实际问题一元一次方程

合集下载

实际问题与一元一次方程常用方法及公式

实际问题与一元一次方程常用方法及公式

实际问题与一元一次方程(二元一次方程组也可用)知识点一、用一元一次方程解决实际问题的一般步骤:审、设、列、解、检验、答. 知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,则现有量=原有量+增长量=原有量×(1+增长率),也有降低的情况,则现有量=原有量-降低量=原有量×(1-降低率)例如原有量是a,增长率为10%,则现有量为(1+10%)×a=1.1 a ;若下降10%,则现有量为(1-10%)×a=0.9 a(2)寻找相等关系:抓住关键词,圈词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(s=vt ) ,速度= ,时间=(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1) 每个人工作效率相同时:总工作量=工作效率×工作时间x人数;工作效率= (由上式可推导)(2)总工作量=各部分工作量之和.4.调配问题(表格分析法)(1)寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.(2)此消彼长:甲处调往乙处x 人,则甲处现有人数=原有人数-x ,乙处现有人数=原有人数+x5.利润问题:成本一般即进价,先审题看题中涉及几个量,再决定用哪(几)个公式(变形)(1) 利润=售价-进价 (2)=100% 利润利润率进价(3) 实际售价=标价×折扣数/10 (4) 售价-进价= 利润率×进价(公式4可由公式1和2得到)(5) 标价=进价×(1+利润率) 例一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元。

一元一次方程解决实际问题

一元一次方程解决实际问题

一元一次方程解决实际问题一元一次方程解决实际问题类型一:经济问题例1.某商场在促销期间规定:商场内所有商品按标价的80%出售,同时,当顾客在该商场内消费满一定金额后,按如下方案获得相应金额的奖券.(奖券购物不再享受优惠)消费金额x的范围(元)200≤x<400400≤x<500500≤x<700…获得奖券的金额(元)30 60 100 …根据上述促销方法,顾客在该商场购物可获得双重优惠,如果胡老师在该商场购标价450元的商品,他获得的优惠额为元.例1-1.某商场在促销期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场内消费满一定金额后,还可按如下方案获得相应金额的奖券:消费金额a (元)200≤a<400400≤a<500500≤a<700700≤a<900…获奖券金额(元)30 60 100 130 …根据上述促销方法,顾客在该商场购物可以获得双重优惠.例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:400×(1﹣80%)+30=110(元).购买商品得到的优惠率=购买商品获得的优惠额÷商品的标价.试问:(1)购买一件标价为1000元的商品,顾客得到的优惠率是多少?(2)对于标价在500元与800元之间(含500元和800元)的商品,顾客购买标价为多少元的商品,可以得到的优惠率?练习: 1.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?2.为节约能源,某物业公司按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费.若某用户四月份的电费平均每度0.5元,该用户四月份用电多少度?应交电费多少元?3.国家规定个人发表文章、出版图书所得稿费的纳税计算方法是:①稿费不高于800元的不纳税;②稿费高于800元,而低于4000元的应缴纳超过800元的那部分稿费的14%的税;③稿费为4000元或高于4000元的应缴纳全部稿费的11%的税.试根据上述纳税的计算方法作答:(1)若王老师获得的稿费为2400元,则应纳税_________ 元,若王老师获得的稿费为4000元,则应纳税_________ 元;(2)若王老师获稿费后纳税420元,求这笔稿费是多少元?4.芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?例2:某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的,若提前购票,则给予不同程度的优惠,在五月份内,团体票每张12元,共售出团体票的;零售票每张16元,共售出零售票的一半.如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售应按每张多少元定价才能使这两个月的票款收入持平?练习:1.我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?例3:甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?练习:1,为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?2,小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折“,小明测算了一下.如果买50支,比按原价购买可以便宜6元,那么每支铅笔的原价是多少元?例4.材料:股票市场,买、卖股票都要分别交纳印花税等有关税费.以沪市A股的股票交易为例,除成本外还要交纳:①印花税:按成交金额的0.1%计算;②过户费:按成交金额的0.1%计算;③佣金:按不高于成交金额的0.3%计算,不足5元按5元计算.例:某投资者以每股5.00元的价格在沪市A股中买入股票“金杯汽车”1000股,以每股5.50元的价格全部卖出,共盈利多少?问题:(1)小王对此很感兴趣,以每股5.00元的价格买入以上股票100股,以每股5.50元的价格全部卖出,则他盈利为_________ 元.(2)小张以每股a(a≥5)元的价格买入以上股票1000股,股市波动大,他准备在不亏不盈时卖出.请你帮他计算出卖出的价格每股是_________ 元(用a的代数式表示),由此可得卖出价格与买入价格相比至少要上涨_________ %才不亏(结果保留三个有效数字).(3)小张再以每股5.00元的价格买入以上股票1000股,准备盈利1000元时才卖出,请你帮他计算卖出的价格每股是多少元?(精确到0.01元)练习:1.传销是一种危害极大的非法商业诈骗活动,国家是明令禁止的.参与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗投资人,谎称“每位投资者每投资一股450元,买到一件价值10元的商品后,另外可得到530元的回报,每一期投资到期后,若投资人继续投资,下一期追加的投资股数必须是上一期的2倍”.退休的张大爷先投资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股后时,被告知该公司破产了.(1)假设张大爷在该公司破产的前一期停止投资,他的投资回报率是多少?(回报率=)(2)试计算张大爷在参与这次传销活动中共损失了多少元钱?类型二:行程问题一、相遇问题:路程=速度×时间甲、乙相向而行,则:甲走的路程+乙走的路程=总路程二、追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离三、环形跑道问题:1、甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。

