华东师大版八年级数学(上)第一次月考数学试卷

合集下载

华东师大版八年级数学上册第一次月考考试卷及答案【新版】

华东师大版八年级数学上册第一次月考考试卷及答案【新版】

华东师大版八年级数学上册第一次月考考试卷及答案【新版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.下列各数中,13.141597π-⋅⋅⋅--,,,无理数的个数有()A.1个B.2个C.3个D.4个3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、B5、A6、B7、C8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、-153、如果两个角互为对顶角,那么这两个角相等4、a+c5、49136、40°三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22x -,12-.3、(1)见解析;(2)经过,理由见解析4、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

华东师大版八年级数学上册第一次月考考试卷【参考答案】

华东师大版八年级数学上册第一次月考考试卷【参考答案】

华东师大版八年级数学上册第一次月考考试卷【参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.(-9)2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或73.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5 5.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A.a2n-1与-b2n-1 B.a2n-1与b2n-1 C.a2n与b2n D.a n与b n6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,在数轴上表示实数15的点可能是()A.点P B.点Q C.点M D.点N8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<5,化简2(1)x +|x-5|=________.2.比较大小:23________13.3.若m+1m=3,则m2+21m=________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=_________度。

华东师大版八年级数学上册第一次月考考试卷带答案

华东师大版八年级数学上册第一次月考考试卷带答案

华东师大版八年级数学上册第一次月考考试卷带答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d-+++的值.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、B5、D6、B7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、()()()22a b a a -+-2、22()1y x =-+3、如果两个角互为对顶角,那么这两个角相等4、﹣2<x <25、49136、6三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x+2;当1x =-时,原式=1.3、0.4、(1) 65°;(2) 25°.5、略.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

华东师大版八年级数学上册第一次月考试卷及答案【真题】

华东师大版八年级数学上册第一次月考试卷及答案【真题】

华东师大版八年级数学上册第一次月考试卷及答案【真题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A .530020015030x y x y +=⎧⎨+=⎩B .530015020030x y x y +=⎧⎨+=⎩C .302001505300x y x y +=⎧⎨+=⎩D .301502005300x y x y +=⎧⎨+=⎩10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB//CDB .AB//CD ,AB CD =C .AD//BC ,AB DC =D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.若23(1)0m n -++=,则m -n 的值为________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2a b-++=.(2)103.已知关于x的方程220++-=.x ax a(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、C5、B6、D7、D8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、44、﹣2<x<25、46、4三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、1a b-+,-13、(1)12,32-;(2)略.4、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、24°.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。

华东师大版八年级数学上册第一次月考测试卷及答案【完美版】

华东师大版八年级数学上册第一次月考测试卷及答案【完美版】

华东师大版八年级数学上册第一次月考测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知13x x +=,则2421x x x ++的值是( ) A .9B .8C .19D .18 4.化简x 1x -,正确的是( ) A .x - B .x C .﹣x - D .﹣x5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2.函数32y x x =-+x 的取值范围是__________. 3.分解因式:3x -x=__________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=________.6.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)211x x-=+(2)2216124xx x--=+-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.2222444424x x xx x x x⎛⎫---÷⎪-+--⎝⎭.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、A6、B7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、23x -<≤3、x (x+1)(x -1)4、(-4,2)或(-4,3)5、26、15.三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、x+2;当1x =-时,原式=1.3、(1)12,32-;(2)略.4、(1)略;(2)45°;(3)略.5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

华东师大版八年级数学上册第一次月考考试题(完整版)

华东师大版八年级数学上册第一次月考考试题(完整版)

华东师大版八年级数学上册第一次月考考试题(完整版)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4B .4C .﹣2D .2 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.若a b a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:3x -x=__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、B7、D8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、12、22()1y x =-+3、x (x+1)(x -1)4、﹣2<x <25、49136、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、112x -;15.3、0.4、(1) 65°;(2) 25°.5、24°.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

