初中数学竞赛辅导资料(7)
数学竞赛知识点资料

数学比赛知识点资料学习知识要善于摸索,摸索,再摸索。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。
下面是作者给大家整理的一些数学比赛知识点的资料,期望对大家有所帮助。
初中数学联赛比赛知识点1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线相互平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线相互平分的四边形是平行四边形.4·对称性:平行四边形是中心对称图形.基本概念:鸡兔同笼问题又称为置换问题、假定问题,就是把假定错的那部分置换出来;基本思路:①假定,即假定某种现象存在(甲和乙一样或者乙和甲一样):②假定后,产生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出显现这个差的原因;④再根据这两个差作适当的调剂,消去显现的差。
基本公式:①把所有鸡假定成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假定成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
初中数学比赛运算知识点归纳1,C ;2,m=1,n=6 或 m=3,n=2 或 m=6,n=1;3,a=17,4,a=12,x1=1,x2=-2,x3=-28,或a=39,x1=-1,x2=-565,就是第四题的变形。
a=12,或 39进程:1,由于这些数据成对显现,且每一对都是互为倒数,所以只要求出x=2007和x=1/2007的值,就可以知道结果了。
你去求吧。
2,二次函数与横轴的两个交点间的距离等于根号下(b^2-4ac)再除以a的绝对值。
初中数学竞赛辅导资料(七八年级部分)11-5最值问题6绝对值42

初中数学培优辅导资料姓名: 过关: 成绩:(五)最值问题1. (本题7分)若x ,y 是实数,求19993322+--+-y x y xy x 的最小值。
2. (本题7分)若xy =1,求代数式44411y x +的最小值。
3. (本题7分)设21、x x 是方程02324222=-++-m m mx x 的两个实根,当m 为何值时,2221x x + 有最小值,并求这个最小值。
(六)绝对值的几何意义(每小题5分)1.已知a是有理数,则| a-2007|+| a-2008|的最小值是。
2.若|x+1|+|2-x|=3,则x的取值范围是。
3.不等式|x+2|+|x-3|>5的解集是。
4. 对于任意数x,若不等式|x+2|+|x-4|>a恒成立,则a的取值范围是。
5. 已知|x+2|+|1-x|=9-|y-5|-|1+y|,则x+ y最大值是,最小值是.(七)平面直角坐标系与一次函数(每小题6分)1.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.在平面直角坐标系中,已知A(2,•-2),点P是y轴上一点,则使AOP为等腰三角形的点P 有()(A)1个(B)2个(C)3个(D)4个3.过点P(-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作()(A)4条(B)3条(C)2条(D)1条4.若k、b是一元二次方程x2+px-│q│=0的两个实根(kb≠0),在一次函数y=kx+b中,y随x的增大而减小,则一次函数的图像一定经过()(A)第1、2、4象限(B)第1、2、3象限(C)第2、3、4象限(D)第1、3、4象限5.当-1≤x≤2时,函数y=ax+6满足y<10,则常数a的取值范围是()(A)-4<a<0 (B)0<a<2 (C)-4<a<2且a≠0(D)-4<a<26.已知直线L•经过(2,0)和(0,4),把直线L沿x轴的反方向向左平移2个单位,得到直线L′,则直线L′的解析式为.7.不论k为何值,解析式(2k-1)x-(k+3)y-•(k-11)=0表示的函数的图象经过一定点,则这个定点是.8.设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k(k=1,2,3,……,2008),那么S1+S2+…+S2008= .9.平面直角坐标系内有A(2,-1),B(3,3)两点,点P是y轴上一动点,求P到A、B距离之和最小时的坐标.。
初中数学竞赛考点归纳

初中数学比赛考点归纳数学是人类对事物的抽象结构与模式进行严格描写的一种通用手段,可以运用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
数学属于情势科学,而不是自然科学。
今天作者在这给大家整理了一些初中数学比赛考点归纳,我们一起来看看吧!初中数学比赛考点归纳二元一次方程组1、定义:含有两个未知数,并且未知项的次数是1的整式方程叫做二元一次方程。
2、二元一次方程组的解法(1)代入法由一个二次方程和一个一次方程所组成的方程组通常用代入法来解,这是基本的消元降次方法。
(2)因式分解法在二元二次方程组中,至少有一个方程可以分解时,可采取因式分解法通过消元降次来解。
(3)配方法将一个式子,或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。
(4)韦达定理法通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
(5)消常数项法当方程组的两个方程都缺一次项时,可用消去常数项的方法解。
解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的根据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的情势(即一元二次方程的一样情势)(2)系数化1:将二次项系数化为1(3)移项:将常数项移到等号右侧(4)配方:等号左右两边同时加上一次项系数一半的平方(5)变形:将等号左边的代数式写成完全平方情势(6)开方:左右同时开平方(7)求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一样情势,然后运算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
初中数学竞赛辅导资料(七年级用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。
初中数学竞赛讲座——数论部分7(同余)

第7讲同余的概念及基本性质数论有它自己的代数,称为同余理论.最先引进同余的概念与记号的是数学王子高斯.先看一个游戏:有n+1个空格排成一行,第一格中放入一枚棋子,甲乙两人交替移动棋子,每步可前移1,2或3格,以先到最后一格者为胜.问是先走者胜还是后走者胜?应该怎样走才能取胜?取胜之道是:你只要设法使余下的空格数是4的倍数,以后你的对手若走i格(i=1,2,3),你走4-i格,即每一次交替,共走了4格.最后只剩4个空格时,你的对手就必输无疑了.因此,若n除以4的余数是1,2或3时,那么先走者甲胜;若n除以4的余数是0的话,那么后走者乙胜.在这个游戏里,我们可以看出,有时我们不必去关心一个数是多少,而要关心这个数用m除后的余数是什么.又例如,1999年元旦是星期五,1999年有365天,365=7×52+1,所以2000年的元旦是星期六.这里我们关心的也是余数.这一讲中,我们将介绍同余的概念、性质及一些简单的应用.同余,顾名思义,就是余数相同.一、基础知识定义1 给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m同余,记作a≡b(modm),并读作a同余b,模m.