【K12教育学习资料】[学习]2018-2019学年高中数学 第一章 空间几何体 1.3.2 球的体
高中数学第一章空间几何体1.1空间几何体的结构1.1.1棱柱、棱锥、棱台的结构特征检测新人教A版必

2018-2019学年高中数学第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征检测新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征检测新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征检测新人教A版必修2的全部内容。
1。
1。
1 棱柱、棱锥、棱台的结构特征[A级基础巩固]一、选择题1.下列关于棱柱的说法中正确的是( )A.只有两个面相互平行B.所有棱都相等C.所有面都是四边形D.各侧面都是平行四边形解析:由棱柱的概念和结构特征可知选D.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是( )解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4。
如图所示,在三棱台A′B′C′。
ABC中,截去三棱锥A′。
ABC,则剩余部分是( )A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:观察图形可知,剩余部分是以A′为顶点,以四边形BCC′B′为底面的四棱锥,故选B.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)( )解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.在正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数为________.解析:上底面内的每个顶点与下底面内不在同一侧面的两个顶点的连线可构成正五棱柱的对角线,故从一个顶点出发的对角线有2条,所以共2×5=10(条).答案:108.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.观察如图所示的几何体,其中判断正确的是( )A.①是棱台B.②是棱锥C.③是棱锥D.④不是棱柱解析:①中互相平行的两个平面四边形不相似,所以侧棱不会相交于一点,不是棱台;②侧面三角形无公共顶点,不是棱锥;③是棱锥,正确;④是棱柱.故选C。
2018_2019学年度高中数学第一章空间几何体章末总结课件新人教A版必修2

7.圆台的侧面积公式是π (r+R)l,其中r和R分别是圆台的上、下底面半径,l
是其母线长.( √ )
主题串讲
一、空间几何体的结构特征
方法提炼·总结升华
【典例1】 根据下列对几何体结构特征的描述,说出几何体的名称. (1) 由六个面围成 , 其中一个面是正五边形 , 其余各面是有公共顶点的三 角形;
解析:正四棱锥P-ABCD外接球的球心在它的高PO1上,记为O,OP=OA=R,
PO1=4,OO1=4-R, 或OO1=R-4(此时O在PO1的延长线上).
在Rt△AO1O中,R2=8+(R-4)2得R=3,
所以球的表面积S=36π. 答案:36π
规律方法 (1)与球有关的组合体,一种是内切,一种是外接,解题时要认
1 (6+8)× 17 =7 17 . 2
从而此正四棱台的侧面积是 28 17 .
【典例6】 一个几何体的三视图如图所示(单位:m),则该几何体的表面积为 m3.
错解:由三视图可以得到原几何体是一个圆柱与圆锥的组合体,其表面积是
2 2 S=2π×1×4+π×1 +π×2×2 2 +π×2
=8π+π+4 2 π+4π =(13π+4 2 π)(m3).
1 13 26 于是仓库的容积 V=V 柱+V 锥=a2·4h+ a2·h= a2h= (36h-h3), 3 3 3
0<h<6,从而 V′=
26 2 2 (36-3h )=26(12-h ). 3
【配套K12】[学习](全国通用版)2018-2019高中数学 第一章 立体几何初步 1.2 点、线
2018-2019高中数学 第一章 立体几何初步 1.2 点、线](https://img.taocdn.com/s3/m/ca628b1db90d6c85ec3ac6a5.png)
第一课时直线与平面垂直1若直线a⊥平面α,直线b∥α,则直线a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b不相交C.a⊥bD.a与b不一定垂直b∥α,则在平面α内存在一条直线c,使得b∥c,因为直线a⊥平面α,c⊂α,所以a ⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直,故选C.2如图,BC是Rt△ABC的斜边,PA⊥平面ABC,PD⊥BC,则图中直角三角形的个数是()A.8B.7C.6D.5PA⊥AC, PA⊥AD,PA⊥AB,BC⊥AD,BC⊥PD,AC⊥AB.图中的直角三角形分别为△PAC,△PAD,△PAB,△ADC,△ADB,△PCD,△PDB,△ABC,共8个,故选A.3设α表示平面,a,b,l表示直线,给出下列四个命题:①⇒l⊥α;②⇒b⊥α;③⇒b⊥α;④⇒a⊥α.其中正确的命题是()A.①②B.②③C.③④D.②中当a,b相交时才成立;③中由a∥α,a⊥b知b∥α或b⊂α或b⊥α或b与α相交;④中当a垂直于平面α内的两条相交直线时,有a⊥α,若a只垂直于平面α内的一条直线,则不能得出a⊥α,从而不正确.4已知直线a,b与平面α,给出下列四个命题:①若a∥b,b⊂α,则a∥α;②若a∥α,b⊂α,则a∥b;③若a∥α,b∥α,则a∥b;④若a⊥α,b∥α,则a⊥b.其中正确命题的个数是 ()A.1B.2C.3D.45在正方形SG1G2G3中,E,F分别是G1G2和G2G3的中点,D是EF的中点,现在沿SE,SF和EF把这个正方形折起,使点G1,G2,G3重合,重合后的点记为G,则下列结论成立的是()A.SD⊥平面EFGB.SG⊥平面EFGC.GF⊥平面SEFD.GD⊥平面SEFSG⊥GE,SG⊥GF,又GF与GE相交于点G,所以SG⊥平面EFG.6如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误..的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.△AEF的面积与△BEF的面积相等7对于四面体ABCD,给出下列四个命题:①若AB=AC,BD=CD,则BC⊥AD;②若AB=CD,AC=BD,则BC⊥AD;③若AB⊥AC,BD⊥CD,则BC⊥AD;④若AB⊥CD,BD⊥AC,则BC⊥AD.其中真命题的序号是.①,取BC的中点E.连接AE,DE,则BC⊥AE,BC⊥DE,所以BC⊥AD.对于命题④,过A向平面BCD作垂线AO,如图,连接BO并延长与CD交于点G,则CD⊥BG,同理CH⊥BD.所以O为△BCD的垂心,连接DO,则BC⊥DO,BC⊥AO,所以BC⊥AD.8如图,已知在矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于.PA⊥平面ABCD,所以PA⊥QD.又因为PQ⊥QD,PA∩PQ=P,所以QD⊥平面PAQ.所以AQ⊥QD,即Q在以AD为直径的圆上,当圆与BC相切时,点Q只有一个,故BC=2AB=2.9如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是.,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.10如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2, AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC.