解一元一次方程1
解一元一次方程1)

小组内交 流,用语言 叙述出来。
(2)
合并同类项得: x 的系数化为 1,得
x
完 成 后 , 【我探究、我敢试、我成功】 小 组 交 流 [练习一] 解下列方程: 讨 论 结 (1)6x —x = 4 ; (2)-4x + 6x-0.5x =-0.3; 论;
(3) 3x 1.3x 5x 2.7 x 12 3 6 4 .
总 结 反 思
(4)
x 3x 7; 2 2
[思考]方程 3x 20 4 x 25 的两边都含有 x 的项( 3x与4 x )和常数项( 20与 25 ) , 怎样才能把它化成 x a ( a 为常数)的形式呢? 解:利用等式的性质 1,得 , ∴ ∴x 。 。
**像上面那样把等式一边的某项改变符号后移到另一边,叫做移项。 [问题]移项起到什么作用? [例 2] 解下列方程: (1) 5x 8 3x 2 ; (2) 3x 7 32 2x 。
学习过程
一、 【我预习、我会学、我快乐】 南村侨联中学三年来共购买计算机 210 台,去年购买数量是前年的 2 倍,今年购买数量是
自学课本
去年的 4 倍,前年学校购买了多少台计算机? 解:设前年购买计算机 x 台,则去年购买 今年购买 台,依题意得 台,
要解这个方程,可以先把方程左边合并同类项,再用等式的性质解出 x 的值,解法如下:
【我自测、我提高、我收获】解下列方程: (1) x 5 1 ;
(2)
3 2 x 2 3
(3)
7 x 3 2 x ; (4) 2x x 3 1.5 2x ;
(6) 5 x 5 3x ; (7) x 3x 1.2
一元一次方程

一元一次方程什么是一元一次方程?一元一次方程是数学中的基本概念和常见问题之一。
它是指只包含一个未知数并且该未知数的最高次数为一的方程式。
一元一次方程通常采用以下一般形式表示:ax + b = 0其中,a和b是常数,x是未知数。
解一元一次方程的方法解一元一次方程的关键是找到未知数的值,使得方程式成立。
一元一次方程可以使用多种方法求解,以下是其中几种常见的求解方法:1. 求解法一:移项法移项法是一种常见且简便的解一元一次方程的方法。
基本步骤如下:1.将方程的常数项移至方程的另一侧,使得方程变形为ax = -b。
2.通过将方程的左右两侧都除以a,得到未知数的值。
例如,对于方程2x + 3 = 7,可以按照以下步骤进行求解:1.将方程的常数项3移至方程的右侧,得到2x = 7 - 3 = 4。
2.将方程的左右两侧都除以2,得到x = 4/2 = 2。
因此,方程2x + 3 = 7的解为x = 2。
2. 求解法二:相乘法相乘法也是一种解一元一次方程的常见方法。
基本步骤如下:1.将方程变形为形如ax = b的形式,使得未知数系数为1。
2.将方程的左右两侧都乘以一个合适的数,将方程转化为x = c的形式。
例如,对于方程5x/3 = 2,可以按照以下步骤进行求解:1.将方程的左侧乘以3/5,得到x = 3/5 * 2 = 6/5。
因此,方程5x/3 = 2的解为x = 6/5。
3. 求解法三:代入法代入法是一种常见的解一元一次方程的方法,在一定条件下非常有效。
基本步骤如下:1.将方程中的未知数表示为另一个与之等价的表达式。
2.将等价表达式代入方程中,得到一个只含有一个未知数的方程。
3.使用移项法等方法解这个新的方程,求得未知数的值。
例如,对于方程2x + 3 = 5x - 1,可以按照以下步骤进行求解:1.将方程中的未知数表示为另一个与之等价的表达式,例如,将5x - 1表示为2x + 3。
2.将等价表达式代入方程中,得到方程2x + 3 = 2x + 3。
第五章 第3课 解一元一次方程(1)——移项

谢谢!