否则,就称a与b对于模m不同余,记作a≡b(mod m),根据定义,a与b是否同余,不仅与a、b有关,还与模m有关,同一对数a和b,对于模m同余,而对于模n也许就不同余,例如,5≡8(mod3),而5≡8(mod4),若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b.反之,若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2.于是,我们得到同余的另一个等价定义:定义2若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.另外,根据同余的定义,显然有以下几种关系是成立的:⑴a≡a(mod n)⑵a≡b(modm)⇔b≡a(mod n)⑶a≡b(mod n)⇒a≡c(mod m)b≡c(modm)由此可见,同余是一种等价关系,以上这三条分别叫做同余的反射性,对称性和传递性,而等式也具有这几条性质.二、典型例题;例1.如果a≡b(mod m),以下命题正确的有哪些?请说明理由?⑴m| a-b⑵a=b+mt⑶a=k1m+ r1,b =k2m+r2(0≤r1,r2<m)⇔r1= r2解:⑴因a≡b(modm),所以可得a =k1m+r,b =k2m+ r,那么a-b=(k1-k2)m,由于k1-k2是整数,因此m|a-b是正确的.⑵根据⑴可得a-b= mt,即a=b+mt⑶根据⑴可得,m|r1-r2,又因为0≤| r1-r2 |<m,所以| r1-r2 |=0,故r1=r.2例2.判断正误,并说明理由.⑴如果a≡b(mod m)那么ka≡kb(mod m)⑵如果a≡b(modm),c是整数,那么a±c≡b±c(mod m)⑶如果a1≡b1(mod m),a2≡b2(mod m),那么a1±a2≡b1±b2 (modm),a1a2≡b1b2 (mod m).⑷如果3a≡3b(mod 6 ),那么a≡b (mod 6 )解:⑴∵a≡b(modm),∴m| a-b,∴m|k (a-b)即m|(ka-kb)∴ka≡kb(mod m) ⑴成正确⑵∵a≡b(mod m),∴m | a-b又因为c是整数,所以m| a-c-b+c,即m | (a-c)-(b-c)即a-c≡b-c(mod m)同理可得,a+c≡b+c(mod m)⑶仿照上面的两个小题的方汪,可以判定这个命题也是正确的⑷显然6≡12(mod6),而2≡4(mod 6),因此,这个命题不正确说明:⑶的结论可以得到同余的另一条性质,即a≡b(mod m)⇒a n≡b n(modm) 此题说明两个同余式能够象等式一样进行加、减、乘、乘方,但同余式两边却不能除以同一数,那么,同余式的两边在什么情况下可以同除以一个数呢?我们先看下面的例题.例3.由下面的哪些同余式可以得到同余式a≡b(mod5)①3a ≡3b (mo d 5) ②10a ≡10b (mod 5)③6a≡6b(mod 10) ④10a ≡10b (mod 20) 解:①因3a ≡3b (mod 5),所以5 | 3(a -b),而5 | 3 , 因此5 | a-b,故a ≡b(mod 5)②由10a≡10b (mo d 5)可以得到5 | 10(a -b ),而5 | 10,因此5不一定整除a -b ,故a ≡b (mod 5)就成立③由6a≡6b (mod 10)可得10 | 6(a -b ),而10=2×5,6=2×3,因此5 | a -b ,故a≡b(m od 5)成立④由10a ≡10b (mo d 20)可得到20 | 10(a-b ),而20= 4×5,4 | 10,因此5 | (a-b )故a≡b (mod 5)不成立综上所述,由3a ≡3b (m od 5)或6a ≡6b (mod 10)都可以得到a ≡b (mod 5)说明:在①中,因为(3,5)=1,因此由5 | 3(a -b )一定可以得到5 | a-b ,进而得到a ≡b (mod 5),一般地,如果(k ,m)=1,ka ≡kb (mo d m),那么a≡b (mod m )在③中,因(6,10)=2,因此由10| 6(a-b)一定可以得到5 | a -b ,进而得a ≡b(mo d 5),一般地,如果(k ,m )= d ,ka ≡kb (mod m ),那么a ≡b )(moddm .例4.如果a ≡b(mod 12)且a ≡b (mod 8),那么以下同余式一定成立的是哪些?①a ≡b(mod 4) ②a ≡b(mod 24) ③a ≡b(m od 20) ④a≡b (m od 48)解:正确的有①和②①由题中的条件可得12 | a -b,又因4 | 12,所以4 | a -b ,故a ≡b (mod 4).②因12 | a -b ,8| a -b ,所以a -b 是12和8的公倍数,又因为[8,12]=24,因此 a -b 必是24的倍数,即24 | a -b ,故a ≡b (mod 24).③显然,当a= 26,b = 2时满足条件a ≡b (mod 12)和a ≡b (mo d 8),但却不满足a≡b (mod 20).④同③,用a = 26,b = 2验证即可. 【说明】:⑴一般地,若a ≡b (mod m )且n | m ,那么a≡b (mo d n) ⑵若a ≡b (m od m ),a ≡b (mod n ),那么a ≡b (mod [m ,n ]),它的一个特殊情况就是: 如果a ≡b (mod m ),a ≡b (mo d n )且(m ,n )=1,那么a ≡b (mod m n )【一些结论】1.同余定义的等价形式①a ≡b(mod m ) m | a-b②a ≡b (mod m ) a = b+mt 2.同余式的同加、同乘性如果a 1≡b1(m od m ),a 2≡b 2(mod m )那么 ⑴a 1±a 2≡b 1±b 2(mod m) ⑵ka 1≡kb 1(mod m)(k ∈Z ) ⑶a 1a 2≡b 1b 2(m od m) ⑷a 1n ≡b 1n (m od m)(n是整数). 3.如果(k ,m )=d ,ka ≡kb (mod m ),那么a ≡b )(moddm. 这条性质的直接推论就是:如果(k ,m)=1,k a≡kb (mod m ),那么a ≡b (mo d m ) 4.如果a ≡b (mo d m )且n | m ,那么a ≡b(mod n )5.如果a≡b (m od m),a≡b (mo d n),那么a ≡b (mod [m,n ])这条性质的一个推论就是: 如果a ≡b(m od m ),a≡b (m od n )且(m ,n )=1,那么a ≡b (m od m n )例5.⑴求19992002除以9的余数;⑵求1010除以7的余数解:⑴∵9 | 1999-1000,∴1999≡1000≡1(mod 9)∴19992000≡12002≡1(mod 9),∴19992000除以9的余数是1⑵∵10≡3(mod 7),∴103≡33≡-1(mod 7)∴106≡(-1)2≡1(m od 7),∴1010≡104(mod 7) 又∵102≡9≡2(mod 7),∴102≡10 4≡22≡4(mod 7) 所以1010除以7的余数是4.说明:求较大数的余数时,可先设法找到与±1同余的数,然后利用同余式的性质,求出所求数的余数.例6.求14589+32002除以13的余数.解:∵145≡2(mod 13),∴1456≡26≡-1(mod 13)∴(1456)14≡(-1)14≡1(mod 13)即14584≡1(mod 13)又∵1455≡25≡6(mod 13)所以14589≡14584·1455≡6×1≡6(mod 13)又∵33≡1(mod 13),∴(33)667≡32001≡1(mo d 13),∴32002≡3(mod 13) 所以,14589+32002≡6+3≡9(mod 13)即14589+32002除以13的余数是9例7.