出近似解(通过归纳总结,能够完善学生的认知结构)五、知识拓展介绍如何利用excel来帮助研究方程的近似解?(教师现场示范,既体现了信息技术与数学课程的有效整合,也有助于学生认识数学的本质)六、思考题从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查接点的个数为几个?(此例既体现了二分法的应用价值,也有利于发展学生的应用意识)七、课堂小结1.引导学生回顾二分法,明确它是一种求一元方程近似解的通法。

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》教学设计

《用二分法求方程的近似解》教学设计1. 引言1.1 背景介绍二分法是一种常用的数值计算方法,广泛应用于计算机科学、数学和工程领域。

它通常用于寻找数值解的逼近值,特别是在无法准确求解的情况下。

二分法的基本原理是将求解区间逐步缩小,直到满足精度要求为止。

在实际应用中,我们常常需要解决一些复杂的方程,例如非线性方程、传统解法求解困难的方程等。

这时候,二分法就成为了一种简单而有效的求解方法。

通过不断缩小求解区间,逐步逼近方程的解,我们可以快速得到一个近似解。

在本次教学设计中,我们将重点介绍二分法的原理、算法步骤和示例演示,帮助学生更好地理解和掌握这一数值计算方法。

通过本次教学,我们旨在引导学生掌握二分法的基本思想和应用技巧,提高他们的数值计算能力,为进一步学习和研究相关领域打下坚实的基础。

1.2 问题提出问题提出:在数学中,求解方程是一个常见的问题。

特别是对于非线性方程,往往无法用代数方法得到精确解析解。

我们需要借助数值计算方法来求得近似解。

二分法是一种简单且常用的数值计算方法,可以用来求解单调函数的根。

在实际应用中,我们经常遇到需要求解方程的情况,比如物理问题中的牛顿定律、化学问题中的化学反应速率等等。

掌握二分法求方程的近似解有着重要的意义。

本教学设计将重点介绍二分法的原理及应用,帮助学生掌握这一实用的数值计算方法。

1.3 目的本教学设计的目的是帮助学生了解和掌握二分法求解方程的基本原理和方法,通过实际的示例演示和练习,培养学生解决实际问题的能力和思维。

通过本教学设计,学生将能够掌握二分法的具体步骤,理解其优缺点,掌握其应用范围,并能将所学知识运用到实际生活和工作中。

通过本教学设计的学习,学生将不仅能够提高数学解题的能力,还能培养逻辑思维和分析问题的能力,为将来深入学习数学和相关领域打下扎实的基础。

本教学设计也旨在培养学生的团队合作和沟通能力,鼓励学生通过合作学习和讨论来促进自身的学习效果。

通过本教学设计,学生将不仅能够学会求解方程的方法,还能够培养自主学习和解决问题的能力,为未来的学习和工作打下坚实的基础。

人教版数学高中必修一《用二分法求方程的近似解》教案

人教版数学高中必修一《用二分法求方程的近似解》教案

1.注重引导学生对问题作出合理、高效的自主探究、合作探究.
2.应该大胆放手让学生去感受每一个知识点的形成过程.
合作探究教学模式
天平称、激光笔、三角板
教学过程
教师活动及主要语言
学生活动
设计意图
情景问题:某个雷电交加的夜晚,医院的医
生正在抢救一个危重病人,忽然电停了.据了解原 因是供电站到医院的某处线路出现了故障.这是一 条 10km 长的线路,每 50 米一根电线杆,假设你是 线路维修工人,如何迅速查出故障所在?
零点的大概范围,得到结果(注意:结果的得到
始终要关注零点的存在性定理):
函数 有且只有一个零点x0 , x0 (2, 3)
问题 3:你有进一步缩小函数零点的范围的方 认真思考问题 3,
法吗?
通过小组讨论,初
引导学生用处理线路的方法来缩小零点的范围, 要用好课件的动画效果,充分展现把函数零点所 在区间一分为二,使区间的两个端点不断逼近零 点的这一过程,并合理引导学生根据课件的动画 过程自己把二分法的定义归纳出来.
CD 段. 5.再到 CD 中点 E 来看. 6.这样每查一次,就可以把待查的线路长度缩
减一半,算一算,要把故障可能发生的范围缩小到
学生对情景问题 分组讨论,发表个 人意见,形成小组 方案,小组代表发 言,最终形成解决 实际问题的班级 方案. 认真听取老师的 对方案的总结,和 老师一起感受“对 半分”的思想.
呢?
问题 1 的设计遵循 了从易到难的规 律,符合学生的学 习认知规律,学生 很轻松的解决第 一个方程,而通过 第二个方程引起 学生的认知冲突, 激起学生进一步 探究的欲望.