(1)一个月内本地通话 200 分钟,按方式一、方式二各需交费多 少元? (2) 对于某个本地通话时间,会出现两种计费方式收费一样多 吗?
(1)按方式一需交费:30+0.30×200=90(元);按方式二需交费: 0.40×200=80(元) (2)设这个通话时间为 x 分钟,依题意,有 30+0.3x=0.4x 解得 x=300 所以本地通话时间为 300 分钟时,两种计费方式一样多.
10. 解方程 9x+20=4x-25,移项正确的是( B ) A. 9x+4x =-25+20 C. 9x-4x=25-20 B. 9x-4x =-25-20 D. 9x-4x =-25+20
第2关 11. 若 x=3 是方程 2x+a=7 的解,则 a 的值是( A ) A. 1 B. 9 C. -5 D. 5 . .
(3)5y+6-8y=3y-12.
5y+6-8y=3y-12 5y-8y-3y=-12-6 -6y=-18 y=3
7 4 17. 当 x 为何值时,4-3x 与-3x-1 的值相等.
7 4 由 4-3x=-3x-1 解得 x=5, 7 4 所以当 x=5 时,4-3x 与-3x-1 的值相等
18. 根据下面的两种移动电话计费方式,解答问题: 方式一 月租费 本地通话费 30 元/月 0.30 元/分 方式二 0 0.40 元/分
12. 已知 x=5 是方程 ax-3=7 的解,则 a= 2 13. 关于 x 的方程 x 14. 如果 3ab A. 2
2n-1 3m-2
-1=-5 是一个一元一次方程, 则 m= 1 是同类项,则 n 的值为( A ) D. 0
与 ab
n+1
B. 1 C. -1
第3关 15. 解方程: (1)-x=1;
解一元一次方程 (一)

大连市第三十中学 林丹凤
环节一:展示目标,明确要求
学习目标与达成目标
会通过移项﹑合并同类项解一元一次 方程,知道用一元一次方程解实际问题的 基本过程.并会判断解的合理性.
环节二:引入新课
两种方式计费如下表
方式1 方式2
月租费 本地通话费
30 0.30元/分
0 0.4元/分
(1)你能从表中获得那些信息,试试用自己的语言说 一说? (2)老师到底应该选择那种计费方式比较合算呢? (3)一个月内在本地通话200分钟和350分钟,按两种 计费方式各需要交多少元? (4)对于某个本地通话时间,会出现两种计费方式相 同的情况吗?为什么?
环节三:探索新知,归类总结
根据以上问题的解决过程,你从中发现了什么?
实际问题
列方程
数学问题 (一元一次方程)
解 方 程
实际问题的 答案
检验
数学问题的答案
(X=a)
环节四:巩固练习
春节期间,某相邻的两个商场展开促 销活动,商场甲给出的优惠方案是,先花 50元办一张优惠卡,然后所有凭卡购物的 都8折优惠,商场乙给出的优惠方案是凡是 在乙商场购物的均9折优惠,如果你去购物, 你会选择哪家商场呢?
方式1
200分钟 90元
方式2
80元
350分钟
t分钟
135元
30+0.3t元
140元
0.4t元
归纳:
可以把问题(4)归纳为以下数学问题: 有两种移动电话收费方式,用方式1 每月收月租30元,此外根据每月累计通话 时间按0.3元/分加收通话费;用方式2不收 月租费,根据累计通话时间按0.4元/分收 通话费。求每月累计通话多长时间时两种 收费方式所收通话费用相同?