求19982002的十位数字分析:此题可以通过19982002的末两位数来求解,与前面的方法类似解:∵199898≡-2(m od 100),∴19982002≡(-2)2002≡22002≡41001(mod 100)因为4≡4(m od 100),42≡16(m od 100),43≡64(m od 100),44≡56(mod100),45≡24(m od 100),46≡96(mod 100),47≡84(mod 100),48≡36(mod 100),49≡44(mo d 100),410≡76(m od 100),411≡4(mod 100)…所以4 n 除以100的余数是以4、16、64、56、24、96、84、36、44、76周期性出现的,因41001=410×100+1,所以41001≡4(m od 100),因此19982002≡4(m od 100),故19982002的十位数字是0.说明:正整数幂的末位数、末两位数、末三位数都具有周期性.例8(1998年匈牙利奥林匹克竞赛题)求使2n +1能被3整除的一切自然数n . 解∵∴则2n +1∴当n 为奇数时,2n+1能被3整除; 当n 为偶数时,2n +1不能被3整除.例9 求证31980+41981能被5整除. 证明 ∵∴∴∴例10.求20032002的末位数字.分析:此题就是求20032002除以10的余数解:∵2003≡3(mod 10),∴20034≡34≡1(mod 10),∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10)∴20022002的末位数字是7.说明:对于十进制的整数011a a a a n n -有如下性质:)10(mod 0011a a a a a n n ≡- 例11.已知n 是正整数,证明48 | 72n ―2352n ―1 证明:∵48=3×16,(3,16)=1∴只需证明3| 72n ―2352n ―1且16 | 72n ―2352n ―1即可 ∵7≡1(mod 3),2352≡0(m od 3) ∴72n ―2352n ―1≡12n ―2352×0-1≡0(mod 3) ∴3 | 72n ―2352n ―1,又∵2352=16×147,∴2352≡0(m od 16) ∴72n ―2352n ―1≡49n -1≡1n -1≡0(m od 16)∴16 | 72n―2352n ―1,所以48| 72n ―2352n ―1.说明:当模很大时,可以用本题的方法把问题化为较小的模来求解,请同学位用这个方法重解例8.例12.已知n是任意的正整数,且m | 7n+12n―1,求正整数m的最大值.解:设an=7n+12n―1,那么,a1=7+12―1=18,a2=72+24―1=72∴(a1,a2)=(18,72)=18,∴m≤18,下面证明对任何正整数n,都有18 | 7n+12n―1又因为18=2×9,所以只须证明2| 7n+12n,9|7n+12n―1即可.∵7≡1(mod2),∴7n+12―1≡1n+0―1≡0(mod 2)即2 |7n+12n―1,对n进行分类讨论,⑴若n≡0(mod 3),则n=3k(k为正整数)7n+12n―1≡73k+36k+1≡(―2)3k+0―1≡(―8)k―1≡1k―1≡0(mod 9)⑵若n≡1(mod 3),则n=3k+1(k为非负整数)7n+12n―1≡73k+36k+127+12―1≡0(mod9)⑶若n≡2(mod 3),则n=3k+2(k为非负整数)7n+12n―1≡73k·72+36k+24―1≡72+24―1≡0(mod9)因此,对一切自然数n,都有9 | 7n+12n―1.综上所述,18 | 7n+12n―1,因此m的最大值为18.例13把1,2,3…,127,128这128个数任意排列为a1,a2,…,a128,计算出|a1-a2|,|a3-a4|,…,|a127-a128|,再将这64个数任意排列为b1,b2,…,b64,计算|b1-b2|,|b3-b4|,…,|b63-b64|.如此继续下去,最后得到一个数x,问x是奇数还是偶数?解因为对于一个整数a,有|a|≡a(mod2), a≡-a(mod2),所以b1+b2+…+b64=|a1-a2|+|a3-a4|+…+|a127-a128|≡a1-a2+a3-a4+…+a127-a128≡a1+a2+a3+a4+…+a127+a128(mod 2),因此,每经过一次“运算”,这些数的和的奇偶性是不改变的.最终得到的一个数x≡a1+a2+...+a128=1+2+ (12)=64×129≡0(mod2),故x是偶数.例14求证:一个十进制数被9除的余数等于它的各位数字之和被9除的余数.10≡1(mod9),故对任何整数k≥1,有10k≡1k=1(mod 9).因此即A被9除的余数等于它的各位数字之和被9除的余数.说明(1)特别地,一个数能被9整除的充要条件是它的各位数字之和能被9整除.(2)算术中的“弃九验算法”就是依据本题的结论.三、模拟训练1求证: (1)8|(551999+17);(2) 8(32n +7); (3)17|(191000-1).证 (1)因55≡-1(mod 8),所以551999≡-1(mo d 8),551999+17≡-1+17=16≡0(m od 8),于是8|(551999+17).(2)32=9≡1(m od 8),32n ≡1(mod 8),所以32n +7≡1+7≡0(mod 8),即8|(32n +7).(3)19≡2(mod 17),194≡24=16≡-1(m od 17),所以191000=(194)250≡(-1)250≡1(mod 17),于是17|(191000-1).2.求20032002的末位数字分析:此题就是求20032002除以10的余数解:∵2003≡3(m od 10),∴20034≡34≡1(mod 10),∴20032002≡(20034)500·20033≡1500·33≡27≡7(mod 10)∴20022002的末位数字是7说明:对于十进制的整数011a a a a n n -有如下性质:011a a a a n n -)10(mod 0a ≡.3求2999最后两位数码.解 考虑用100除2999所得的余数. ∵∴又∴∴∴2999的最后两位数字为88.4.求证:22000+1不能被7整数.分析:只需证明22000≡-1(mod 7)即可证明:∵26≡1(mod7),∴22000≡(26)333·22≡1·22≡4(mod 7),∴22000+1≡5(mod7)所以7 | 22000+15 对任意的自然数n,证明A=2903n-803n-464n+261n 能被1897整除.证1897=7×271,7与271互质.因为2903≡5(mod 7),803≡5(mod 7),464≡2(mod7),261≡2(mod7), 所以A=2903n-803n-464n+261n≡5n-5n-2n+2n=0(mod 7), 故7|A.又因为2903≡193(mod 271),803≡261(mod271),464≡193(mod 271),所以故271|A.因(7,271)=1,所以1897整除A.6任意平方数除以4余数为0和1(这是平方数的重要特征). 证因为奇数2=(2k+1)2=4k2+4k+1≡1(mod 4),偶数2=(2k)2=4k2≡0(mod 4),所以7任意平方数除以8余数为0,1,4(这是平方数的又一重要特征).证奇数可以表示为2k+1,从而奇数2=4k2+4k+1=4k(k+1)+1.因为两个连续整数k,k+1中必有偶数,所以4k(k+1)是8的倍数,从而奇数2=8t+1≡1(mod8),偶数2=(2k)2=4k2(k为整数).(1)若k=偶数=2t,则4k2=16t2=0(mod 8).(2)若k=奇数=2t+1,则4k2=4(2t+1)2=16(t2+t)+4≡4(mod 8),所以求余数是同余的基本问题.在这种问题中,先求出与±1同余的数是一种基本的解题技巧.8形如Fn=22n+1,n=0,1,2,…的数称为费马数.证明:当n≥2时,Fn的末位数字是7.证当n≥2时,2n是4的倍数,故令2n=4t.于是F n=22n+1=24t+1=16t+1≡6t+1≡7(mod 10),即F n的末位数字是7.说明费马数的头几个是F0=3,F1=5,F2=17,F3=257,F4=65537,它们都是素数.费马便猜测:对所有的自然数n,F n都是素数.然而,这一猜测是错误的.首先推翻这个猜测的是欧拉,他证明了下一个费马数F5是合数.。