引导学生复习旧知识:
观察课件,伴随老
1、函数的零点与相应方程的根的关系?

3.1.2_用二分法求方程的近似解_教案1 人教A版数学必修1

3.1.2_用二分法求方程的近似解_教案1 人教A版数学必修1

《用二分法求方程的近似解》教学设计一、教学内容分析本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章3.1.2用二分法求方程的近似解.本节课要求学生结合具体的函数图象能够借助计算机或计算器用二分法求相应方程的近似解,从中体会函数与方程之间的联系,它既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,在教学过程要让学生体会到人类在方程求解中的不断进步。

二、学生学习情况分析学生已经学习了函数,理解函数零点和方程根的关系, 初步掌握函数与方程的转化思想.但是对于求函数零点所在区间,只是比较熟悉求二次函数的零点,对于高次方程和超越方程对应函数零点的寻求会有困难.另外算法程序的模式化和求近似解对他们是一个全新的问题.三、设计思想倡导积极主动、勇于探索的学习精神和合作探究式的学习方式;注重提高学生的数学思维能力,发展学生的数学应用意识;与时俱进地认识“双基”,强调数学的内在本质,注意适度形式化;在教与学的和谐统一中体现数学的文化价值;注重信息技术与数学课程的合理整合.四、教学目标知识与技能目标:(1)了解二分法是求方程近似解的一种方法。

(2)体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识。

(3)根据具体函数的图像,能够借助计算器或计算机用二分法求相应方程的近似解。

过程与方法目标:(1)通过经历“用二分法求方程近似解”的探索过程,初步体会数形结合思想、逼近思想等。

(2)通过设置数学学习环境,让学生了解更多的获取知识的手段和途径。

情感态度与价值观目标:(1)在具体的问题情境中感受无限逼近的过程,感受精确与近似的相对统一。

(2)在探究解决问题的过程中,培养学生合作的态度、表达与交流的意识和勇于探索的精神。

五、教学重、难点:重点:二分法基本思想的理解,用二分法求方程近似解的步骤。

难点:求方程近似解一般步骤的理解和概括。

六、教学过程设计(一)设置情景,导入新课问题1:在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障.这是一条10km长的线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子.10km长,大约有200多根电线杆子呢.想一想,维修线路的工人师傅怎样工作最合理?学生独立思考,可能出现的以下解决方法:思路1:直接一个个电线杆去寻找.思路2:通过先找中点,缩小范围,再找剩下来一半的中点.(二)引导探究,获得新知问题2:假设电话线故障点大概在函数()ln26=+-的零点位置,请同学f x x x们先猜想它的零点大概是什么?我们如何找出这个零点?我们已经知道,函数()ln26ff x x x=+-在区间(2,3)内有零点,且(2)<0,(3)f>0.进一步的问题是,如何找出这个零点?合作探究:学生先按四人小组探究.(倡导学生积极交流、勇于探索的学习方式,有助于发挥学生学习的主动性)生:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,我们可以得到零点的近似值.师:如何有效缩小根所在的区间?生1:通过“取中点”的方法逐步缩小零点所在的范围.生2:是否也可以通过“取三等分点或四等分点”的方法逐步缩小零点所在的范围?师:很好,一个直观的想法是:如果能够将零点所在的范围尽量缩小,那么在一定精确度的要求下,可以得到零点的近似值.其实“取中点”和“取三等分点或四等分点”都能实现缩小零点所在的范围.但是在同样可以实现缩小零点所在范围的前提下,“取中点”的方法比取“三等分点或四等分点”的方法更简便.因此,为了方便,下面通过“取中点”的方法逐步缩小零点所在的范围.引导学生分析理解求区间(,)a b的中点的方法合作探究:(学生2人一组互相配合,一人按计算器,一人记录过程.四人小组中的两组比较缩小零点所在范围的结果.)步骤一:取区间(2,3)的中点2.5,用计算器算得(2.5)0.0840f≈-<.由(3)f f⋅<,所以零点在区间(2.5,3)内。