解一元一次方程(一)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程01 教学目标经历把方程等号两边分别合并同类项的过程,能用合并同类项解一元一次方程. 02 预习反馈阅读教材P86~87“问题1及例1”,完成下列内容.1.形如“ax +bx =c ”的方程,先合并同类项,再把未知数系数化为1.2.补全下列解方程的过程:(1)6x -x =4;解:合并同类项,得 5x =4.系数化为1,得x =45.(2)-4x +6x -0.5x =-0.3.解:合并同类项,得1.5x =-0.3.系数化为1,得x =-15.03 例题讲解例 (教材P87例1变式)解下列方程:(1)x 2+x +2x =140;(2)3x -1.3x +5x -2.7x =-12×3-6×4.解:(1)x =40. (2)x =-15.【点拨】 用合并同类项解一元一次方程的步骤:(1)合并同类项,把原方程化为ax =b(a ≠0)的形式;(2)系数化为1,若合并后未知数的系数是1,则没有这个步骤.系数化为1的技巧:①若未知数的系数是不等于0和1的整数,则方程两边除以这个整数;②若未知数的系数是分数m n ,则方程两边乘它的倒数,即乘n m ;③若未知数的系数是带分数(小数),则先化为假分数(分数),再按情形②处理.总之,不要一律地除以未知数的系数,要视具体情况灵活处理.【跟踪训练】 解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.04 巩固训练1.对于方程8x +6x -10x =6进行合并正确的是(C)A .3x =6B .2x =6C .4x =6D .8x =62.方程18x -3x +5x =11的解是(C)A .x =2611B .x =-2011C .x =1120D .x =11103.方程10x -2x =6+1两边合并后的结果为8x =7,其解为x =78.4.解下列方程:(1)-10x -6x =-7+15; (2)23x -56x =-67;(3)14x -12x =-7-6; (4)-32y -3y =52-2.解:(1)x =-12. (2)x =367. (3)x =52. (4)y =-19.05 课堂小结1.你今天学习的解方程有哪些步骤?合并同类项,系数化为1(等式的性质2).2.合并同类项即是将方程中含未知数的项和常数项分别合并,系数化为1的依据是等式的性质2.第2课时利用合并同类项解一元一次方程的实际问题01教学目标经历用“总量=各部分量的和”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P86“例1”,完成下列内容.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,求今年购置计算机的数量.解:设今年购置计算机x台,则去年购置计算机13x台.根据题意,得x+13x__=100,解得x=75.答:今年购置计算机75台.03例题讲解例(教材P86例1变式)中国某明星与麦当劳公司签约,该明星作为麦当劳的形象代言人,三年获酬金1 400万美元,若前一年的酬金是后一年的一半,且不考虑税金,则他第一年应得酬金多少万美元?解:设该明星第一年的酬金为x万美元,则第二年的酬金为2x万美元,第三年的酬金为4x万美元,由题意,得x+2x+4x=1 400,即7x=1 400.等式两边都除以7,得x=200.答:该明星第一年应得酬金200万美元.【点拨】【跟踪训练】麻商集团三个季度共销售冰箱2 800台,第一个季度销售量是第二个季度的2倍,第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?解:设麻商集团第二个季度销售冰箱x台,则第一个季度销售量为2x台,第三个季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二个季度销售冰箱400台.04巩固训练1.已知某数的3倍与这个数的2倍的和是30,求这个数.解:设这个数是x.根据题意,得3x+2x=30.解得x=6.答:这个数是6.2.据某统计数据显示,在我国的700座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数是严重缺水城市数的4倍,一般缺水城市数是严重缺水城市数的2倍,求严重缺水的城市有多少座?解:设严重缺水的城市有x座.根据题意,得4x+2x+x=700.解得x=100.答:严重缺水的城市有100座.3.