初中竞赛数学7.物以类聚话说同类项(含答案)

7.物以类聚──话说同类项知识纵横俗话说“物以类聚,人以群分”。
在数学中,我们把整式中那些含相同的字母、并且相同字母的次数也分别相同的单项式看作一类──称为同类项(like term)•,一个多项式中的同类项可以合聚在一起──称为合并同类项(unite like term)•。
整式的加减实质就是去括号合并同类项。
整式的加减这一章涉及到许多概念,准确地掌握这些概念并注意它们的区别与联系是解相关问题的基础,归纳起来就是要注意以下几点:理解“三式”和“四数”的概念、熟悉“两种排列”、掌握三个法则。
解与整式加减相关问题时,有括号先去括号,有同类项先合并同类项,这样能使解题过程大为简化。
例题求解【例1】当x的取值范围为_______时,式子-4x+│4-7x│-│1-3x│+4•的值恒为一个常数,这个值是_________. (北京市“迎春杯”竞赛题)思路点拨去掉绝对值符号、合并同类项后,式子应不再含“x”的项,•由此得出x 的取值范围。
解:x≥47.提示:x的系数之和为零,须使4-7x≤0且1-3x≤0【例2】已知a+b=0,a≠b,则化简ba(a+1)+ab(b+1)得( ).A.2aB.2bC.+2D.-2(第15届江苏省竞赛题) 思路点拨由已知条件可推得多个关系式,这是解本例的关键.解:选D.提示:由已知得ba=ab=-1,-a-b=0.【例3】已知x=2,y=-4时,代数式ax3+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值.思路点拨一般的想法是先求出a、b的值,这是不可能的(为什么?)解本例的关键是:将给定的x、y值分别代入对应的代数式,寻找已知式与待求式之间的联系,•整体代入求值.解:1998 提示:由已知得4a-b=996,待求式=-3(4a-b)+4986.【例4】已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5,当x=2时的值为-17,•求当x=-2时,该多项式的值. (“希望杯”邀请赛培训题) 思路点拨设法求出a、b的值,解题的突破口是根据多项式降幂排列、•多项式次数等概念挖掘隐含的关于a、b的等式.解:-1 提示:整理原多项式得(a+1)x3+(2b-a)x2+(b+3a)x-5,由题意得a+1=0,•得a=-1,b=-1.【例5】(1)已知:5│(x+9y)(x,y为整数),求证:5│(8x+7y).(2)试证:每个大于6的自然数n都可表示为两个大于1且互质的自然数之和.思路点拨:(1)尝试把8x+7y写成x+9y的倍数与5的倍数的代数和的形式,(2)逆用整式的加减,将每一类自然数表示为两个式子的和,并证明它们互质,注意分类讨论.解:(1)8x+7y=8(x+9y)-65y.(2)①若n为奇数,设n=2k+1,k为大于2的整数,则n=k+(k+1),由于显然(k,k+•1)=1,故此表示合乎要求.②若n为偶数,则可设n=4k或n=4k+2,k为大于1的自然数.当n=4k时,可写n=(2k-1)+(2k+1),并且易知2k-1与2k+1互质,因为,若它们有公因子d≥2,则d│2,但2k-1•与2k+1均为奇数,此不可能.当n=4k+2时,则可写n=(2k-1)+(2k+3),且易知2k-1与2k+•3互质,因为,若它们有公因子d≥2,设2k-1=nd,2k+3=md,m、n均为自然数,则得(m-•n)d=4,可见d│4,矛盾.学力训练一、基础夯实:1.已知2a x b n-1与-3a2b2m是同类项,那么(2m-n)x=__________.(第12届江苏省竞赛题)2.已知代数式(2x2+ax-y+6)-(2bx2-3x+5y-1).(1)当a=_______,b=________时,此代数式的值与字母x的取值无关;(2)在(1)的条件下,多项式3(a2-2ab-b2)-(4a2+ab+b2)的值为__________.3.已知a=1999,则│3a3-2a2+4a-1│-│3a3-3a2+3a-2001│=_________.4.已知当x=-2时,代数式ax+bx+1的值为6,那么当x=2时,代数式ax3+bx+1•的值是_______.5.火车站和机场都为旅客提供打包服务,如果长、宽、高分别为x、y、z的箱子按如图的方式打包,则打包带的长至少为( ).A.4x+4y+10zB.x+2y+3zC.2x+4y+6zD.6x+8y+6z (2003年太原市中考题)6.同时都含有字母a、b、c,且系数为1的7次单项式共有( ).A.4个B.12个C.15个D.25个 (北京市竞赛题)7.有理数a、b、c在数轴上的位置如图所示: 则代数式│a│-│a+b│+│c-•a│+│b-c│化简后的结果是( )A.2-aB.2a-2bC.2c-aD.a8.已知-m+2n=5,那么5(m-2n)2+6n-3m-60的值为( )A.80B.10C.210D.409.把一个正方体的六个面分别标上字母A、B、C、D、E、F并展开如图所示,•已知:A=x2-4xy+3y2,C=3x2-2xy-y2,B=12(C-A),E=B-2C,•若正方体相对的两个面上的多项式的和都相等,求D、F.10.已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值.二、能力拓展11.对于整式6x5+5x4+4x3+3x2+2x+2002,给定x的一个数值后,•如果小颖按四则运算的规则计算该整式的值,需算15次乘法和5次加法.小明说:“有另外一种算法,只要适当添加括号,•可以做到加法次数不变,•而乘法只算5•次”.•小明同学的说法是_______的.(填“对”或“错”)12.若a-b=2,b-c=-3,c-d=5,则(a-c)(b-d)÷(a-d)=________.13.当x=2时,代数式ax3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5•的值等于_________. (北京市“迎春杯”竞赛题)14.将1,2,3,……,100这100个自然数,任意分为50组,每组两个数,•现将每组的两个数中任一数值记作a,另一个记作b,代入代数式12(│a-b│+a+b)中进行计算,•求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是_______.15.计算1+2-3-4+5+6-7-8+9+10-11-12……+1993+1994-1995-1996+1997+1998-1999-2000,最后结果是( ).A.0B.-1C.1999D.-200016.已知a<-b且ab>0,则│a│-│b│+│a+b│+│ab│等于( ).A.2a+2b+abB.-ab;C.-2a-2b+abD.-2a+ab17.已知代数式25342()x ax bx cxx dx+++当x=1时,值为1,那么该代数式当x=-1时的值是( ).A.1B.-1C.0D.2 (第11届“希望杯”邀请赛试题)18.如果对于某一特定范围内x的任意允许值,p=│1-2x│+│1-3x│+•…+•│1-9x│+│1-10x│的值恒为一常数,则此值为( ).A.2B.3C.4D.5 (安徽省竞赛题)19.(1)已知a、b为整数,且n=10a+b,如果17│a-5b,请你证明:17│n.