由∠BCD=90°,得BC⊥DC.又因为PD∩DC=D,PD⊂平面PCD,DC⊂平面PCD,所以BC⊥平面PCD.因为PC⊂平面PCD,所以PC⊥BC.AC,设点A到平面PBC的距离为h.因为AB∥DC,∠BCD=90°,所以∠ABC=90°.从而由AB=2,BC=1,得△ABC的面积S△ABC=1.由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积V=S△ABC·PD=.因为PD⊥平面ABCD,DC⊂平面ABCD,所以PD⊥DC.又PD=DC=1,所以PC=.由PC⊥BC,BC=1,得△PBC的面积S△PBC=,由V=S△PBC·h=·h=,得h=.因此,点A到平面PBC的距离为.★11如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M,N,G分别是棱CC1,AB,BC的中点,且CC1=AC.求证:(1)CN∥平面AMB1;(2)B1M⊥平面AMG.设AB1的中点为P,连接NP,MP.因为CM∥AA1,且CM=AA1,NP∥AA1,且NP=AA1,所以CM∥NP,且CM=NP.所以四边形CNPM是平行四边形.所以CN∥MP.因为CN⊄平面AMB1,MP⊂平面AMB1,所以CN∥平面AMB1.(2)因为CC1⊥平面ABC,所以CC1⊥AG.由△ABC是正三角形得AG⊥BC,又因为BC∩CC1=C,所以AG⊥平面CC1B1B.所以B1M⊥AG.因为CC1⊥平面ABC,所以CC1⊥AC.设AC=2a,则CC1=2 a.在Rt△MCA中,AM= a.同理,B1M= a.因为BB1∥CC1,所以BB1⊥平面ABC.所以BB1⊥AB.所以AB1==2 a.所以AM2+B1M2=A.所以B1M⊥AM.又因为AG∩AM=A,AG⊂平面AMG,AM⊂平面AMG, 所以B1M⊥平面AMG.。
推荐学习K12(全国通用版)2018-2019高中数学第一章立体几何初步1.1空间几何体1

1.1.2 棱柱、棱锥和棱台的结构特征1过正棱台两底面中心的截面一定是()A.直角梯形B.等腰梯形C.一般梯形或等腰梯形D.矩形答案:C2如图是一个简单多面体的表面展开图(沿图中虚线折叠即可还原),则这个多面体的顶点数为()A.6B.7C.8D.9解析:还原几何体,如图.由图观察知,该几何体有7个顶点.答案:B3一个正四面体的各条棱长都是a,则这个正四面体的高是()A.aB.aC.aD.解析:因为正四面体底面外接圆半径为a,所以正四面体的高为h= a.答案:B4有四种说法:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.以上说法中,正确的个数是()A.1B.2C.3D.4解析:①不正确,除底面是矩形外还应满足侧棱与底面垂直才是长方体;②不正确,当底面是菱形时就不是正方体;③不正确,两条侧棱垂直于底面一边不一定垂直于底面,故不一定是直平行六面体;④正确,因为对角线相等的平行四边形是矩形,由此可以推测此时的平行六面体是直平行六面体,故选A.答案:A5如果正四棱台两底面边长分别为 3 cm和5 cm,那么它的中截面(过各侧棱中点的截面)面积为()A.2 cm2B.16 cm2C.25 cm2D.4 cm2解析:如图,取A'A,B'B的中点分别为E,F,所以EF=×(3+5)=4(cm).则S中截面=42=16(cm2).答案:B★6如图,几何体①~⑤均由4个棱长为1的小正方体构成,几何体⑥由15个棱长为1的小正方体构成.现从几何体①~⑤中选出三个放到几何体⑥上,使得几何体⑥成为一个棱长为3的大正方体.则下列几何体中,能够完成任务的为()A.几何体①②⑤B.几何体①③⑤C.几何体②④⑤D.几何体③④⑤解析:本题主要考查正方体的结构特征等知识,同时考查分析问题和解决问题的能力.观察得先将⑤放入⑥中的空缺处,然后上面可放入①②,其余可以验证不合题意.故选A.答案:A7一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱的长为.。
【配套K12】[学习]2018-2019学年高中数学 第一章 空间几何体 1.3.1 柱体、锥体、台
![【配套K12】[学习]2018-2019学年高中数学 第一章 空间几何体 1.3.1 柱体、锥体、台](https://img.taocdn.com/s3/m/824dac30a300a6c30c229f57.png)
1.3.1 柱体、锥体、台体的表面积与体积【选题明细表】1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( B )(A) (B) (C)2π (D)4π解析:由题意,该几何体可以看作是两个底面半径为,高为的圆锥的组合体,其体积为2××π×()2×=π.2.(2018·河南焦作期末)一个圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的体积为( D )(A)2π (B)π (C) (D)解析:由题圆锥的底面周长为2π,底面半径为1,圆锥的高为,圆锥的体积为π·12·=π,故选D.3.(2018·河北沧州高一检测)圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( A )(A)7 (B)6 (C)5 (D)3解析:设上、下底面半径为r,R.则2πR=3×2πr,所以R=3r.又π(r1+r2)l=S侧,所以S侧=π(3r+r)×3=84π,所以r=7.4.(2018·安徽马鞍山期中)若圆锥的高等于底面直径,则它的底面积与侧面积之比为( C )(A)1∶2 (B)1∶(C)1∶(D)∶2解析:若圆锥的高等于底面直径,则h=2r,则母线l==r,而圆锥的底面面积为πr2,圆锥的侧面积为πrl=πr2,故圆锥的底面积与侧面积之比为1∶,故选C.5.(2018·桂林调研)正六棱柱的一条最长的对角线长是13,侧面积为180,棱柱的全面积为.解析:如图,设正六棱柱的底面边长为a,侧棱长为h,易知CF′是正六棱柱的一条最长的对角线,即CF′=13.因为CF=2a,FF′=h,所以CF′===13. ①因为正六棱柱的侧面积为180,所以S侧=6a·h=180, ②联立①②解得或当a=6,h=5时,S底=6×a2×2=108.所以S全=180+108.当a=,h=12时,S底=6×a2×2=,所以S全=180+.答案:180+或180+1086.如图,直三棱柱ABC A 1B1C1的高为6 cm,底面直角三角形的边长分别为3 cm,4 cm,5 cm,以上、下底的内切圆为底面,挖去一个圆柱,求剩余部分形成的几何体的体积为.(π取3.14)解析:由题意知,Rt△ABC的内切圆O的半径为r=1(cm),所以所求几何体的体积为V=×3×4×6-π×12×6≈17.16(cm3).即剩余部分形成的几何体的体积为17.16 cm3.答案:17.16 cm37.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.解析:由题底面半径是1,圆锥的母线为2,则圆锥的高为,所以圆锥的体积为××π=.答案:8.(2018·湖南郴州二模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是( B )(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V=(S上++S下)·h)(A)2寸(B)3寸(C)4寸(D)5寸解析:如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.因为积水深9寸,所以水面半径为(14+6)=10寸,则盆中水的体积为π×9(62+102+6×10)=588π(立方寸),所以平地降雨量等于=3(寸).