《利用二分法求方程的近似解》示范公开课教案【高中数学必修第一册北师大】

《利用二分法求方程的近似解》示范公开课教案【高中数学必修第一册北师大】

《利用二分法求方程的近似解》教学设计1.了解求方程近似解的方法,会用二分法求具体方程的近似解.2.体会函数在解方程中的作用.重点:利用二分法求方程的近似解. 难点:求方程近似解的精确度的把握.一、情境导入情境:怎样工作最合理?在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障,这是一条长10 km 的线路,如果沿着线路一小段一小段查找,困难很多,每查一个点要爬一次电线杆,10 km 大约有200多根电线杆呢.如何迅速查出故障所在?想一想,维修线路的工人师傅怎样工作最合理?首先从整条线路AB 的中点C 查起,用随身带的话机向两端测试时,发现AC 段正常,断定故障在BC 段;再到BC 段中点D ,这次发现BD 段正常,可见故障在CD 段;再查CD 中点E …每查一次,可以把待查的线路长度缩减一半,算一算,要把故障可能发生的范围缩小到50 m 左右,即两根电线杆附近,要查多少次?答案:只要8次就够了.设计意图:通过实际情境,让学生在轻松愉快的环境下开始本节课的学习,在问题情境中感悟数学有用,增加学习兴趣,为引入二分法的原理做准备.二、新知探究问题1:我们已经学过一元一次方程、一元二次方程的解法,但是,绝大部分方程没有求解公式,如ln x +2x −6=0,那么如何确定方程ln x +2x −6=0的解呢?设计意图:教师提出问题,引发学生的思维,造成悬念;再通过以下问题的探究,引导学生展开思考.方程ln x +2x −6=0一定有解吗?为此,需先确定实数解的存在性. 追问1:怎样确定方程有实数解?答案:方程f (x )=0有实数解⇔函数y =f (x )有零点⇔函数y =f (x )的图象与x 轴有公共点.所以,函数y =f (x )的零点就是y =f (x )的图象与x 轴交点的横坐标,即方程f (x )=0的◆教学目标◆教学重难点 ◆◆教学过程实数解.若函数y=f(x)在闭区间[a,b]上的图象是一条连续的曲线,并且在区间端点的函数值一正一负,即f(a)•f(b)<0,则在开区间(a,b)内,函数y=f(x)至少有一个零点,即在区间(a,b)内相应的方程f(x)=0至少有一个解.追问2:能否找出方程ln x+2x−6=0的一个实数解的存在区间呢?答案:设f(x)=ln x+2x−6,容易得出f(2)=ln2+4−6=ln2−2<0,f(3)=ln3>0,结合零点存在定理,可知f(x)=ln x+2x−6在区间(2,3)内存在零点,即方程ln x+2x−6=0的一个实数解的存在区间为(2,3).追问3:我们已经知道, ln x+2x−6=0在区间(2,3)内存在实数解,其准确值无法求出,能否求这个实数解的近似值呢?答案:一个直观的想法是:如果能将实数解所在的范围尽量缩小,那么在一定精确度的要求下就可以得到符合要求的实数解的近似值.(精确度是指近似值与其准确值的接近程度)设x̂是方程f(x)=0的一个解,给定正数ε,若x0满足|x0−x̂|<ε,就称x0是满足精确度ε的近似解.追问4:如果要获得精确度为0.5的近似解,你能找到一个符合要求的区间吗?答案:已知ln x+2x−6=0在区间(2,3)内存在实数解,即函数f(x)=ln x+2x−6在区间(2,3)内存在零点,这个区间长度为1.要获得精确度为0.5的实数解的近似值,至少需将包含零点的区间长度缩小为原来的一半.考虑区间(2,3)的中点2.5,又f(2.5)= ln2.5−1<0,f(3)=ln3>0,则f(2.5)f(3)<0.根据函数零点存在定理可知,函数f(x)= ln x+2x−6在区间(2.5,3)内存在零点,即ln x+2x−6=0在区间(2.5,3)内存在实数解,区间长度为0.5,因此,区间[2.5,3]内任意一个数都是满足精确度的近似解.追问5:如果要获得精确度为0.01的近似解,你将采取什么办法来逐步缩小区间?答案:当精确度为0.01时,借助函数的零点存在定理,至少需要将零点存在的区间长度缩小到0.01.在一定精确度的要求下,通过取区间的中点,将零点所在区间逐次减半.有限次重复相同步骤,借助函数零点的存在定理,将零点所在区间尽量缩小,达到精确度要求后,此区间内的任意一个数都可以作为函数零点的近似值.追问6:给定精确度ε,为什么当|a-b|<ε时,区间[a,b]中任意一个值x0都是满足精确度ε的近似值?答案:根据精确度的定义,精确度是指近似值x0与其准确值x̂的接近程度.近似值x0的误差不超过某个数ε,即|x0−x̂|<ε,就说它的精确度是ε.所以当|a-b|<ε时,x̂所在的区间[a,b]中任意一个值x0与x̂的误差都不超过|a-b|,当然也就不超过ε.区间[a,b]中任意一个值x0都是满足精确度ε的近似值.追问8:你给出ln x+2x−6=0的精确度为0.01的近似解吗?