(2)•已知一个三位数,•它的百位数字加上个位数字再减去十位数字所得的数是11的倍数,证明:这个三位数也是11的倍数.20.在一次游戏中,魔术师请一个人随意想一个三位数abc(a、b、c•依次是这个数的百位、十位、个位数字),并请这个人算出5个数acb、bac、cab与cba的和N,•把N告诉魔术师,于是魔术师就可以说出这个人所想的的数abc.现在设N=3194,请你当魔术师,求出数abc来.21.x、y、z均为整数,且11│7x+2y-5z,求证:11│3x-7y+12z.(北京市竞赛题)22.计算多项式ax3+bx2+cx+d的值时有以下3种算法,分别统计3种算法中的乘法次数.①直接计算:ax3+bx2+cx+d时共有3+2+1=6(次)乘法;②利用已有幂运算结果:x3=x2·x,计算ax3+bx2+cx+d时共有2+2+1=5(次)乘法;③逐项迭代:ax3+bx2+cx+d=[(ax+b)x+c]x+d,其中等式右端运算中含有3次乘法.请问:(1)分别使用以上3种算法,统计算式a0x10+a1x9+a2x8+…a9x+a10中乘法的次数,并比较3种算法的优劣.(2)对n次多项式a0x n+a1x n-1+a2x n-2+…a n-1x+a n(其中a0,a1,a2,…,a n为系数,n>1),分别使用以上3种算法统计其中乘法的次数,并比较3种算法的优劣.答案:1.12.(1)-3,1 (2)8.3.40000004.-45.C6.C7.A8.A9.D=•3x2-7y+4y2,F=9x2-11xy+2y210.12 提示:由题意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125).11.对 12.-1213.2214.3775 提示:不妨设a>b,原式=a,•由此知每组数的两个数代入代数式运算后的结果为两个数中较大的一个,从整体考虑,只要将51,52,53,…,100这50•个数依次代入每一组中,便可得50个值的和的最大值.15.D 16.D 17.B 18.B 提示:2+3+…+9+10=54,而8+9+10=27.19.(1)提示:n=10a+b=10a-50b+51b=10(a-5b)+51b;(2)略20.提示:将abc也加到和N上,由于a、b、•c•在每一位上都恰好出现两次,•所以abc+N=222(a+b+c) ①从而1000+3194>222(a+b+c)>3194,于是15≤a+b+c≤18.因为222×15-3194=136,222×16-3184=358,222×17-3194=580,222×18-3194=802.其中只有3+5+8=16满足要求,即能使①成立,故abc=358.21.提示:4(3x-7y+12z)=11(3x-2y+3z)-3(7y+2y-5z).22.(1)3种算法中乘法的次数分别为:①10+9+8+…+2+1=55(次);②2×9+1=19(•次);③10次.(2)乘法次数分别为:①n+(n-1)+…+3+2+1=(1)2n n(次);②2(n-1)+1=2n-•1(次);③n次.。
初中数学竞赛辅导材料目录

初中数学竞赛辅导材料目录一、初中数学竞赛基础知识1.数集及其运算-自然数、整数、有理数、实数、复数的概念及运算性质-数集的表示方法与运算法则2.代数式与方程-一元一次方程与一元一次不等式的解法及应用-一次函数的定义、性质与图像-一元二次方程的解法及应用3.几何基本概念-点、线、面、角的定义与性质-直线、射线、线段、平行线、垂直线的概念与判定-多边形、三角形、四边形的性质4.图形的相似与投影-图形的相似判定条件及相似比的计算-平面图形在对称、旋转、平移、投影中的性质与运用5.数据的整理与表示-数据的收集、整理、描述和分析方法-列联表的制作与应用-分组频数统计图的制作与读图6.立体几何-空间图形的基本概念及性质-空间图形的展开与剖析-空间图形的体积与表面积计算方法二、初中数学竞赛解题技巧与方法1.快速计算技巧-快速计算小技巧的应用(如乘法口诀、整数加减乘除的计算等)-快速计算较大数的方法(如分解因数、整理计算顺序等)2.思维训练与问题解决-近似计算与估算的方法与应用-分析解题条件与利用信息求解问题-数学问题的逻辑和推理方法3.策略与技巧-消元法与代入法的使用-枚举与特例法的应用-逆向思维与反证法的运用4.考试技巧与应试心理-数学竞赛常见题型的解题思路-如何正确阅读题目与审题技巧-考试时间分配与答题顺序规划-心理调适与压力应对方法三、数学竞赛真题及解析1.真题分析与解题方法讲解-分析数学竞赛真题的特点与难点-理解题目要求、辅助线的作法、巧用条件等解题技巧-真题解析与解题思路讲解2.解题思路总结与题型归纳-简述各种常见数学竞赛题型的解题思路-总结解题中常用的技巧与方法-提供大量的练习题目,以加强学生对各类题型的掌握以上为初中数学竞赛辅导材料的目录,通过系统的学习与实践,相信学生们可以提升数学竞赛的能力,取得更好的成绩。
祝学习愉快!。
初中数学竞赛专题-第七章九点圆定理及应用

第七章九点圆定理及应用【基础知识】九点圆定理三角形三条高的垂足、三边的中点,以及垂心与顶点的三条连接线段的中点,这九点共圆. 如图7-1,设ABC △三条高AD ,BE ,CF 的垂足分别为D ,E ,F ;三边BC ,CA ,AB 的中点分别为L ,M ,N ;又AH ,BH ,CH 的中点分别为P ,Q ,R .求证:D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法1连PQ ,QL ,LM ,MP ,则知12LM BA QP ∥∥,即知LMPQ 为平行四边形.又LQ CH BP LM ⊥∥∥,知LMPQ 为矩形.从而L ,M ,P ,Q 四点共圆,且圆心V 为PL 与QM 的交点.同理,MNQR 为矩形,从而L ,M ,N ,P ,Q ,R 六点共圆,且PL ,QM ,NR 均为这个圆的直径.由90PDL QEM RFN ∠=∠=∠=︒,知D ,E ,F 三点也在这个圆上.故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.证法2设ABC △的外心为O ,取OH 的中点并记为V ,连AO ,以V 为圆心,12AO 为半径作V ,如图71-.由12VP OA ∥,知P 在V 上.同理,Q ,R 也在V 上.由12OL AH ∥(可由延长AO 交ABC △的外接圆于K ,得HBKC 为平行四边形,此时L 为KH 的中点,则OL 为AKH △的中位线即得),知OL PH ∥.又OV VH =,知OLV HPV △△≌,从而1=2VL VP OA =,且L ,V ,P 共线,故L 在V 上. 同理,M ,N 在V 上.由L ,V ,P 共线知LP 为V 的一条直径.又90LDP ∠=︒,90MEQ ∠=︒,90NFR ∠=︒,知D ,E ,F 在V 上, 故D ,E ,F ,L ,M ,N ,P ,Q ,R 九点共圆.上述圆通常称为九点圆,也有人叫费尔巴哈圆或欧拉圆,显然,正三角形的九点圆即为其内切圆. 证法3由Rt Rt CBF ABD △∽△,有BC BABF BD=.注意到L 、N 分别为BC 、BA 的中点, 则BL BNBF BD=,即BL BD BF BN ⋅=⋅,这表明L 、D 、F 、N 四点共圆(或者联结NL 、DF ,则由BDF BAC BNL ∠=∠=∠知L 、D 、F 、N 四点共圆).同理,L 、D 、E 、M 及E 、M 、F 、N 分别四点共圆.由戴维斯定理,即知L 、D 、E 、M 、F 、N 六点共圆于Γ.又Rt Rt CHD CBF △∽△,有CH CB CD CF =,注意R 、L 分别为CH 、CB 中点,则CR CLCD CF=,知R 、F 、L 、D 共圆,即点R 在圆Γ上.同理,点P 、Q 也在圆Γ上,故九点均在圆Γ上.注戴维斯定理指的是:三角形每边所在直线有一对点(可以重合),若每两对点同在一个圆上,则三对点(六点)均在同一圆上. 