故选B.9.(2018·辽宁抚顺一中月考)如图,多面体ABCDEF中,BA,BC,BE两两垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1,则多面体ABCDEF的体积为.解析:多面体ABCDEF的体积等于四棱锥D ABEF和三棱锥A BCD的体积之和.因为=×S四边形ABEF×BC=×(1+2)×2×1=1,=×S△BCD×AB=××1×1×2=.所以多面体ABCDEF的体积V多面体ABCDEF=+1=.答案:10.已知正四棱锥底面正方形的边长为4 cm,高与斜高的夹角为30°,求正四棱锥的侧面积和表面积.解:如图,正四棱锥的高PO,斜高PE,底面边心距OE组成Rt△POE.因为OE=2 cm,∠OPE=30°,所以PE=2OE=4 cm.因此S侧=4×PE·BC=4××4×4=32(cm2),S表面积=S侧+S底=32+16=48(cm2).11.(2018·江苏省连云港市高一期末)如图,正方体ABCD A 1B1C1D1的棱长为2,P是BC的中点,点Q是棱CC1上的动点.(1)点Q在何位置时,直线D1Q,DC,AP交于一点,并说明理由;(2)求三棱锥B1-DBQ的体积;(3)若点Q是棱CC1的中点时,记过点A,P,Q三点的平面截正方体所得截面面积为S,求S. 解:(1)当Q是棱CC1的中点时,直线D1Q,DC,AP交于一点,理由:延长D1Q、DC交于点O,则QC为△DD1O的中位线,所以C为DO的中点,延长AP、DC交于点O′,则PC为△ADO′的中位线,所以C为DO′的中点,所以点O与点O′重合,所以直线D1Q、DC、AP交于一点.(2)==×(×2×2)×2=.(3)连接AD1、PQ,由(1)知,AD1∥PQ,所以梯形APQD1为所求截面,梯形APQD1的高为=,S=(+2)×=.。
2018-2019高中数学 第一章 立体几何初步 1.4.1 空间图形基本关系的认识 1.4.2 空间图形的公理(一)课件 北

规律方法 (1)用文字语言、符号语言表示一个图形时,首先 仔细观察图形有几个平面、几条直线且相互之间的位置关系 如何,试着用文字语言表示,再用符号语言表示. (2)根据符号语言或文字语言画相应的图形时,要注意实线和 虚线的区别.
β=l,且 问题的依据;三
P∈l
是证明线共点问
题的依据
【预习评价】 (1)两个平面的交线可能是一条线段吗? 提示 不可能.由公理3知,两个平面的交线是一条直 线. (2)经过空间任意三点能确定一个平面吗? 提示 不一定.只有经过空间不共线的三点才能确定一个 平面.
题型一 三种语言间的相互转化 【例1】 用符号语言表示下列语句,并画出图形.
的位置关系 面面相交
α∥β α∩β=a
任何一个平面内
异面直线 不同在
的两条直线,叫作异面直线
【预习评价】 (1)若A∈a,a α,是否可以推出A∈α? 提示 根据直线在平面内定义可知,若A∈a,a α,则A∈α. (2)长方体的一个顶点与12条棱和6个面分别有哪些位置关系? 提示 顶点与12条棱所在直线的关系是在棱上,或不在棱上; 顶点和6个面的关系是在面内,或在面外. (3)长方体的棱所在直线与面之间有几种位置关系? 提示 棱在平面内,棱所在直线与平面平行和棱所在直线与 平面相交.
位置关系 点与直线的 点A在直线a外 位置关系 点B在直线a上
图形表示
符号表示 A∉a B∈a
点与平面的 位置关系
点A在平面α内 点B在平面α外
平行
直线与直线 的位置关系
相交 异面
A∈α B∉α a∥b a∩b=O
a与b异面
【K12教育学习资料】2018版高中数学第一章常用逻辑用语1.2简单的逻辑联结词学案苏教版选修1_1

1.2 简单的逻辑联结词学习目标 1.了解“且”“或”作为逻辑联结词的含义,掌握“p∨q”“p∧q”命题的真假规律.2.了解逻辑联结词“非”的含义,能写出简单命题的“綈p”命题.知识点一p∧q思考1 观察三个命题:①5是10的约数;②5是15的约数;③5是10的约数且是15的约数,它们之间有什么关系?思考2 分析思考1中三个命题的真假?梳理(1)定义一般地,用逻辑联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作“________”,读作“________”.(2)命题p∧q的真假判断命题p∧q的真假与命题p和命题q的真假有着必然的联系,我们将命题p、命题q以及命题p∧q的真假情况绘制成命题p∧q的真值表如下:命题p∧q知识点二p∨q思考1 观察三个命题:①3>2;②3=2;③3≥2.它们之间有什么关系?思考2 思考1中的真假性是怎样的?梳理(1)定义一般地,用逻辑联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作“________”,读作“________”.(2)命题p∨q的真假判断我们将命题p、命题q以及命题p∨q的真假情况绘制成命题p∨q的真值表如下:命题p∨q的真值表可以简单归纳为“一真则真,假假才假”.知识点三綈p思考观察下列两组命题,看它们之间有什么关系?并指出其真假:(1)p:5是25的算术平方根,q:5不是25的算术平方根;(2)p:y=tan x是偶函数,q:y=tan x不是偶函数.梳理(1)定义一般地,对一个命题p全盘否定,就得到一个新命题,记作“________”,读作“________”或“____________”.(2)命题綈p的真假判断因为命题p与命题綈p互为否定,所以它们的真假一定不同,真值表如下:命题綈p类型一用逻辑联结词联结组成新命题例1 分别写出由下列命题构成的“p∨q”“p∧q”“綈p”形式的新命题:(1)p:π是无理数,q:e不是无理数;(2)p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0两根的绝对值相等;(3)p:正△ABC的三内角都相等,q:正△ABC有一个内角是直角.反思与感悟解决这类问题的关键是正确理解“或”“且”“非”的定义,用“或”“且”“非”联结p、q构成新命题时,在不引起歧义的前提下,可把命题p、q中的条件或结论合并.跟踪训练1 指出下列命题分别由“p且q”“p或q”“非p”中的哪种形式构成,并写出其中的命题p,q:(1)两个角是45°的三角形是等腰直角三角形;(2)方程x2-3=0没有有理根;(3)如果xy<0,则点P(x,y)的位置在第二、三象限.类型二含有逻辑联结词命题的真假例2 分别指出下列各组命题构成的“p∧q”“p∨q”“綈p”形式的命题的真假:(1)p:6<6,q:6=6;(2)p:梯形的对角线相等,q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解;(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.反思与感悟判断含逻辑联结词命题的真假的步骤(1)逐一判断命题p、q的真假.(2)根据“且”“或”“非”的含义判断“p∧q”“p∨q”“綈p”的真假.跟踪训练2 指出下列命题的形式及命题的真假:(1)48是16与12的公倍数;(2)方程x2+x+3=0没有实数根;(3)相似三角形的周长相等或对应角相等.类型三用含逻辑联结词命题的真假求参数的范围例3 已知a>0,设命题p:函数y=a x在R上单调递增;命题q:不等式x2-ax+1>0对x∈R恒成立,若p∨q为真命题,(綈p)∨(綈q)也为真命题,求实数a的取值范围.反思与感悟由真值表可判断p∨q、p∧q、綈p命题的真假.反之,由p∨q,p∧q,綈p 命题的真假也可判断p、q的真假情况.一般求满足p假成立的参数的范围,应先求p真成立的参数的范围,再求其补集.跟踪训练3 已知p:方程x2+mx+1=0有两个不等的负实数根;q:方程4x2+4(m-2)x+1=0无实数根.若“p∨q”为真命题,且“p∧q”是假命题,求实数m的取值范围.1.