华东师大版八年级数学上册第一次月考试卷及答案【完美版】

华东师大版八年级数学上册第一次月考试卷及答案【完美版】

华东师大版八年级数学上册第一次月考试卷及答案【完美版】班级: ________ 姓名:_______________一、选择题(本大题共10小题,每题3分,共30 分)1 •将直线y 2x 3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A .y 2x 4 B. y 2x 42.若点 A (1+m 1 - n)与点 B (- 3, ( )A .-5 B.- 33 .下列说法不疋成立的疋()A .若a b,则 a c b c BC.若a b,则ac2bc2DC. y 2x 2D. y 2x 22)关于y轴对称,则m+n的值是C. 3D. 1.若 a c b c,贝q a b.若ac2be2,则 a b4. 实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()--------- 1= ---- 1■—a ■ d■鼻1 c dA. |a| > |b|B. |ac|=acC. b v dD. c+d>05. 已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是()A. a2n -与一b2-1B . a20一1与b2'" C . a20与b2n D . a n与b n6. 菱形不具备的性质是()A.四条边都相等B•对角线一定相等C.是轴对称图形 D.是中心对称图形BE是△ ABC的高的是()D .NOP / MOF平分线上的点,AB丄OP于点E, BC丄MNf点C, AD丄MNf点D,下列结论错误的是()AA. AD+ BC= ABB.与/ CBO互余的角有两个C.7 AO= 90°D.点O是CD的中点9.如图所示,下列推理及括号中所注明的推理依据错误的是(A3A.•••7 1 = 7 3,B.••• AB// CD二C.• AD// BC,二D.• 7 DA=7 (••• AB//CD(内错角相等,两直线平行)/ 1 = 7 3 (两直线平行,内错角相等)/ BAD-7 ABC= 180°(两直线平行,同旁内角互补)••• AB// CD (两直线平行,同位角相等)10.如图是由4个相同的小正方形组成的网格图,其中/ 1+Z 2等于()二、填空题B. 180°C. 210°D. 225°(本大题共6小题,每小题3分,共18分)1 .若a-b=1 ,则a2b22b的值为2 .函数y1■厂中自变量x的取值范围是' x 23 .分解因式:x 3 — x= .4 .如图,已知/ XOY=60,点A 在边0X 上,OA=2过点A 作AC10Y 于点C,以AC 为一边在/ XOY 内作等边三角形ABC 点P 是厶ABC 围成的区域(包括各 边)内的一点,过点 P 作PD// 0Y 交0X 于点D,作PE// 0X 交0Y 于点E.设5. 如图,△ ABCE 边的中线AD BE, CF 的公共点G,若Sx ABC 12,则图中阴6. 如图,在矩形ABCD 中, BC=20cm,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 勺边运动,点P 和点Q 的速度分别为3cm/s 和2cm s ,则三、解答题(本大题共6小题,共72分)1. 解方程组:-2y 7 22x 5 3OD=a 0E=b 贝U a+2b 的取值范围是_________________________________________影部分面最快________ S 后,四边形ABPQ 成为矩形. 3x y 2 9x 8y 172(宁汁晋,其中x满足x2-2X-2=0.2.先化简,再求值:3•已知5a 2的立方根是3, 3a b 1的算术平方根是4, c是13的整数部分.(1)求a, b, c的值;(2)求3a b c的平方根.4. 如图,在菱形ABCD中,对角线AC与BD交于点0.过点C作BD的平行线, 过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED!矩形;(2)_________________________________ 若CE=1 DE=2 ABCD勺面积是 .5. 如图,在长方形OABC中,0为平面直角坐标系的原点,点A坐标为(a, 0),点C的坐标为(0, b),且a、b满足a 4+|b - 6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O- C- B-A- O的线路移动.(1)_________ a= _______ , b= _______________ ,点B的坐标为 ;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6 •某公司计划购买A, B两种型号的机器人搬运材料•已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A, B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A, B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案1、 A2、 D3、 C4、 B5、 B6、 B7、 D8、 B9、 D10、 B 二、 填空题(本大题共6小题,每小题3分,共18 分) 1、12、 2 x 33、 x (x+1)( x — 1)4、 2<a+2b <5.5、 46、 4三、 解答题(本大题共6小题,共72分) x 1x 2 1、 (1)y 1 ; ( 2) y 3 2、 123、 (1) a=5, b=2, c=3 (2) ± 4.4、 (1) 略; ( 2) 4.5、 (1) 4, 6,( 4, 6) (2). 点P 在线段CB 上,点 亍P 的坐标是(2,6); (3 )点 P 移动的时间是 2.5 秒或 5.5秒. &( 1) A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克 材一、选择题(本大题共10小题,每题3分,共30 分)料;(2)至少购进A型机器人14台.。