蜘蛛有8条腿,蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有2x只,根据题意,得8x+6×2x=120.解得x=6.所以蜻蜓有:6×2=12(只).答:蜘蛛有6只,蜻蜓有12只.05课堂小结如何列方程?分哪些步骤?(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程.第3课时 利用移项解一元一次方程01 教学目标1.经历利用等式的性质解一元一次方程的过程,通过观察、比较、归纳出移项的法则.2.能用移项解一元一次方程.02 预习反馈阅读教材P88~89“问题2及例3”,完成下列内容.1.把等式一边的某项变号后移到另一边,叫做移项.2.补全下列解方程的过程:(1)5x -8=-3x -2;解:移项,得5x +3x =-2+8.合并同类项,得8x =6.系数化为1,得x =34.(2)3x +7=32-2x.解:移项,得3x +2x =32-7. 合并同类项,得5x =25.系数化为1,得x =5.03 例题讲解例1 (教材P89例3变式)解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)x -2x =1-23x ;(4)x -3x -1.2=4.8-5x. 解:(1)x =52. (2)x =1. (3)x =-3. (4)x =2.【点拨】 移项时要改变项的符号,通常把含未知数的项移到方程的左边,而常数项移到方程的右边.【跟踪训练】 解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(3)4x +5=3x +3-2x ;解:移项,得4x -3x +2x =-5+3.合并同类项,得3x =-2.系数化为1,得x =-23.(4)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.04 巩固训练1.下列变形过程中,属于移项的是(C)A .由3x =-1,得x =-13B .由x 4=1,得x =4C .由3x +5=0,得3x =-5D.由-3x+3=0,得3-3x=02.对方程2x-3+x=6进行移项,下列正确的是(C)A.2x-x=6+3 B.2x-x=6-3C.2x+x=6+3 D.2x+x=6-33.方程3x+1=2x的解是(A)A.x=-1 B.x=1 C.x=-2 D.x=2 4.解下列方程:(1)5x=3x-12;(2)8x-5=7x+2;(3)12x-7=8x-3;(4)7y+8=2y-5-3y.解:(1)x=-6.(2)x=7.(3)x=1.(4)y=-13 8.05课堂小结1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?2.移项的“两注意”:(1)“两变”,即一变位置(从方程的一边移到另一边),二变符号,不要只变位置而不变符号;(2)要与交换律加以区别,在方程的同一边交换项的位置时,符号不变.第4课时利用移项解一元一次方程的实际问题01教学目标经历用“表示同一个量的两个不同的式子相等”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P90“例4”,完成下列内容.某果园12的面积种植了苹果树,14的面积种植了葡萄树,其余40 000 m 2的面积种植了桃树.求这个果园的面积.解:设这个果园的面积是x m 2,根据题意,得12x +14x +40 000=x .解得x =160__000.答:这个果园的面积是160__000__m 2.03 例题讲解例 (教材P90例4变式)将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友? 解:设这个班共有x 名小朋友.根据题意,得2x +8=3x -12,解得x =20.答:这个班共有20名小朋友.【点拨】 用“表示同一个量的两个不同的式子相等”列一元一次方程解决实际问题的步骤:(1)设两个未知量中的一个为未知数x ;(2)用含x 的两个不同式子表示另一个未知量;(3)建立一元一次方程;(4)解方程;(5)检验,作答.【跟踪训练】 清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.04巩固训练1.用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?解:设小拖拉机每小时耕地x亩.根据题意,得30-x=1.5x.解得x=12.答:小拖拉机每小时耕地12亩.2.学校举办秋季田径运动会,八年级(1)班班委会为班上参加比赛的运动员购买了8箱饮料,如果每人发2瓶,那么剩余16瓶;如果每人发3瓶,那么少24瓶.问该班有多少人参加比赛?解:设该班有x人参加比赛.依题意,得2x+16=3x-24.解得x=40.答:该班有40人参加比赛.3.根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在高x m.根据题意,得3x+1=x+4.解得x=1.5.所以x+4=5.5.答:梅花鹿现在高1.5 m,长颈鹿现在高5.5 m.05课堂小结1.学生试述本节课学了哪些内容?2.本节课讨论的问题中的相等关系又有何共同特点?。