事实上,若所说三个圆不重合.则由根轴共点或平行推得三条边共点或平行,这是不可能的,所以三个圆非重合不可,特别地,三角形内切圆是其特殊情形. 由上述定理及其证明,我们可得如下一系列推论:推论1ABC △九点圆的圆心是其外心与垂心所连线段的中点,九点圆的半径是ABC △的外接圆半径的12. 注意到PQR △与ABC △是以垂心H 为外位似中心的位似形,位似比是12H P H A =∶∶,因此,可得 推论2三角形的九点圆与其外接圆是以三角形的垂心为外位似中心,位似比是12∶的位似形;垂心与三角形外接圆上任一点的连接线段被九点圆截成相等的两部分. 注意到欧拉定理(欧拉线),又可得推论3ABC △的外心O ,重心G ,九点圆圆心V ,垂心H ,这四点(心)共线,且12OG GH =∶∶,13GV VH =∶∶,或O 和V 对于G 和H 是调和共轭的,即OG OHGV HV=. 推论4ABC △的九点圆与ABC △的外接圆又是以ABC △的重心G 为内位似中心,位似比为12∶的位似形.事实上,因G 为两相似三角形LMN △与ABC △的相似中心,而LMN △的外接圆即ABC △的九点圆. 推论5一重心组的四个三角形有一个公共的九点圆;已知圆以已知点为垂心的所有内接三角形有共同的九点圆.【典型例题与基本方法】例1如图72-,设H 为ABC △的垂心,L 为BC 边的中点,P 为AH 的中点.过L 作PL 的垂线交AB 于G ,交AC 的延长线于K .求证:G ,B ,K ,C 四点共圆.A证明设ABC △的外心为O ,连OH ,取OH 的中点V , 则V 为ABC △九点圆的圆心.连AO ,则AO PV ∥,从而AO GK ⊥.设N 为AB 的中点,连ON ,则ON AG ⊥,由此知AON AGL ∠=∠. 又ACL AON ∠=∠,则ACL AGL ∠=∠.从而BGL BGK KCL KCB ∠=∠=∠=∠.故B ,K ,C ,G 四点共圆.例2试证:ABC △的垂心H 与其外接圆上的点的连线被其九点圆平分. 证明如图73-,过垂心H 作ABC △外接圆的两条弦DE ,FG ,连DF ,EG .E图7-3STG DAM HCN F B设M ,N ,S ,T 分别为HD ,HE ,HF ,HG 的中点,则 FDH SMH ∠=∠,EGH NTH ∠=∠. 又FDH EGH ∠=∠,则SMH NTH ∠=∠. 故M ,S ,T ,N 四点共圆,由DE ,FG 的任意性,得H 与ABC △外接圆上任意点连线的中点在同一圆上,由于这个圆过HA ,HB ,HC 的中点,故这个圆就是ABC △的九点圆,从而命题获证.例3如图74-,ABC △中,O 为外心,三条高AD ,BE ,CF 交于点H ,直线ED 和AB 交于点M ,FD 和AC 交于点N .求证:(1)OB DF ⊥,OC DE ⊥;(2)OH MN ⊥.(2001年全国高中联赛题)A证明(1)设ABC △的外接圆半径为R ,由相交弦定理,有 22R OF AF FB -=⋅,22R OD BD DC -=⋅,从而22OF OD BD DC AF FB -=⋅-⋅.由A ,F ,D ,C 四点共圆,有BD BC BF BA ⋅=⋅,即()()BD BD DC BF BF FA ⋅+=+,亦即2222BF BD BD DC AF FB OF OD -=⋅-⋅=-,故OB DF ⊥.同理,OC DE ⊥.(2)由九点圆定理的推论1,知OH 的中点V 为DEF △的外心.又由D ,E ,A ,B 及D ,F ,A ,C 分别四点共圆,有M D M E M B M A ⋅=⋅,ND NF NC NA ⋅=⋅.由此,即知M ,N 对ABC △的外接圆与DEF △的外接圆的幂相等,从而M ,N 在这两个外接圆的根轴上,即有MN OV ⊥,故MN OH =. 【解题思维策略分析】1.注意题中九点圆的显现形式例4如图75-,ABC △中,O 为外心,H 是垂心,作CHB △,CHA △和AHB △的外接圆,依次记它们的圆心为1A ,1B ,1C ,求证:111ABC A B C △△≌,且这两个三角形的九点圆重合.(IMO 31-预选题)图7-5M HK OAB A 1B 1C 1C证明由于()18090(90)180CHB B C B C A ∠=︒-︒-∠-︒-∠=∠+∠=︒-∠,知CHB △外接圆的半径和 CAB △外接圆的半径相等,从而,有1A 是O 关于BC 的对称点.设M 是BC 中点,则知2AH OM =,即1AH OA =.又1AH OA ∥,则连1AA 与OH 的交点K 为平行四边形1AHAO 的中心,即1AA 与OH 互相平分于K . 同理,1BB ,1CC 也经过K 且被它平分,从而111A B C △与ABC △关于K 中心对称,故111A B C ABC △△≌. 显然,K 是ABC △九点圆的圆心.因此,这个圆关于K 作中心对称时不变,它也是111A B C △的九点圆. 例5如图76-,在ABC △中,AD 是BC 边上的高,M ,N 分别是CA ,AB 两边的中点,设直线l 通过A 点,且BC 在l 上的射影为B C '',连B N '与C M '交于点P .求证:B ',C ',D ,P 四点共圆,且其圆心O 与P 点均在ABC △的九点圆上.P O NMDBAC '21l 图7-6B'C证明BB ',CC ',ND ,MD .在Rt AB B '△中,N 为斜边AB 的中点,令1BAB '∠=∠,则1NB A '∠=∠. 同理,NAD NDA ∠=∠, MAD MDA ∠=∠.令2CAC '∠=∠,则2MC A '∠=∠.于是,12NB A MC A ''∠+∠=∠+∠180A =︒-∠, 故()180MPN NB A MC A ''∠=︒-∠+∠180(180)A A =︒-︒-∠=∠NAD DAM NDA ADM MDN =∠+∠=∠+∠=∠.由此,知D ,M ,N ,P 四点共圆.而MND △的外接圆即为ABC △的九点圆,即点P 在ABC △的九点圆上. 由A ,B ',B ,D 四点共圆,连B D ',则知901B DA B BA ''∠=∠=︒-∠.同理,902C DA C CA ''∠=∠=︒-∠. 于是,18012B DC B DA C DA A MPN B PC ''''''∠=∠+∠=︒-∠-∠-∠=∠=∠, 故B ',C ',D ,P 四点共圆.由题设,B C DP ''的圆心为O ,连DO ,PO ,则2DOP DB P '∠=∠. 由于A ,B ',B ,D 四点共圆且以N 为其圆心,则知NB ND '=. 于是,有2DNP DB P '∠=∠,DOP DNP ∴∠=∠,D ∴,O ,P ,N 四点共圆.O ∴在DPN 上,即O 在ABC △的九点圆上,故命题获证. 2.注意题中九点圆的隐含形式例6如图77-,锐角ABC △中,角A 的等分线与三角形的外接圆交于另一点1A ,点1B ,1C 与此类似.直线1AA 与B ,C 两角的外角等分线交于0A ,点0B ,0C 与此类似.求证:A 0A 1IC 0B 1C 1B 0图7-7C AB(1)000A B C △的面积是六边形111AC BACB 面积的二倍;(2)000A B C △的面积至少是ABC △面积的四倍. (IMO 30-试题)证明(1)令ABC △的内心为I 000()I AA BB CC =∩∩.则I 又是000A B C △的垂心(内、外角平分线互相垂直).显然,ABC △的外接圆是000A B C △的九点圆,即知1A ,1B ,1C 分别为0A I ,0B I ,0C I 的中点,于是得012A BI A BI S S =△△,012A CI A CI S S =△, 从而012A BIC A BIC S S =四边形四边形.