把“x ≥5”改写为含有逻辑联结词的命题为____________________________________. 2.已知p :∅⊆{0},q :{1}∈{1,2}.则在四个命题p ,q ,p ∧q ,p ∨q 中,真命题有________个.3.命题s 具有“p 或q ”的形式,已知“p 且r ”是真命题,那么s 是________命题.(填“假”“真”)4.已知命题p :若实数x ,y 满足x 2+y 2=0,则x ,y 全为零;命题q :若a >b ,则1a <1b.给出下列四个复合命题:①p 且q ;②p 或q ;③非p ;④非q . 其中真命题是________.(只填序号)5.分别判断由下列命题构成的“p 且q ”“p 或q ”“非p ”形式的命题的真假: (1)p :函数y =x 2和函数y =2x 的图象有两个交点;q :函数y =2x 是增函数;(2)p :∅{0};q :0∈∅.1.正确理解逻辑联结词是解题的关键,日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”是两个中至少选一个.2.若命题p为真,则“綈p”为假;若p为假,则“綈p”为真.类比集合知识,“綈p”就相当于集合p在全集U中的补集∁U p.因此(綈p)∧p为假,(綈p)∨p为真.3.命题的否定只否定结论,否命题既否定结论又否定条件,要注意区别.提醒:完成作业第1章§1.2答案精析问题导学知识点一思考1 命题③是将命题①②用“且”联结得到的新命题,“且”与集合运算中交集的定义A∩B={x|x∈A且x∈B}中“且”的意义相同,叫逻辑联结词,表示“并且”,“同时”的意思.思考2 命题①②③均为真.梳理(1)p∧q p且q知识点二思考1 命题③是命题①②用逻辑联结词“或”联结得到的新命题.思考2 ①③为真命题,②为假命题.梳理(1)p∨q p或q知识点三思考两组命题中,命题q都是命题p的否定.(1)中p真,q假.(2)中p假,q真.梳理(1)綈p非p p的否定题型探究例1 解(1)p∨q:π是无理数或e不是无理数;p∧q:π是无理数且e不是无理数;綈p:π不是无理数.(2)p∨q:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等;p∧q:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等;綈p:方程x2+2x+1=0没有两个相等的实数根.(3)p∨q:正△ABC的三内角都相等或有一个内角是直角;p∧q:正△ABC的三内角都相等且有一个内角是直角;綈p:正△ABC的三个内角不都相等.跟踪训练1 解(1)“p且q”的形式.其中p:两个角是45°的三角形是等腰三角形,q:两个角是45°的三角形是直角三角形.(2)“非p”的形式.p:方程x2-3=0有有理根.(3)“p或q”的形式.其中p:如果xy<0,则点P(x,y)的位置在第二象限,q:如果xy<0,则点P(x,y)的位置在第三象限.例2 解(1)∵p为假命题,q为真命题,∴p ∧q 为假命题,p ∨q 为真命题,綈p 为真命题. (2)∵p 为假命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为假命题,綈p 为真命题. (3)∵p 为真命题,q 为真命题,∴p ∧q 为真命题,p ∨q 为真命题,綈p 为假命题. (4)∵p 为真命题,q 为假命题,∴p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题.跟踪训练2 解 (1)这个命题是“p ∧q ”的形式.其中p :48是16的倍数,是真命题;q :48是12的倍数,是真命题,所以“48是16与12的公倍数”是真命题.(2)这个命题是“綈p ”的形式.其中p :方程x 2+x +3=0有实数根,是假命题,所以命题“方程x 2+x +3=0没有实数根”是真命题.(3)这个命题是“p ∨q ”的形式.其中p :相似三角形的周长相等,是假命题;q :相似三角形的对应角相等,是真命题,所以“相似三角形的周长相等或对应角相等”是真命题. 例3 解 ∵y =a x在R 上为增函数, ∴命题p :a >1.∵不等式x 2-ax +1>0在R 上恒成立, ∴应满足Δ=a 2-4<0,即0<a <2, ∴命题q :0<a <2.由p ∨q 为真命题,则p 、q 中至少有一个为真,由(綈p )∨(綈q )也为真,则綈p 、綈q 中至少有一个为真, ∴p 、q 中有一真、一假.①当p 真,q 假时,⎩⎪⎨⎪⎧a >1,a ≥2,∴a ≥2;②当p 假,q 真时,⎩⎪⎨⎪⎧0<a ≤1,0<a <2,∴0<a ≤1.综上可知,a 的取值范围为{a |a ≥2或0<a ≤1}.跟踪训练3 解 ∵方程x 2+mx +1=0有两个不等的负实数根, 设两根为x 1,x 2,则⎩⎪⎨⎪⎧x 1+x 2=-m <0,x 1x 2=1>0,Δ=m 2-4>0,得m >2,∴p :m >2.又方程4x 2+4(m -2)x +1=0无实数根, ∴Δ=16(m -2)2-4×4<0,得1<m <3, ∴q :1<m <3.∵p ∨q 为真,p ∧q 为假, ∴p 与q 中一真一假. 当p 真,q 假时,⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3,∴m ≥3;当p 假,q 真时,⎩⎪⎨⎪⎧m ≤2,1<m <3,∴1<m ≤2.综上可知,m 的取值范围是(1,2]∪[3,+∞). 当堂训练1.“x >5或x =5” 2.2 3.真 4.②④ 5.解 (1)∵命题p 是真命题,命题q 是真命题, ∴p 且q 为真命题,p 或q 为真命题,非p 为假命题. (2)∵p 是真命题,q 是假命题,∴p 且q 为假命题,p 或q 为真命题,非p 为假命题.。
【配套K12】[学习](全国通用版)2018-2019版高中数学 第一章 导数及其应用 1.4 生活
2018-2019版高中数学 第一章 导数及其应用 1.4 生活](https://img.taocdn.com/s3/m/328d14366bd97f192279e9b7.png)
§1.4生活中的优化问题举例学习目标 1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.知识点生活中的优化问题(1)生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.(2)利用导数解决优化问题的实质是求函数最值.(3)解决优化问题的基本思路:上述解决优化问题的过程是一个典型的数学建模过程.1.生活中常见到的收益最高,用料最省等问题就是数学中的最大、最小值问题.( √) 2.解决应用问题的关键是建立数学模型.( √)类型一几何中的最值问题例1 请你设计一个包装盒,如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.点E,F在边AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点利用导数求几何模型的最值问题题点 利用导数求几何体体积的最值问题 解 ∵V (x )=(2x )2×(60-2x )×22=2x 2×(60-2x )=-22x 3+602x 2(0<x <30). ∴V ′(x )=-62x 2+1202x =-62x (x -20). 令V ′(x )=0,得x =0(舍去)或x =20. ∵当0<x <20时,V ′(x )>0; 当20<x <30时,V ′(x )<0.∴V (x )在x =20时取极大值也是唯一的极值,故为最大值. ∴底面边长为2x =202(cm), 高为2(30-x )=102(cm), 即高与底面边长的比值为12.