解一元一次方程(1)

4.2解一元一次方程(1)班级姓名学号学习目标:1.利用天平,通过观察,分析得出等式的两条性质;会利用等式的两条性质解方程;2.通过具体事例,结合等式的性质,能够归纳出解方程的一种常用形式;学习难点:了解等式的两条性质,并能运用着两条性质解方程。
教学过程:一、创设情境,引入新课问题一:(1)如何得到蓝色小球的质量呢?你会列出方程吗?列出的方程是一元一次方程吗?二、合作质疑,探索新知问题二:(1)通过填表,得到方程的解得定义。
问题三:(1)可以用天平图形来示意2x+1=5这个方程吗?(2)观察2 x+1=5的天平示意图,你可以用天平表示2x=4这个方程吗?怎么做呢?仔细观察你有什么新发现?(3)通过天平平衡的演示,方程3x=2+2x是怎么变形的?天平与等式有什么共同的地方呢?(4)由天平的平衡性质,你能类别出等式的性质吗?三、自主归纳,形成方法1什么叫方程的解?什么叫解方程?2天平两边同时添加或减少相同的砝码,从天平平衡出发,你能得到等式的性质吗?巩固练习:1.用适当的数或整式填空,使所得结果仍为等式,并说明依据是什么?(1)如果2=5+x , 那么x=————(2)如果6x=5x-3 ,那么6x-=-3(3)如果y = 4 , 那么y =————2.判断下列变形是否正确?(1)由x+5 = y+5 ,得x = y ()(2)由2x-1 = 4 ,得 2x = 5 ()(3)由2x = 1 ,得x = 2 ()(4)由3x =2x,得 3= 2 ()3. 利用等式性质,解下列方程(写出检验过程):(1)x+2=-6(2)-3x= 3-4x(3) -5-x = 3(4)-6x = 2四、课堂小结,感悟收获通过以上的巩固,你觉得方程的解得最终形式是什么呢?【课后作业】班级 姓名 学号一、选择题1 下列方程中,解为 x=2的是( )A . 3x-2=3 B. 4-2(x-1)=1C. -x+6=2xD. x-1=02 下列变形是根据等式的性质的是( )A .由2x ﹣1=3得2x=4 B.由3x-5=7得 3x=7-5C .由-3x=9得 x=3 D.由2x ﹣1=3x 得5x=﹣13 解方程41x=31,正确的是( )34; D .41x=31, x= 43D .-2)__________.4 当m= __________时,方程2x+m=x+1的解为x=-4.当a= ____________时,方程3x 2a-2=4是一元一次方程.5 求作一个方程,使它的解为-5,且未知数的系数为2,这个方程为__________.三、解下列方程(1)6x=3x -12 (2)2y ―21=21y ―3(3)-2x=-3x+8 (4)56=3x+32-2x四 综合练习1、2a —3x=12是关于x 的方程.在解这个方程时,粗心的小虎误将-3x 看做3x ,得方程的解为x=3.请你帮助小虎求出原方程的解.)| 的括号中分别填入一个数,使。
解一元一次方程(1)

3 , 两个 有理 数 , “ . y是 则 与 y的和 的 等 1 于 4 , 式子 表示 为 ( ”用 ) .
A ++ 4 . y}=
B. + 1 y=4
8 如 果 方 程 +口= 一1的解 是 =一 . . 4 求
3 口一2的值是 .
c ( . +y = ) 4
C 由 +2 Y . . +2 得 =Y D 由 一 x=一 y 得 =一 . 3 3。 y
22 (x+1 一— )
去 括号 . 得
维普资讯
@
维普资讯
一
元
.
一
次 方 程 的 应 用 例 析 (题 在 第 4 页 )
D. Ⅱ a = 3 , 口=3 女果 2 a男 么
D 22 . (x一1 一( +3 ) - ) 1 x =- 4
2 若 方 程 3 一4=5 ( . 口为 已知 数 , 为未 知 数) 是一元 一 次方程 , a等 于 ( 则
A. 意有理 数 任
C.1 B. 0
6 在 下 列式 子 中 , 方程 的有 . 是 写序号 即 可 ) .
) .