一元一次方程实际问题归纳

一元一次方程实际问题归纳

一元一次方程实际问题归纳经过多少分钟,小明和爸爸在跑道上相距50米?⑤行船问题顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度顺水路程=顺水速度×顺水时间逆水路程=逆水速度×逆水时间9.一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要4小时,逆水航行需要5小时,求两码头的之间的距离?⑥火车过隧道问题火车完全通过隧道时间=(隧道长+火车长)÷速度火车的速度=(隧道长+火车长)÷时间10.小红、小南、小芳在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话:小红:火车从开始进入隧道到完全开出隧道共用30s;小南:整列火车完全在隧道里的时间是20s;小芳:我爸爸参与过这个隧道的修建,他告诉我隧道长500m.各位同学,请根据他们的对话求出这列火车的长.⑦行程问题(单位统一)11.一个通讯员骑自行车要在规定的时间内把信件送到某地.若每小时走15 km,可以早到24 min,若每小时走12 km就要迟到15 min.他去某地的路程是多少?12.小明在公路上行走,速度是6千米/时,一辆车身长20米的汽车从背后驶来,并从小明身旁驶⑧行程问题(其它综合问题)13.王力骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米.求A、B两地间的路程.14. A、B两地间的距离为360千米,甲车从A地出发开往B地,每小时行驶72千米,甲车出发25分钟后,乙车从B地出发开往A地,每小时行驶48千米,两车相遇后,各车仍按原速度原方向继续行驶,直到两车相距100千米停止。

问:甲车从出发开始到现在共行驶了多少小时?15.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15 km,上坡路每小时行10 km,下坡路每小时行18 km,那么从甲地到乙地需29 min,从乙地到甲地需25 min.从甲地到乙地的路程是多少?(二)配套问题此类问题主要找到“对应数量的比例”或者“套数”相等。

实际问题与一元一次方程解题技巧

实际问题与一元一次方程解题技巧

实际问题与一元一次方程解题技巧现实生活中常常需要列方程解决实际问题。

实际问题的内容不一定很精确,它一般比数学问题更宽一些。

如工程问题、调配问题、生产问题、造价问题、行程问题、时间问题等都是实际生活中的典型问题。

这些问题和方程对提高我们的数学素养和解决实际问题的能力有很大的帮助。

一、实际问题转化为数学问题——建立方程实际问题往往很复杂,涉及到的未知数很多,关系很复杂,列方程往往无从下手。

这就要求我们先认真审题,从中找出已知量和未知量,再找出它们之间的数量关系,从而列出方程。

例:一个水池可贮水250吨,现水池中已有水50吨,再注入多少水才能使水池中水量达300吨?分析:这是一个工程问题,先要求出水池的贮水增量与注入的水量之间的关系,再根据题目条件列出方程。

解:设再注入x吨水,则有方程:(250+50)+x=300二、解一元一次方程——化简求值解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项、系数化为1。