引申探究本例条件不变,若要求包装盒的侧面积S (cm 2)最大,试问x 应取何值? 解 ∵AE =x ,∴HE =2x . ∵EF =60-2x , ∴EG =22EF =22(60-2x )=2(30-x ). ∴S 侧=4×HE ×EG =4×2x ×2(30-x ) =8x (30-x )=-8x 2+240x =-8(x -15)2+8×152.∴当x =15时,S 侧最大为1 800 cm 2.反思与感悟 面积、体积(容积)最大,周长最短,距离最小等实际几何问题,求解时先设出恰当的变量,将待求解最值的问题表示为变量的函数,再按函数求最值的方法求解,最后检验. 跟踪训练1 (1)已知圆柱的表面积为定值S ,当圆柱的容积V 最大时,圆柱的高h 的值为________.考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题(2)将一段长为100 cm 的铁丝截成两段,一段弯成正方形,一段弯成圆,当正方形与圆形面积之和最小时,圆的周长为________ cm. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题答案 (1)6πS 3π (2)100π4+π解析 (1)设圆柱的底面半径为r , 则S 圆柱底=2πr 2,S 圆柱侧=2πrh , ∴圆柱的表面积S =2πr 2+2πrh .∴h =S -2πr 22πr,又圆柱的体积V =πr 2h =r2(S -2πr 2)=rS -2πr 32,V ′(r )=S -6πr 22,令V ′(r )=0,得S =6πr 2,∴h =2r , ∵V ′(r )只有一个极值点, ∴当h =2r 时圆柱的容积最大. 又r =S6π,∴h =2S6π=6πS3π. 即当圆柱的容积V 最大时, 圆柱的高h 为6πS3π. (2)设弯成圆的一段铁丝长为x (0<x <100),则另一段长为100-x . 设正方形与圆形的面积之和为S ,则正方形的边长a =100-x 4,圆的半径r =x2π.故S =π⎝⎛⎭⎪⎫x 2π2+⎝ ⎛⎭⎪⎫100-x 42(0<x <100).因此S ′=x2π-252+x 8=x 2π-100-x 8, 令S ′=0,则x =100π4+π.由于在(0,100)内,函数只有一个导数为0的点,则问题中面积之和的最小值显然存在,故当x =100π4+πcm 时,面积之和最小. 类型二 实际生活中的最值问题 命题角度1 利润最大问题例2 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)因为当x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量为y =2x -3+10(x -6)2, 所以商场每日销售该商品所获得的利润为f (x )=(x -3)⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2,3<x <6.从而f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6),令f ′(x )=0,得x =4或x =6. 当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4是函数f (x )在区间(3,6)内的极大值点,也是最大值点. 所以当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.反思与感悟 解决此类有关利润的实际应用题,应灵活运用题设条件,建立利润的函数关系,常见的基本等量关系有 (1)利润=收入-成本.(2)利润=每件产品的利润×销售件数.跟踪训练2 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎪⎨⎪⎧10.8-130x 2,0<x ≤10,108x -1 0003x 2,x >10.(1)求年利润W (万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大,并求出最大值.考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x .所以W =⎩⎪⎨⎪⎧8.1x -x 330-10,0<x ≤10,98-1 0003x-2.7x ,x >10.(2)当0<x ≤10时,由W ′=8.1-x 210=0,得x =9,当x ∈(0,9)时,W ′>0,当x ∈(9,10)时,W ′<0, 所以当x =9时,W 取得最大值, 且W max =8.1×9-130×93-10=38.6,当x >10时,W =98-⎝ ⎛⎭⎪⎫1 0003x +2.7x≤98-21 0003x×2.7x =38, 当且仅当1 0003x =2.7 x ,即x =1009时,W max =38,综上可得,当x =9时,W 取得最大值38.6.故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大,最大利润为38.6万元.命题角度2 用料、费用最少问题例3 某地建一座桥,两端的桥墩已建好,这两墩相距m 米,余下工程只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x 米的相邻两墩之间的桥面工程费用为(2+x )x 万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y 万元. (1)试写出y 关于x 的函数关系式;(2)当m =640米时,需新建多少个桥墩才能使y 最小? 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设需新建n 个桥墩, 则(n +1)x =m ,即n =m x-1.所以y =f (x )=256n +(n +1)(2+x )x=256⎝ ⎛⎭⎪⎫m x -1+m x(2+x )x=256mx+m x +2m -256.(2)由(1)知,f ′(x )=-256m x 2+12m 12x -=m2x2(32x -512). 令f ′(x )=0,得32x =512, 所以x =64.当0<x <64时,f ′(x )<0,f (x )在区间(0,64)上为减函数; 当64<x <640时,f ′(x )>0,f (x )在区间(64,640)上为增函数, 所以f (x )在x =64处取得最小值.此时n =m x -1=64064-1=9.反思与感悟 (1)用料最省、成本最低问题是日常生活中常见的问题之一,解决这类问题要明确自变量的意义以及最值问题所研究的对象.正确书写函数表达式,准确求导,结合实际作答. (2)利用导数的方法解决实际问题,当在定义区间内只有一个点使f ′(x )=0时,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道在这个点取得最大(小)值. 跟踪训练3 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 解 (1)设隔热层厚度为x cm ,由题设,每年能源消耗费用为C (x )=k3x +5,再由C (0)=8,得k =40,因此C (x )=403x +5, 而建造费用为C 1(x )=6x .因此得隔热层建造费用与20年的能源消耗费用之和为f (x )=20C (x )+C 1(x )=20×403x +5+6x =8003x +5+6x (0≤x ≤10). (2)f ′(x )=6-2 400(3x +5)2.令f ′(x )=0,即2 400(3x +5)2=6,解得x =5,x =-253(舍去).当0<x <5时,f ′(x )<0;当5<x <10时,f ′(x )>0,故当x =5时,f (x )取到最小值,对应的最小值为f (5)=6×5+80015+5=70.