同理,012B CIA B CIA S S =四边形四边形,012C AIB C AIB S S =四边形四边形, 故0001112A B C AC BA CB S S =六边形. (2)由(1),有()1110002=2A BC B CA C ABA B C ABCABCS S S S S S +++△△△△△△故只要证1111A BC B CA C ABABCS S S k S ++=△△△△≥.记2BAC α∠=,2ABC β∠=,2BCA γ∠=,则 ()12111sin 1802sin sin sin 2sin 21sin 2sin 2sin sin 2sin 2sin 22A BC ABCA B AC S S AB AC αααααγβαβγα⋅⋅︒-⋅⋅===⋅⋅⋅⋅⋅△△ 同理,12sin sin 2sin 2B CA ABCS S βαγ=⋅△△,1sin sin 2sin 2C AB ABC S S γαβ2=⋅△△. 于是,2222sin sin sin sin 2sin 2sin 2sin sin 2sin 2k αβγβγαγαβ=++⋅⋅⋅()233cos cos cos 4αβγ-⋅⋅≥ 223cos cos cos 3cos 14343αβγαβγ--++++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭≥≥. 例7如图78-,123A A A △是一非等腰三角形,它的边长分别为以1a ,2a ,3a ,其中i a 是i A 的对边(123i =,,),i M 是边i a 的中点,123A A A △的内切圆I 切边i a 于i T 点,i S 是i T 关于i A ∠角平分线的对称点(123)i =,,.求证:11M S ,22M S ,33M S 三线共点.(IMO 23-试题)311图7-8证明由题设,知1221M M A A ∥,下面证1121S S A A ∥, 由1T 和1S ,2T 和3T 分别关于直线1A I 对称,有1231TT T S =. 同理,1232TT T S =.故有3132T S T S =,即3T 是等腰312T S S △的顶点,有312T I S S ⊥,从而1221S S A A ∥. 同理,2332S S A A ∥,3113S S A A ∥.又1221M M A A ∥,2332M M A A ∥,3113M M A A ∥,于是123M M M △和123S S S △的对应边两两平行,故这两个三角形或全等或位似.由于123S S S △内接于ABC △的内切圆,而123M M M △内接于ABC △的九点圆,且123A A A △不为正三角形,故其内切圆与九点圆不重合,所以123S S S △与123M M M △位似,这就证明了11M S ,22M S ,32M S 共点(于位似中心).例8过锐角ABC △的顶点A ,B ,C 的三条高线分别交其对边于点D ,E ,F ,过点D 平行于EF 的直线分别交AC ,AB 于点Q 和R ,EF 交BC 于点P .证明:PQR △的外接圆过BC 的中点.(IMO 38-预选题)证明由题设,点P 的存在意味着AB AC ≠.由对称性,可设AB AC >,则P 在射线BC 上,如图79-.PQLR DCFA EB图7-9取BC 的中点L ,我们证明Q ,P ,R ,L 四点共圆⇔DR DQ DP DL ⋅=⋅①因BE AC ⊥于E ,CF AB ⊥于F ,则B ,C ,E ,F 共圆,于是知CEP ABC ∠=∠. 又EF QR ∥,有CEP CQD ∠=∠,则知B ,Q ,C ,R 四点共圆,从而DR DQ DB DC ⋅=⋅ 设BL CL a ==,CP c =,DL b =,则证①式等价于证明DB DC DP DL ⋅=⋅,即()()()a b a b a c b b +⋅-=+-⋅,亦即()2a b a c =+.由九点圆定理,知D ,E ,F ,L 四点共圆,有PE PF PD PL ⋅=⋅.注意到B ,C ,E ,F 四点共圆,有PE PF PC PB ⋅=⋅,故得PC PB PD PL ⋅=⋅,即 ()()()2c a c a c b b a +=+-⋅+,亦即()2a b a c =+.故有DB DC DP DL ⋅=⋅,亦有DR DQ DP DL ⋅=⋅.亦即Q ,P ,R ,L 四点共圆,即PQR △的外接圆过BC 的中点.注 由例8可演变得如下第8届台湾数学奥林匹克试题:己知过锐角ABC △的顶点A ,B ,C 的垂线分别交对边于D ,E ,F ,AB AC >,直线EF 交直线BC 于P ,过点D 且平行于EF 的直线分别交直线AC ,AB 于Q ,R ,N 是BC 上的一点,且180NQP NRP ∠+∠<︒.求证:BN CN >.事实上,同例8,取BC 的中点L ,关键是证明Q ,P ,R ,L 四点共圆,又等价地证明DR DQ DP DL ⋅=⋅.而当Q ,P ,R ,L 四点共圆时,180LQP LRP ∠+∠=︒,参见图79-,若180NQP NRP ∠+∠<︒,则N 点在QPRL 的内部,又因N 是BC 上的一点,则N 在点L 的右侧,于是BN CN >. 【模拟实战】习题A1.试证:圆的直径两端点对ABC △的西姆松线垂直相交,且相交于此三角形的九点圆上. 2.设G 为ABC △的重心,P 为ABC △外接圆上任一点,连PG 并延长至点Q ,使12PQ PG =.求证:点Q 在ABC △的九点圆上.3.试证:ABC △的九点圆与它的内切圆及三个旁切圆相切.4.给定非退化的ABC △,设外心为O ,垂心为H ,外接圆的半径为R .求证:3OH R <.(1994年亚太地区奥林匹克题)5.试证:三角形的三个切圆(内切或旁切)的圆心构成一个三角形,此新三角形的外心对于已知三角形的外心为另外一个切圆圆心的对称点.习题B 1.设A I ,B I ,C I 分别为ABC △的切BC ,CA ,AB 边的旁切圆的圆心.试证:(1)A B C I I I △的九点圆为ABC △的外接圆;(2)过点A I ,B I ,C I 分别作BC ,CA ,AB 边的垂线,则这三条垂线共点.2.试证:圆周上任意四点,过其中任意三点作三角形,则这四个三角形的九点圆的圆心共圆.第七章九点圆定理及应用习题A1.设POP '是ABC △的外接圆(圆心为O )的直径,关于P 点的西姆松线为1l ,关于P '点的西姆松线为2l 因为1l 与2l 的交角可以12PP '度量,从而1l 与2l 的交角为直角.设H 为ABC △的垂心,则1l 和2l 分别经过PH ,PH'的中点Q ,Q ',而Q 和Q '在ABC △的九点圆上,H 点是三角形的九点圆和外接圆的外 位似中心,线段QQ '是线段PP '的位似图形,从而QQ '是九点圆的直径,故1l 与2l 的交点在ABC △的九点圆上.2.连AG 并延长交BC 于L ,则A 在ABC △的外接圆上,L 在ABC △的九点圆上,又G 是ABC △的外接圆与九点圆的内位似中心,且位似此为21∶.而21PG GQ =∶∶,且P 点在外接圆上,则Q 点必在九点圆上.3.设I ,O ,H ,V 分别为ABC △的内心、外心、垂心及九点圆圆心,R ,r ,ρ分别为ABC △外接圆、内切圆、九点圆的半径,A I ,A ρ分别为在BC 边外侧相切的旁切圆圆心和半径,则由心距公式,有222OI R Rr =-,2222IH r R ρ=-,224OH R R ρ=-.注意到V 为OH 的中点,由斯特瓦尔特定理的推论(即三角形中线长公式),有()2222222111242VI VI HI VH R Rr r R r ⎛⎫=+-=-+=- ⎪⎝⎭,即12VI R r =-.故九点圆与内切圆相内切.同理,222AA OI R R ρ=+,得22112A VI R ρ⎛⎫=+ ⎪⎝⎭,即有112VI R ρ=-,故九点圆与此旁切圆相外切.同理,可证九点圆与其他两个旁切圆相外切.4.