在解某些方程时,往往需要灵活运用各种方法,如因式分解法、公式法等。

在解一元一次方程时,要注意检验。

例:解方程:3(2x-1)-(x+2)=8-2(x-1)分析:去括号、移项时要注意符号的变化。

解:去括号得:6x-3-x-2=8-2x+2移项合并同类项得:7x=13解得:x=1.3三、实际问题解答要完整——实际问题解答时要注意完整地叙述表达实际问题中的对象、关系、叙述准确、完整;特别是实际问题的等量关系,在解答过程中常常需要构造代数式把它转化为一元一次方程加以解决;另外对实际问题的解答要有初步估计,看看结果是否符合实际情况。

解一元一次方程的基本步骤也可以直接应用于一元一次方程的实际问题。

在解答实际问题时,我们还要注意以下几点:1. 实际问题中有些数据是多余的,在解答时可以不要;如果某些数据在题目中没有出现,当然也不能代入。

2. 实际问题中数量关系式较多时容易使人分辨不清,在列方程的过程中,对于基本数量关系一定要用具体的字或词表示出来,防止由于概括不当造成的错误。

一元一次方程与实际问题

一元一次方程与实际问题

一元一次方程与实际问题一元一次方程是数学中最基础、最常见的方程之一。

它由一个未知数和其他数构成,满足未知数的最高次数为一。

实际问题中,一元一次方程可以帮助我们解决很多实际情境中的数学难题。

例如,我们可以利用一元一次方程解决以下几类问题:1. 比例问题:假设一公斤苹果的价格为x元,那么y公斤苹果的价格可以表示为y * x元。

如果知道y=3公斤苹果的价格为6元,我们可以列出方程3x=6。

通过求解这个方程,我们可以得到每公斤苹果的价格x=2元。

2. 几何问题:假设一个长方形的长度为x米,宽度为2米。

如果知道长方形的面积为6平方米,我们可以列出方程x * 2 = 6。

通过求解这个方程,我们可以得到长方形的长度x=3米。

3. 配平化学方程:在化学反应中,我们常常需要配平化学方程以满足质量守恒定律和原子数守恒定律。

一元一次方程可以帮助我们解决配平化学方程的问题。

例如,对于化学反应Na + H2O → NaOH + H2,我们可以列出方程xNa + yH2O → zNaOH + wH2,其中x、y、z、w分别表示相应的系数。

通过求解这个方程系统,我们可以得到配平后的化学方程。

4. 商业问题:一元一次方程也常用于解决商业问题。

例如,假设某公司每个月固定的营业额为20000元,并且每卖出一件商品可以获利50元。

如果该公司希望达到每月利润6000元的目标,我们可以列出方程20000 + 50x = 26000。

通过求解这个方程,我们可以得知该公司需要卖出120件商品才能实现目标利润。

总之,一元一次方程是解决实际问题中的数学工具之一。

通过学习和应用一元一次方程,我们可以解决各种实际情况下的计算难题,并在日常生活中运用数学思维解决实际问题。

一元一次方程应用题 类型归纳

一元一次方程应用题 类型归纳

一元一次方程应用题
一元一次方程是指只含有一个未知数的一次方程,可表示为ax+b=0,其中a和b为已知数,x为未知数。

一元一次方程应用题常见的类型包括:
1. 购买商品问题:如某商品的价格为x元,现有b元,求买几件商品后还剩a元。

2. 时间、速度、距离问题:如A车以每小时x公里的速度行驶,经过b小时后行驶了a公里,求A车的速度。

3. 水混合问题:如已知某种酒精溶液中酒精的浓度为x%,现加入b 升水后酒精的浓度为a%,求原溶液中酒精的浓度。

4. 利润问题:如一件商品的进价为b元,售价为x元,求多少件商品时能够获利a元。

这些应用题主要通过建立一元一次方程来求解,需要根据题目中给出的已知条件和未知量,写出方程并解出未知数的值。

一元一次方程实际问题180道

一元一次方程实际问题180道

1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,则甲、乙两地相距多少千米?2、甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,当甲比乙每小时快1千米时,求甲、乙两人的速度。