答案:由|2.53125-2.5390625|=0.0078125<0.01知,区间(2.53125,2.5390625)内任意一点都可以作为解的近似值.如:取x=2.532作为函数f(x)=ln x+2x−6零点的近似值,也即方程ln x+2x−6=0的近似解.问题2 上面这种求方程ln x+2x−6=0的近似解的方法,它的总体思路是什么?这种方法适用于哪些方程?答案:这种方法的总体思路是,通过不断把函数f(x)=ln x+2x−6的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,从而得到零点近似值.取区间(a,b)的中点a+b2,若f(a+b2)·f(b)<0,则区间(a+b2,b)内有方程的解.再取区间(a+b2,b)的中点……这样操作下去(如果取到某个区间的中点x0,恰使f(x0)=0,那么x0就是所求的解;如果区间中点x0的函数值不等于0,且区间某个端点的函数值与f(x0)异号,那么x0与这个端点组成新的区间的端点),经过有限次操作,就得到一串区间,其端点的函数值符号相反,且每次操作都使区间长度减小二分之一,随着操作次数的增加,区间长度越来越小,端点逐步逼近方程f(x)=0的解,从而得到近似解.像这样,对于一般的函数y=f(x),x∈[a,b],若函数y=f(x)的图象是一条连续的曲线,f(a)·f(b)<0,则每次取区间的中点,将区间一分为二,再经比较,按需要留下其中个小区间的求方程近似解的方法称为二分法.总结:只要方程所对应的函数图象是连续的曲线,而且有实根,就可用二分法借助于计算器或计算机求出方程根的近似值.二分的次数越多,近似值就越精确.二分法体现了无限逼近(极限)的数学思想.追问:你能提炼出给定精确度ε,用二分法求方程f(x)=0的近似解x0的一般步骤吗?答案:二分法求方程近似解的思想来源于零点存在定理.利用二分法求方程近似解的过程可以用下图所示:其中:初始区间是一个两端点函数值异号的区间;新区间的一个端点是原区间的中点,另一端点是原区间两端点中的一个,并且新区间两端点的函数值异号.在用二分法求方程近似解的步骤中,初始区间的选定,往往需要通过分析函数的性质和试算.初始区间选的不同,虽然不影响最终计算结果,但可能影响计算量的大小.若方程f(x)=0有多个解,则需要选取不同的初始区间来求得不同解的近似值.三、应用举例例1:求方程2x3+3x−3=0的一个近似解.(精确度为0.01)解:考察函数f(x)=2x3+3x−3,基于零点存在定理,从一个两端点函数值异号的区间开始,应用二分法逐步缩小方程解所在区间.经试算,f(0)=−3<0,f(1)=2>0.所以方程f(x)=0在区间(0,1)内有解.取区间(0,1)的中点0.5,f(0.5)=−1.25<0,所以方程f(x)=0在区间(0.5,1)内有解.如此下去,得到方程f(x)=0的解所在的区间,如下表:至此,可以看出,区间[0.734375,0.7421875]的区间长度为0.0078125,它小于0.01.而方程的解就在这个区间内,因此区间内的任意一个数都是满足精确度的近似解,例如,0.74 就是方程2x3+3x−3=0精确度为0.01的一个近似解.四、课堂练习1.思考辨析(1)任何函数的零点都可以用二分法求得.()(2)用二分法求出的方程的根都是近似解.()(3)当方程的有解区间[a,b]的区间长度b−a≤ε(精度)时,区间(a,b)内任意一个数都是满足精度ε的近似解.()2.用二分法求函数f(x)=3x−7的零点时,初始区间可选为()A.(-1,0)B.(0,1) C.(1,2) D.(2,3)3.若函数f(x)=x3+x2−2x−2的一个正数零点附近的函数值用二分法计算,其参考数据如下:A.1.25B.1.375C.1.40625D.1.5参考答案:1.(1)只有当函数图象在区间[a,b]是连续的曲线,且与x轴有交点时(即f(a)·f(b)<0),才可用二分法求函数的零点.故错误;(2)使用二分法时,如果取到某个区间的中点x0,恰使f(x0)=0,那么x0就是所求的解,不是近似解.故错误;(3)正确.2.解:f(−1)=3−1−7=13−7=−203<0,f(0)=30−7=1−7=−6<0,f(1)=31−7=−4<0,f(2)=32−7=9−7=2>0,故函数f(x)的零点在区间(1,2)上,故初始区间可选为(1,2).选C.3.解:根据题意知函数的零点在1.40625至1.4375之间,又|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似解为1.40625,故选C.五、课堂小结1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近方程的解,直至找到解附近足够小的区间,根据所要求的精度,区间的任意数值即为近似解.2.并非所有函数都可以用二分法求出其零点,只有满足:(1)函数图像在区间[a,b]上连续不断;(2)f(a)·f(b)<0.上述两条的函数,方可采用二分法求得零点的近似值.六、布置作业教材第132页练习第1题.。