B. 一1
B = 变 += . } 成 12 竺
C - y=一 .3 7变 成 1y=3 5 5
C. 1
D. 3 一
1 解 方 程 .
上 一
=_ 4时
,
去分 母
5 运用等式性质进行 的变形 , . 正确的是(
A. 如果 口 。 么 n =b 那 +c =b—c
一
C. ≠ 一1
D. ≠ 1
; 时再 根 据 这
_
.
.
~
一
,
6 =一 。 2是 下 列 某 一 方 程 的解 .这 个 方 程
【13】第13讲 解一元一次方程01

【知识衔接】【新课导学】知识点一 等式的基本性质【知识梳理】 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等. 如果a =b ,那么a ±c =b ±c . 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb. 【例题精讲】典例1 利用等式的性质解下列方程:(1) x +7=26; (2) -5x =20; (3) -31x -5=4.典例2 根据等式性质,下列结论正确的是( ) A .如果﹣2a =2b ,那么a =﹣b B .如果a ﹣2=2﹣b ,那么a =﹣bC .如果2a =b ﹣2,那么a =bD .如果2a =12b ,那么a =b变式1.在对方程2x−13+1=2的下列变形中,应用了等式的性质2变形的是( )A .13(2x −1)+1=2 B .(2x ﹣1)+3=6 C .2x−13=1 D .2x−13−1=0变式2.下列变形符合等式性质的是( ) A .如果2x ﹣3=7,那么2x =7﹣3 B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣2解一元一次方程01第十三讲专题13ZHUAN TI SHISAN小学阶段:利用等式的性质1解方程:x-8=9 解,方程两边同时加8得 x-8+8=9+8x=17初中阶段:利用等式的性质1还可以在方程的两边同时加上(或减去)同一个式子。
例如:2x+3=x-5解:等式两边同时减(x+3),得 2x+3-(x+3)=x-5-(x+3)x=8知识点二 利用合并同类型解方程【知识梳理】合并含有未知数的同类项时,运用乘法分配律把未知数的系数相加,未知数及其指数不变,合并同类项在解一元一次方程中起到化简的作用合并同类项是一种恒等变形,它使方程变得简单,更接近x=a (a 为常数)的形式 【例题精讲】 典例3 解下列方程: (1) 2x -25x =6-8 (2) 7x -2.5x +3x -1.5x =-15×4-6×3典例4有一列数,按一定的规律排列成1,-3,9,-27,81,-243,…. 其中某三个相邻数的和是-1701,这三个数各是多少?变式3. 解下列方程: (1) 5x -2x =9; (2)7232=+xx ; (3) -3x +0.5x =10; (4) 7x -4.5x =2.5×3-5.知识点三 用移项解方程【知识梳理】像上面那样把等式一边的某项变号后移到另一边,叫做移项. 45145202543254203=→-=-→-=-→-=+x x x x x x 系数化为合并同类项移项【例题精讲】 典例5 解下列方程:(1) 3x +7=32-2x (2) x -3=23x +1 (3) 6x -7=4x -5; (4) 21x -6=43x .【课后练习】一.精心选一选(共9小题,每小题3分,共27分)1.方程﹣3x﹣4=0解是()A.x=−43B.x=34C.x=43D.x=−342.已知x=2是关于x的方程7x﹣a=5的解,则a的值等于()A.﹣19 B.﹣9 C.9 D.19 3.方程18=5﹣x的解为()A.﹣13 B.13 C.23 D.﹣23 4.关于x的方程kx﹣3=2x的解是整数,则整数k的可能值有()A.1个B.2个C.3个D.4个5.由2x﹣7=3x+2,得2x﹣3x=2+7,在此变形中方程的两边同时加上()A.3x+7 B.﹣3x+7 C.3x﹣7 D.﹣3x﹣7 6.若x=﹣3是一元一次方程2(x+k)=5(k为实数)的解,则k的值是()A.