3、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?4、在800米跑道上有两人练习中长跑,甲每分钟跑320米,乙每分钟跑280米,两人同时同地同向起跑,则多少分钟后第一次相遇5、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?6、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?7、休息日我和妈妈从家里出发一同去外婆家,我们走了1小时后,爸爸发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追我们,如果我和妈妈每小时行2千米,从家里到外婆家需要1小时45分钟,问爸爸能在我和妈妈到外婆家之前追上我们吗?8、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)9、一列火车长150米,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是多少?10、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。

实际问题与一元一次方程公式总结

实际问题与一元一次方程公式总结
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、工程款=工程单价*工作时间S 总= S甲+S乙=甲单价*T甲+乙单价*T乙
c、合作类题型
S 总= S甲+S乙= V甲t甲合作时间+V乙t甲合作时间
三、和倍分差问题
加(和)—+ 减(差)-- 乘(倍)—* 分(除)—/
四、数字问题
123= 1*100+2*10+3*1
实际问题与一元一次方程公式模型总结
一、行程问题(路程=速度*时间)
a、相遇问题
S 总= S甲+S乙 S 总= (V甲+V乙)T
b、追击问题
S 差= S甲-S乙 S 总= S甲+S乙 S 总= (V甲-V乙)T
c、顺逆流问题
V顺=V船+V水
V逆=V船-V水
二、工程问题(a、工程总量=工作时间*工作效率)
xyz=100x+10y+z
五、利润问题
利润=售价-进价(标价-成本)
售价=标价*折数
利润金*期数*利率*(1-利息税)
本息和=本金+利息
年利率=月利率* 12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优胜教育学科导学案
教师: 学生: 日期: 星期: 时段:
课 题
一元一次方程
学习目标与
考点分析
1、了解及掌握一元一次方程的基本概念及正确判断;
2、运用一元一次方程解决实际问题。

学习重难点 熟练运用一元一次方程知识解决相关问题
教学方法
教师讲授和学生尝试相结合,探究式学习和活动式学习相结合
学习内容与过程
课前回顾
1、方程5
17
4732+-=--
x x 去分母得( )。

A .2-5(3x-7)=-4(x+17) B .40-15x-35=-4x-68
C .40-5(3x-7)=-4x+68
D .40-5(3x-7)=-4(x+17) 2、下列是一元一次方程的是( )。

(1)
2x +1=3x -4 (2) 532+x = 21-x (3) -x=o (4) x
5一2x=0 (5)3x -y=l +2y A. (1)、(2)、(3) B.(1)、(2)、(4) C. (2)、(4)、(5) D. (1)、(3)、(5)
3、方程
2
.0)
25.0(3.003.025.0+=-+x x x 的解是( )。

A .179764-=x
B .179764=x
C .179
765
-=x
D .179
765
=
x 4、下列变形中:
①由方程
12
5x -=2去分母,得x-12=10; ②由方程29x=92两边同除以2
9
,得x=1;
③由方程6x-4=x+4移项,得7x=0; ④由方程2-
53
62
x x -+=两边同乘以6,得12-x-5=3(x+3) 错误变形的个数是( )个。

A .4
B . 3 C. 2 D .1
例题讲解
1、解方程 21(x 一3)=2一2
1
(x 一3)
2、解方程 2x -6115+x =l+3
42-x
3、解方程 3.05.01x --32x=02
.03.0x
+l
4、已知,|a -3|+(b +1)2
=0 ,代数式2
2m
a b +-的值比21b -a+m 多1,求m 的值。

练习
1、 解方程2x+3
x
=14,得x= 。

2、16
1
5312=+-+x x 去分母得 。

3、
35
.01
02.02.01.0=+--x x
4、方程
k x x x +=--24
1
6的解是x=3,那么k k 12+的值等于_____________。

例题
1、机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?
2、某车间有28个工人,生产某种螺栓和螺母,已知一个螺栓的两头各配一个螺母组成一套零件。

如果每人每天生产12个螺栓或18个螺母。

安排多少个工人生产螺栓,多少个工人生产螺母,才能使这一天生产的螺栓和螺母正好配套?
3、某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?
4、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?
当堂检测·满分过关
1、一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?
2、某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.
3、一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
4、一项工程甲单独做需要10天,乙需要12天,丙单独做需要15天,甲、丙先做3天后,甲因事离去,乙参与工作,问还需几天完成?
本次课评价:
教学反思:
组长签字:年月日。

相关文档
最新文档