用二分法求方程的近似解教案

用二分法求方程的近似解教案

用二分法求方程的近似解教案教案:用二分法求方程的近似解一、教学目标:1.理解二分法的基本原理。

2.掌握二分法在求解方程中的应用方法。

3.能够运用二分法求解方程的近似解。

二、教学准备:1.教师准备:(1)多个方程,例如x^2 - 2 = 0,x^3 - 5x + 3 = 0等,以便学生进行求解练习。

(2)计算器或电脑,帮助学生验证最终的近似解是否正确。

2.学生准备:(1)理解二分法的基本概念。

(2)掌握求解一元方程的基本方法。

三、教学过程:步骤一:导入1.引入二分法的概念:二分法是一种在有序数列中寻找特定元素的搜索算法,它通过将问题分为两个子问题,并逐渐缩小搜索范围,最终找到目标元素或近似解。

2.提问:你对二分法有什么了解?步骤二:讲解二分法的基本原理1.展示二分法示意图,并解释其基本原理。

例如:对于一个有序数列,假设我们想找到该数列中值为x的元素,我们可以先求出数列的中间值mid,然后根据mid与x的比较结果,将搜索范围减半,再在剩余部分中执行同样的步骤,直到找到x或搜索范围足够小。

2.举例说明:假设要在数列1, 2, 3, 4, 5中查找值为3的元素,首先计算中间值mid = 3,因为mid与目标值相等,所以找到了3这个元素。

若要在数列1, 2, 3, 4, 5中查找值为6的元素,计算中间值mid = 3,因为mid小于6,所以在数列4, 5中继续查找,计算中间值mid = 4,最终找到值为6的元素。

步骤三:应用二分法求解方程1.提问:我们可以将二分法用于求解方程吗?2.解释:是的,我们可以将要求解的方程转化为一个函数的零点问题。

例如:对于方程f(x) = x^3 - 5x + 3 = 0,我们可以尝试寻找函数的零点,即找到f(x) = 0的解。

3.讲解求解步骤:(1)根据给定方程确定搜索区间[a, b],确保f(a)和f(b)异号,否则不能保证方程在[a, b]范围内有解。

(2)计算中间值mid = (a + b) / 2,并计算f(mid)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)你认为学习“二分法”有什么意义?
(3)在本节课的学习过程中,还有哪些不明白的地方?
(五)、布置作业
P92习题3.1A组第4题,第5题。
课后记:
(二)、研讨新知
一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。
取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)*f(3)<0,所以零点在区间(2.5,3)内;
人教版高中数学必修1教案
授课时间:年月日
备课时间:年月日
课题:用二分法求方程的近似解(1)
教学目标
理解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;体会程序化解决问题的思想,为算法的学习作准备。
教学重点
用二分法求解函数f(x)的零点近似值的步骤。
教学难点
为何由︱a-b︳< 便可判断零点的近似值为a(或b)?
0<x0-a<b-a,a-b<x0-b<0;
由于︱a-b︳< ,所以
︱x0-a︳<b-a< ,︱x0-b︳<∣a-b∣< ,
即a或b作为零点x0的近似值都达到了给 Nhomakorabea的精确度 。
㈢、巩固深化,发展思维
1.学生在老师引导启发下完成下面的例题
例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)
问题:原方程的近似解和哪个函数的零点是等价的?
引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.
(四)、归纳整理,整体认识
在师生的互动中,让学生了解或体会下列问题:
(1)本节我们学过哪些知识内容?
教学过程
教学设想
(一)、创设情景,揭示课题
提出问题:
(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?
(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?
再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)*f(2.5)<0,所以零点在(2.5,2.75)内;
由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,即方程㏑x+2x-6=0近似值。
这种求零点近似值的方法叫做二分法。
1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.
生:认真理解二分法的函数思想,根据课本上二分法的一般步骤,探索求法。
2.为什么由︱a-b︳< 便可判断零点的近似值为a(或b)?
先由学生思考几分钟,然后作如下说明:
设函数零点为x0,则a<x0<b,则:
相关文档
最新文档