−12B.12C.−112D.1127.若﹣5x2y m﹣3与x n﹣1y是同类项,则方程nx﹣m=5的解是()A.x=4 B.x=3 C.x=2 D.x=18.某同学解方程4x﹣3=□x+1时,把“□”处的系数看错了,解得x=4,他把“□”处的系数看成了()A.3 B.﹣3 C.4 D.﹣49.下列运用等式性质进行的变形中,正确的是()A.若a=b,则a+5=b﹣5 B.若a=b,则2a=3bC.若a+b=2b,则a=b D.若a=b+2,则2a=2b+2二.细心填一填(共6小题,每销题4分,共24分)10.解方程中有一步变形叫“移项”,移项的依据是.11.已知x=﹣3是方程(k+2)x﹣k﹣x=5的解,则k的值是.12.假设“▲、●、■”分别表示三种不同的物体.如图,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放个■.13.若方程3x+a=b的解是x=1,则关于未知数y的方程6y﹣2b+18+2a=0的解是y=.14.已知5a+2b=3b+10,利用等式性质可求得10a﹣2b的值是.15.若m是方程3x﹣2=2x+1的解.则30m+10的值为.三.解答题(共49分)16.(30分)解方程(1)7x﹣4=2(x+3)(2)2+24﹣x=3x (3)y﹣320﹣2y=10;(4)10x+9=12x﹣1;(5)2﹣3x=5﹣2x (6)5x﹣4=7x+6;17.(6分)代数式﹣x+4比5x多2,求x.18.(6分)已知:关于x的方程m﹣mx-3=2x的解与方程3y+7=﹣2y+2的解相等,求m的值.19.(7分)【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=﹣3;当x+5<0时,原方程可化为:x+5=﹣2,解得x=﹣7.所以原方程的解是x=﹣3或x=﹣7.【我会解】解方程:|3x﹣2|﹣5=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3x+20=4x-25
根据等式性质1,得
3x-4x+20=4x-4x-25 3x-4x+20=-25
3x-4x+20-20=-25-20 3x-4x=-25-20
练习:81页(1)(2)
答案:(1)x=1
(2)x=-24
例1:解方程3x+7=32-2x
解:移项,得 合并,得 系数化为1,得 3x+2x=32-7 5x=25 x=5
3x+20=4x-25
还记得 移项 (还原 )
“对消” 3x-4x=-25-20 与“还 (对消 ) 合并同 原”吗?
类项 -x=-3X-2
(2)-3X-5=-X+6
有一个班的同学去划船,他们算了一 下,如果增加一条船,正好每条船坐 6人,如果送还 一条船 ,正每条船 坐9人,问这个班共多少同学?
3.2.2 解一元一次方程(一)
第2课时 ——移项
朱立平
复习
(1)X+3X=-16 (2)16y-2.5y-7.5y=5
问题2:把一些图书分给某班学生 相等关系2: 阅读,如果每人分3本,则剩余20 本;如果每人分 4本,则还缺25 表示同一种关系的两个式子相等 本.这个班有多少学生?
解:设这个班有x名学生,则 +剩余的=总数 共分出的 3x+20=4x-25 第二种: 3x-4x=-25-20 -x=-45 x=45 -还缺的 =总数 需要的 答:这个班有45人。
框图
共分出的 第一种: +剩余=需要的-还缺的
20 4x
3x+20=4x-25 根据等式性质1,得
3x+20-20=4x-25-20 3x=4x-25-20 3x-4x=4x-4x-25-20
3x-4x=-25-20
3x+20=4x-25
3x-4x=-25-20
把等式一 边的某项 变号后移 到另一边, 叫做移 项。
今天,你都有哪些收获? 3x+20=4x-25 移项 (还原) 3x-4x=-25-20 (对消) 合并同 -x=-45 类项 系数化为1 x=45
相等关系2:
表示同一种 关系的两个 式子相等
作业: 课本第91页习题3.2第 3
、
练习:
94页7 8 9 10 11