华东师大版八年级数学上册第一次月考试卷(加答案)

华东师大版八年级数学上册第一次月考试卷(加答案)

华东师大版八年级数学上册第一次月考试卷(加答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.若a=7+2、b=2﹣7,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.分解因式:2-+=__________.2a4a23.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C5、D6、A7、D8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、()2 2a1-3、204、20°.5、46、4三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、11a-,1.3、(1)12b-≤≤;(2)24、略.5、CD的长为3cm.6、(1)2元;(2)至少购进玫瑰200枝.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学(上)第一次月考数学试卷
(本试卷共30小题,满分120分,时间100分钟)GRW
一.选择题(本题共10小题,每题3分,共30分)
1.
的算术平方根是( )
A.9
B.±9
C.±3
D.3
2、 已知a a = ,那么=a ( )
A. 0
B. 0或1
C.0或-1
D. 0,-1或1 3.下列计算正确的是( )
A 、236a a a ⋅=;
B 、235a a a +=;
C 、3=;
D 、33(2)6x x -=-; 4、要使33
a 4)—(=4—a 成立,则a 的取值范围是 ( ) A a ≤4 B a ≤—4 C a ≥4 D 一切实数 5.下列各个数中,是无理数的有------------------( )
π,—3.1416 1
3
,0.030 030 003···,
0.571 43,
A. 0个
B.1个
C. 2个
D. 3个
6.计算( 23
)2011 ×1.52010 ×(-1)2012
所得的结果是----------------( )
A. - 23 B.2 C.2
3 D.-2
7、如果
x -2有意义,则x 的取值范围是( )
A 、2≥x
B 、2<x
C 、2≤x
D 、2>x
8、化简1|21|+-
的结果是( )
A 、22-
B 、22+
C 、2
D 、
2
9、如果3
271250x +=,那么x 的值是( ).
A . 53-
B .53
C .35-
D .35
10.下列说法中,正确的个数是( )
①实数包括有理数、无理数和零;②()2
239a a +=+;③幂的乘方,底数不变,指数相加;④平方根与立方根都等于它本身的数为0和1; A 、4个; B 、3个; C 、2个; D 、1个;
二.填空题(本题共8小题,每题3分,共24分)
11.64的平方根是 ,立方根是 。

12.若一台计算机一秒计算5×1018次,则它6×102
秒共计算_________次. 13.计算:(-x
2) 3
=_________.
14.已知25)1(2
=-x ,则x =__________。

15.计算:若3
3x+1
·5
3x+1
=15
2x+4
则x=__________.
16.已知x 是10 的整数部分,y 是10 的小数部分,则
1
x y -(=__________。

17.若411+-+-=x x y ,则xy 的算术平方根是
18、若(x +a )(x +2)=x 2-5x +b ,则a =__________,b =__________.
11_________ . 12_________. 13_________. 14_________. 15_________. 16_________. 17_________. 18_________. 三.解答题(本题共4小题,每题5分,共20
分)
19.计算: )8
3(4322
yz x xy -⋅ 20.计算:(23)(2)(2)a b a b a a b -+--;
21.
()1132)(--∙÷∙n m n m x x x x ; 22. (p -q)4
÷(q -p)3
·(p -q)
2
四.解答题(本题共8小题,第23、24,25,26,27,28小题每题5分,第29,30小题8分,共46分)
23、已知: 8·22m-1·23m=217.求m的值.
24、解方程:x(3x-4)+2x(x+7)=5x(x-7)+90
25.已知x m=9,x n=6,x k=4,求x2m-n+k的值。

26.已知y x 、满足
0|22|132=+-+--y x y x ,求y x 5
4
2-的平方根.
27. (6分)先化简,再求值:
)43(2)342(32
2+-+-a a a a a ,其中2-=a .
28、作图:在数轴上作出表示2-
的点.(不写作法,保留适当的作
图痕迹)
29. 若(x 2+ax -b )(2x 2-3x +1)的积中,x 3的系数为5,x 2的系数为
-6,求a ,b .
30.探究题
=______
,=______,
=______
,,
=______,
=______.
根据计算结果,回答:
1. =_____
2.利用你总结的规律,计算①若2
x〈
,则=
②=_____
3、实数a、b如图所示试化简:
|a—b|+2a+2)
(b
a++3
3a
b)

(。

相关文档
最新文档