答 当隔热层修建5 cm 厚时,总费用达到最小值为70万元.1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时,原油温度(单位:℃)为f (x )=13x 3-x 2+8(0≤x ≤5),那么原油温度的瞬时变化率的最小值是( )A .8 B.203 C .-1D .-8考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题答案 C解析 原油温度的瞬时变化率为f ′(x )=x 2-2x =(x -1)2-1(0≤x ≤5),所以当x =1时,原油温度的瞬时变化率取得最小值-1.2.要做一个圆锥形漏斗,其母线长为20 cm ,要使其体积最大,则高应为( ) A.1033 cm B.2033 cm C.1633cm D.33cm 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 B解析 设圆锥的高为h cm,0<h <20, ∴V 圆锥=13π(202-h 2)×h =13π(400-h 2)h∴V ′=13π(400-3h 2),令V ′(h )=0得h =2033,当h ∈⎝ ⎛⎭⎪⎫0,2033时,V ′>0,当h ∈⎝ ⎛⎭⎪⎫2033,20时,V ′<0,故当h =2033时,体积最大.3.某商场从生产厂家以每件20元的价格购进一批商品.若该商品零售价定为P 元,销售量为Q 件,且销量Q 与零售价P 有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 毛利润为(P -20)Q ,即f (P )=(P -20)(8 300-170P -P 2),f ′(P )=-3P 2-300P +11 700=-3(P +130)(P -30). 令f ′(P )=0,得P =30或P =-130(舍去). 又P ∈[20,+∞),故f (P )max =f (P )极大值, 故当P =30时,毛利润最大, 所以f (P )max =f (30)=23 000(元).4.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________元. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 160解析 设底面长为x ,由题意得底面宽为4x.设总造价为y ,则y =20x ×4x+10×1×⎝ ⎛⎭⎪⎫2x +2×4x ,即y =20x +80x+80,y ′=20-80x,令y ′=0,得x =2.∴当x =2时,y min =160(元).5.某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低额x (单位:元,0≤x ≤21)的平方成正比.已知商品单价降低2元时,每星期多卖出24件. (1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大? 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 (1)设商品降价x 元,则多卖出的商品件数为kx 2. 若记商品一个星期的获利为f (x ),则有f (x )=(30-x -9)(432+kx 2)=(21-x )(432+kx 2).由已知条件,得24=k ×22,于是有k =6.所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,21]. (2)由(1)得,f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f ′(x ),f (x )的变化情况如下表:故当x =12时,f (x )取得极大值. 因为f (0)=9 072,f (12)=11 664.所以定价为30-12=18(元),才能使一个星期的商品销售利润最大.1.利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和极值点处的函数值的大小,最大(小)者为最大(小)值. 2.正确理解题意,建立数学模型,利用导数求解是解答应用问题的主要思路.另外需要特别注意(1)合理选择变量,正确写出函数解析式,给出函数定义域; (2)与实际问题相联系;(3)必要时注意分类讨论思想的应用.一、选择题1若底面为等边三角形的直棱柱的体积为V ,则当其表面积最小时底面边长为( ) A.3V B.32V C.34VD .23V考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案 C解析 设底面边长为x , 则表面积S =32x 2+43xV (x >0), ∴S ′=3x2(x 3-4V ).令S ′=0,得x =34V ,可判断当x =34V 时,S 取得最小值.2.如果圆柱轴截面的周长l 为定值,则体积的最大值为( ) A.⎝ ⎛⎭⎪⎫l 63πB.⎝ ⎛⎭⎪⎫l 33πC.⎝ ⎛⎭⎪⎫l 43π D.14⎝ ⎛⎭⎪⎫l 43π 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 A解析 设圆柱的底面半径为r ,高为h ,体积为V , 则4r +2h =l ,∴h =l -4r2.∴V =πr 2h =l2πr 2-2πr 3⎝ ⎛⎭⎪⎫0<r <l 4,则V ′=l πr -6πr 2.令V ′=0,得r =0或r =l6,而r >0, ∴r =l6是其唯一的极值点.∴当r =l6时,V 取得最大值,最大值为⎝ ⎛⎭⎪⎫l 63π.3.某公司生产一种产品, 固定成本为20 000元,每生产一单位的产品,成本增加100元,若总收入R 与年产量x 的关系是R (x )=⎩⎪⎨⎪⎧-x 3900+400x ,0≤x ≤390,90 090,x >390,则当总利润P (x )最大时,每年生产产品的单位数是( ) A .150 B .200 C .250D .300考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 D解析 由题意得,总利润P (x )=⎩⎪⎨⎪⎧-x 3900+300x -20 000,0≤x ≤390,70 090-100x ,x >390,当0≤x ≤390时,令P ′(x )=0,得x =300, 又当x >390时,P (x )=70 090-100x 为减函数, 所以当每年生产300单位的产品时,总利润最大,故选D. 4.若方底无盖水箱的容积为256,则最省材料时,它的高为( ) A .4B .6C .4.5D .8考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设底面边长为x ,高为h , 则V (x )=x 2·h =256,∴h =256x2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x, ∴S ′(x )=2x -4×256x2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值. ∴h =25682=4.5.某超市中秋前30天,月饼销售总量f (t )与时间t (0<t ≤30,t ∈Z )的关系大致满足f (t )=t 2+10t +12,则该超市前t 天平均售出⎝⎛⎭⎪⎫如前10天平均售出为f (10)10的月饼最少为( ) A .14个 B .15个 C .16个D .17个考点 利用导数求解生活中的最值问题 题点 利用导数求解生活中的其他最值问题 答案 D 解析 记g (t )=f (t )t =t +12t+10, 令g ′(t )=1-12t2=0,得t =23(负值舍去),则g (t )在区间(0,23)上单调递减,在区间(23,30]上单调递增, 由于t ∈Z ,且g (3)=g (4)=17,∴g (t )min =17.6.