设G 是ABC △的重心,V 是九点圆的圆心,O 和V 对于G 和H 是共线且调和共轭的,考察以O 点 为起点的向量,则33332OA OB OC OH OG OA OB OC ⎛⎫==++=++ ⎪ ⎪⎝⎭.因此3OH OA OB OC R ++=≤,仅当A B C ==时等号成立,这是不可能的.故3OH R <.5.设O ,H 分别为ABC △的外心与垂心,I ,1I ,2I ,3I 分别为ABC △的内心和三个旁心,由于H ,A ,B ,C 构成一老垂心组(四点中,任一点是另三点构成的三角形的垂心,此四点为垂心组);I 与1I ,2I ,3I 构成一新垂心组,又ABC △的外接圆是123I I I △的九点圆,从而123I I I △的外心O '是关于O 的I 的对称点. 其余以此类似地推证,从而新垂心组各点与老垂心组各点关于123I I I △的九点圆的圆心对称.习题B1.(1)设E ,F 分别是边BA 的延长线,CA 的延长线上的点,由旁心的定义,知A I A 平分BAC ∠,B I A平分CAE ∠,C I A 平分BAF ∠.又BAF CAE ∠=∠,从而有B I ,A ,C I 三点共线,且A B C I A I I ⊥. 同理,B A C I B I I ⊥,C A B I C I I ⊥.故ABC △为A B C I I I △的垂足三角形,故ABC △的外接圆即为A B C I I I △ 的九点圆.(2)设O '为A B C I I I △的外心,则()()11180180222B C B C B A C O I I I O I I I I ''∠=︒-∠︒-∠=.由A I ,C I ,A ,C 四点共圆,知B B A C I AC I I I ∠=∠,从而90B C B O I I I AC '∠+<∠=︒,即B I O AC '⊥. 同理,A I O BC '⊥,B I O BA '⊥.故三条垂线共点于O '.2.设11()A x y ,,22()B x y ,,33()C x y ,,44()D x y ,是单位圆上任意四点,则()2211234i i x y i +==,,,. 由九点圆圆心是三角形外心与垂心连线的中点,得△ABC,△ABD,△BCD,△ACD 九点圆圆心坐标分别为1231231,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1241242,22x x x y y y O ++++⎛⎫ ⎪⎝⎭, 2342343,22x x x y y y O ++++⎛⎫ ⎪⎝⎭,1341344,22x x x y y y O ++++⎛⎫ ⎪⎝⎭. 考虑点12341234,22x x x x y y y y G ++++++⎛⎫⎪⎝⎭,则 12221234123123412312222x x x x x x x y y y y y y y O G ⎡⎤++++++++++⎛⎫⎛⎫=-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦224412x y =+12=. 同理,23412O G O G O G ===故1O ,2O ,3O ,4O 在以G 力圆心,12为半径的圆上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导资料(7)
用字母表示数
甲内容提要和例题
1, 用字母表示数最明显的好处是能把数量间的关系简明而普遍地表达出
来,从具体的数字计算到用抽象的字母概括运算规律上,是一种飞跃。
2, 用字母表示数时,字母所取的值,应使代数式有意义,并使它所表示的
实际问题有意义。
例如①写出数a 的倒数 ②用字母表示一切偶数
解:①当a ≠0时, a 的倒数是a 1
②设n 为整数, 2n 可表示所有偶数。
3, 命题中的字母,一般要注明取值范围,在没有说明的情况下,它表示所
学过的数,并且能使题设有意义。
例题① 化简:⑴|x -3|(x<3) ⑵| x+5|
解:⑴∵x<3,∴x -3<0,
∴|x -3|=-(x -3)=-x +3
⑵当x ≥-5时,|x +5|=x +5,
当x <-5时,|x +5|=-x -5(本题x 表示所有学过的数)
例② 己知十位上的数是a,个位数是b ,试写出这个两位数
解:这个两位数是10a+b
(本题字母a 、b 的取值是默认题设有意义,即a 表示1到9的整数,b 表示0到9的整数)
4, 用字母等式表示运算定律、性质、法则、公式时,一般左边作为题设,
所用的字母是使左边代数式有意义的,所以只对变形到右边所增加的字母的取值加以说明。
例如用字母表示:①分数的基本性质 ②分数除法法则
解:①分数的基本性质是am bm a b
=(m ≠0),m a m
b a b
÷÷= (m ≠0)
a 作为左边的分母不另说明a ≠0,
②d c
a b
c d
a b
⨯=÷(d ≠0) d 在左边是分子到了右边变分母,故另加
说明。
5, 用字母等式表示运算定律、性质、法则、公式,不仅可从左到右顺用,还可从右到左逆用;公式可以变形,变形时字母取值范围有变化时应加说明。
例如:
乘法分配律,顺用a(b+c)=ab+ac, =⨯-)178
241716
16(8121724
172
-=1712
逆用5a+5b=5(a+b), 6.25×3.14-5.25×3.14=3.14(6.25-5.25)=3.14 路程S=速度V ×时间T , V=T S (T ≠0), T=V S
(V ≠0)
6, 用因果关系表示的性质、法则,一般不能逆用。
例如:加法的符号法则 如果a>0,b>0, 那么 a+b>0,不可逆
绝对值性质 如果a>0,那么|a|=a 也不可逆(若|a|=a 则a ≥0)
7, 有规律的计算,常可用字母表示其结果,或概括成公式。
例1:正整数中不同的五位数共有几个?不同的n 位数呢?
解:不同的五位数可从最大 五位数99999减去最小五位数10000前的所有正整数,即99999-9999=90000.
推广到n 位正整数,则要观察其规律
一位正整数,从1到9共9个, 记作9×1
二位正整数从10到99共90个, 记作9×10
三位正整数从100到999共900个, 记作9×10
2 四位正整数从1000到9999共9000个, 记作9×10
3 (指数3=4-1)
…… ……
∴n 位正整数共9×10 n-1个
例2 _____________________________________________________
A C D E B
在线段AB 上加了3个点C 、D 、E 后,图中共有几条线段? 加n 点呢? 解:以A 为一端的线段有: AC 、AD 、AE 、AB 共4条
以C 为一端的线段有:(除CA 外) CD 、CE 、CB 共3条
以D 为一端的线段有:(除DC 、DA 外) DE 、DB 共2条
以E 为一端的线段有:(除ED 、EC 、EA 外) EB 共1条
共有线段1+2+3+4=10 (条) 注意:3个点时,是从1加到4, 因此 如果是n 个点,则共有线段1+2+3+……+n+1=
n n 211++=2)2(+n n 条 丙练习7 1, 右边代数式中的字母应取什么值?
① 24
-x ②S 正方形=a 2 ③3的倍数3n
2, 用字母表示:
①一切奇数, ②所有正偶数, ③一个三位数,
④n 个a 相乘的结果, ⑤负数的绝对值是它的相反数。
3, 写出:⑴从1开始,n 个自然数的和是______________________
⑵从11开始到2n+1 連续奇数的和( n>5)是__________
⑶m 个球队进行单循环赛所需场数是_________________
4, 已知999=103-1, 9999=104-1,
那么各位数都是9的n 位数
n
9999=_____ 5, 计算112= 1112= (n ≤10时) n
2
1111=____________________ 6, 写出图中所有三角形并计算其个数,
如果线段上有10个点呢?
参考答案
E。