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k (k >0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.048 6),若使银行获得最大收益,则x 的取值为( ) A .0.016 2 B .0.032 4 C .0.024 3D .0.048 6考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 依题意,得存款量是kx 2,银行支付的利息是kx 3,获得的贷款利息是0.048 6kx 2,其中x ∈(0,0.048 6).所以银行的收益是y =0.048 6kx 2-kx 3(0<x <0.048 6), 则y ′=0.097 2kx -3kx 2.令y ′=0,得x =0.032 4或x =0(舍去). 当0<x <0.032 4时,y ′>0; 当0.032 4<x <0.048 6时,y ′<0.所以当x =0.032 4时,y 取得最大值,即当存款利率为0.032 4时,银行获得最大收益. 7.圆柱形金属饮料罐的体积一定,要使生产这种金属饮料罐所用的材料最省,则它的高与底面半径的比为( ) A .2∶1 B .1∶2 C .1∶4D .4∶1考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 A解析 设其体积为V ,高与底面半径分别为h ,r , 则V =πr 2h ,即h =V πr2. 由题意知,当表面积S 最小时所用材料最省.S =2πr 2+2πrh =2πr 2+2πrV πr 2=2πr 2+2V r. 令S ′=4πr -2Vr2=0,得r =3V2π,当r =3V2π时,h =Vπ⎝⎛⎭⎪⎫3V 2π2=34V π. 则h ∶r =2∶1时,表面积S 最小. 二、填空题8.如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A ,B 在抛物线上运动,C ,D 在x 轴上运动,则此矩形的面积的最大值是________. 考点 利用导数求几何模型的最值问题 题点 利用导数求面积的最值问题 答案439解析 设CD =x ,则点C 坐标为⎝ ⎛⎭⎪⎫x 2,0,点B 坐标为⎝ ⎛⎭⎪⎫x2,1-x 24,∴矩形ABCD 的面积S =f (x )=x ·⎝ ⎛⎭⎪⎫1-x 24=-x 34+x ,x ∈(0,2).令f ′(x )=-34x 2+1=0,得x 1=-233(舍),x 2=233,∴当x ∈⎝⎛⎭⎪⎫0,233时,f ′(x )>0,f (x )是单调递增的,当x ∈⎝⎛⎭⎪⎫233,2时,f ′(x )<0,f (x )是单调递减的, ∴当x =233时,f (x )取最大值439.9.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8,x ∈(0,120],且甲、乙两地相距100千米,则当汽车以________千米/时的速度匀速行驶时,从甲地到乙地的耗油量最少. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 80解析 当速度为x 千米/时时,汽车从甲地到乙地行驶了100x小时,设耗油量为y 升,依题意得,y =⎝⎛⎭⎪⎫1128 000x 3-380x +8·100x=1 1 280x 2+800x -154(0<x ≤120). 则y ′=x640-800x 2=x 3-803640x 2(0<x ≤120).令y ′=0,得x =80,当x ∈(0,80)时,y ′<0,该函数递减;当x ∈(80,120]时,y ′>0,该函数递增,所以当x =80时,y 取得最小值.10.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨.考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题 答案 20解析 设该公司一年内总共购买n 次货物,则n =400x,∴总运费与总存储费之和f (x )=4n +4x =1 600x+4x ,令f ′(x )=4-1 600x2=0,解得x =20,x =-20(舍去),x =20是函数f (x )的最小值点,故当x =20时,f (x )最小.11.某厂生产某种产品x 件的总成本为C (x )=1 200+275x 3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为____件时总利润最大. 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 25解析 由题意知502=k100,解得k =25×104.∴产品的单价P =25×104x=500x.∴总利润L (x )=x 500x -1 200-275x 3=500x -1 200-275x 3,L ′(x )=250x -12-225x 2,令L ′(x )=0,得x =25, ∴当x =25时,总利润最大.12.一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).当帐篷的顶点O 到底面中心O 1的距离为________ m 时,帐篷的体积最大. 考点 利用导数求几何模型的最值问题 题点 利用导数求几何体体积的最值问题 答案 2解析 设OO 1=x ,则1<x <4. 由题设可得正六棱锥底面边长为32-(x -1)2=8+2x -x 2. 于是底面正六边形的面积为 6·34·(8+2x -x 2)2=332(8+2x -x 2). 帐篷的体积为V (x )=332(8+2x -x 2)⎣⎢⎡⎦⎥⎤13(x -1)+1=32(16+12x -x 3). 则V ′(x )=32(12-3x 2). 令V ′(x )=0,解得x =-2(不合题意,舍去)或x =2. 当1<x <2时,V ′(x )>0,V (x )为增函数; 当2<x <4时,V ′(x )<0,V (x )为减函数. 综上,当x =2时,V (x )最大. 三、解答题13.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱体,左右两端均为半球体,按照设计要求容器的体积为64π3立方米.假设该容器的建造费用仅与其表面积有关.已知圆柱体部分每平方米建造费用为3千元,半球体部分每平方米建造费用为4千元.设该容器的总建造费用为y 千元.(1)将y 表示成r 的函数,并求该函数的定义域;(2)确定r 和l 为何值时,该容器的建造费用最小,并求出最小建造费用. 考点 利用导数求解生活中的最值问题 题点 用料、费用最少问题解 (1)因为容器的体积为64π3立方米,所以4πr 33+πr 2l =643π,解得l =643r 2-43r ,所以圆柱的侧面积为2πrl =2πr ⎝ ⎛⎭⎪⎫643r 2-43r =128π3r -8πr 23, 两端两个半球的表面积之和为4πr 2,所以y =⎝ ⎛⎭⎪⎫128π3r -8πr 23×3+4πr 2×4=128πr +8πr 2.又l =643r 2-43r >0,即r <432,所以定义域为(0, 432).(2)因为y ′=-128πr 2+16πr =16π(r 3-8)r2, 令y ′>0得2<r <243;令y ′<0得0<r <2,所以当r =2时,该容器的建造费用最小为96π千元,此时l =83.四、探究与拓展14.某民营企业生产甲、乙两种产品,根据以往经验和市场调查,甲产品的利润与投入资金成正比,乙产品的利润与投入资金的算术平方根成正比,已知甲、乙产品分别投入资金4万元时,所获得利润(万元)情况如下:该企业计划投入资金10万元生产甲、乙两种产品,那么可获得的最大利润(万元)是( ) A.92 B.6516 C.358D.174 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题 答案 B解析 ∵甲产品的利润与投入资金成正比, ∴设y 1=k 1x ,当投入4万时,利润为1万, 即4k 1=1,得k 1=14,即y 1=x4.∵乙产品的利润与投入资金的算术平方根成正比, ∴设y 2=k 2x ,当投入4万时,利润为2.5万, 即4k 2=52,得2k 2=52,即k 2=54,即y 2=5x4.设乙产品投入资金为x ,则甲产品投入资金为10-x,0≤x ≤10, 则销售甲、乙两种产品所得利润为y =14(10-x )+5x4, 则y ′=-14+58x =5-2x8x ,由y ′>0,得5-2x >0,即0≤x <254,由y ′<0,得5-2x <0,即254<x ≤10,即当x =254时,函数取得极大值同时也是最大值,此时y =14⎝ ⎛⎭⎪⎫10-254+54·254=1516+5016=6516. 15.某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车的投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加,年销售量y 关于x 的函数为y =3 240⎝⎛⎭⎪⎫-x 2+2x +53,则当x 为何值时,本年度的年利润最大?最大利润为多少?(年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量) 考点 利用导数求解生活中的最值问题 题点 利用导数求解最大利润问题解 由题意得,本年度每辆车的投入成本为10(1+x ), 每辆车的出厂价为13(1+0.7x ),年利润为f (x )=[13(1+0.7x )-10(1+x )]·y=(3-0.9x )×3 240×⎝ ⎛⎭⎪⎫-x 2+2x +53=3 240(0.9x 3-4.8x 2+4.5x +5), 则f ′(x )=3 240(2.7x 2-9.6x +4.5) =972(9x -5)(x -3),由f ′(x )=0,解得x =59或x =3(舍去),当x ∈⎝ ⎛⎭⎪⎫0,59时,f ′(x )>0,f (x )是增函数; 当x ∈⎝ ⎛⎭⎪⎫59,1时,f ′(x )<0,f (x )是减函数. 所以当x =59时,f (x )取极大值,f⎝ ⎛⎭⎪⎫59=20 000. 因为f (x )在(0,1)内只有一个极大值,所以它是最大值.所以当x =59时,本年度的年利润最大,最大利润为20 000万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 球的体积和表面积
【选题明细表】
1.两个球的表面积之差为48π,它们的大圆周长之和为12π,这两个球的半径之差为( C )
(A)4 (B)3 (C)2 (D)1
解析:令S球1=4πR2,S球2=4πr2,
由题可知4πR2-4πr2=48π, ①
又2πR+2πr=12π, ②
得R-r=2.
2.(2018·河南平顶山高一期末)长方体ABCD A 1B1C1D1的八个顶点落在球O的表面上,已知AB=3,AD=4,BB1=5,那么球O的表面积为( D )
(A)25π (B)200π (C)100π (D)50π
解析:由长方体的体对角线为外接球的直径,
设球半径为r,则2r==5,
则r=,
4πr2=4×()2π=50π.
3.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是( B )
(A)4 (B)3 (C)2 (D)5
解析:BD=,
AC=2,
CD=OD-OC
=-
=-=1.
解得R=3.
4.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图),则球的半径是( D )
(A) cm
(B)2 cm
(C)3 cm
(D)4 cm
解析:设球的半径为r,
则V水=8πr2,V球=4πr3,
加入小球后,液面高度为6r,
所以πr2·6r=8πr2+4πr3,解得r=4.故选D.
5.已知圆柱的高为2,它的两个底面的圆周在直径为4的同一个球的球面上,则该圆柱的体积是( D )
(A)π(B)(C)(D)6π
解析:如图所示,圆柱的高为2,它的两个底面的圆周在直径为4的同一个球的球面上,
所以该圆柱底面圆周半径为
r==,
所以该圆柱的体积为V=Sh=π·()2·2=6π.故选D.
6.(2018·湖南郴州二模)底面为正方形,顶点在底面的投影为底面中心的棱锥P ABCD的五
个顶点在同一球面上,若该棱锥的底面边长为4,侧棱长为2,则这个球的表面积为.
解析:正四棱锥P ABCD外接球的球心在它的高PO 1上,记为O,OP=OA=R,PO1=4,OO1=4-R,
或OO1=R-4(此时O在PO1的延长线上).
在Rt△AO1O中,R2=8+(R-4)2得R=3,
所以球的表面积S=36π.
答案:36π
7.如图所示(单位:cm)四边形ABCD是直角梯形,求图中阴影部分绕
AB旋转一周所成几何体的表面积和体积.
解:S球=×4π×22=8π(cm2),
S圆台侧=π(2+5)=35π(cm2),
S圆台下底=π×52=25π(cm2),
即该几何体的表面积为8π+35π+25π=68π(cm2).
又V圆台=×(22+2×5+52)×4=52π(cm3),
V半球=××23=(cm3).
所以该几何体的体积为V圆台-V半球=52π-=(cm3).
8.(2018·南昌八一中学高一测试)一个球与一个正三棱柱的三个侧面和两个底面都相切,已
知这个球的体积是π,那么这个三棱柱的体积是( D )
(A)96(B)16
(C)24(D)48
解析:设球的半径为R,由πR3=π,得R=2.所以正三棱柱的高为h=4,设其底面边长为a,得×a=2,a=4.
所以V=×(4)2×4=48.
9.某街心花园有许多钢球(钢的密度为7.9 g/cm3),每个钢球重145 kg,并且外径等于50 cm,试根据以上数据,判断钢球是空心的还是实心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm,
2.243≈11.240 98).
解:由于外径为50 cm的钢球的质量为7.9×π×()3≈516 792(g),
街心花园中钢球的质量为145 000 g,
而145 000<516 792,
所以钢球是空心的.
设球的内径为2x cm,
那么球的质量为7.9×[π×()3-πx3]=145 000.
解得x3≈11 240.98,
所以x≈22.4,2x≈45(cm).
即钢球是空心的,其内径约为45 cm.
10.(2018·陕西咸阳二模)已知一个三棱锥的所有棱长均为,求该三棱锥的内切球的体积.
解:如图,AE⊥平面BCD,设O为正四面体A-BCD内切球的球心,
则OE为内切球的半径,设OA=OB=R,又正四面体A BCD的棱长为,
在等边△BCD中,BE=,
所以AE==.
由OB2=OE2+BE2,
得R2=(-R)2+,解得R=,
所以OE=AE-R=,即内切球的半径是,
所以内切球的体积为π×()3=π.
11.据说伟大的阿基米德死了以后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图形中圆锥、球、圆柱的体积比.
解:设圆柱的底面半径为r,高为h,则V圆柱=πr2h,由已知知圆锥的底面半径为r,高为h,
所以V圆锥=πr2h,球的半径为r,
所以V球=πr3.又h=2r,
所以V圆锥∶V球∶V圆柱=(πr2h)∶(πr3)∶(πr2h)=(πr3)∶(πr3)∶(2πr3)=1∶2∶3.。