解一元一次方程步骤以及注意事项

合集下载

一元一次方程的解法基础知识讲解

一元一次方程的解法基础知识讲解

一元一次方程的解法(基础)知识讲解撰稿:孙景艳 审稿:赵炜【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练在列方程时确定等量关系.【要点梳理】知识点一、解一元一次方程的一般步骤变形名称 具体做法 注意事项去分母 在方程两边都乘以各分母的最小公倍数 (1)不要漏乘不含分母的项 (2)分子是一个整体的,去分母后应加上括号去括号 先去小括号,再去中括号,最后去大括号 (1)不要漏乘括号里的项 (2)不要弄错符号移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号 (2)不要丢项 合并同类项把方程化成ax =b (a ≠0)的形式 字母及其指数不变 系数化成1 在方程两边都除以未知数的系数a ,得到方程的解b x a=. 不要把分子、分母写颠倒 要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行。

(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 知识点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-。

2。

含字母的一元一次方程此类方程一般先化为一元一次方程的最简形式ax =b ,再分三种情况分类讨论:(1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解.【典型例题】 类型一、解较简单的一元一次方程1.解下列方程(1)345m m -=- (2)—5x+6+7x =1+2x —3+8x 【答案与解析】 解:(1)移项,得345m m -+=-.合并,得245m =-.系数化为1,得m =—10. (2)移项,得-5x+7x -2x —8x =1-3—6.合并,得—8x =—8.系数化为1,得x =1.【点评】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b (a ≠0).(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a =. 举一反三:【变式】下列方程变形正确的是( ).A .由2x —3=-x —4,得2x+x =—4—3B .由x+3=2—4x ,得5x =5C .由2332x -=,得x =-1 D .由3=x —2,得—x =-2-3【答案】D .类型二、去括号解一元一次方程【高清课堂:一元一次方程的解法388407去括号解一元一次方程】2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程.【答案与解析】(1)去括号得:42107x x +=+移项合并得:65x -=解得:56x =- (2)去括号得:32226x x --=-移项合并得:47x -=-解得:74x = 【点评】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“—”,各项均变号.举一反三:【变式】(四川乐山)解方程: 5(x -5)+2x =—4.【答案】解: 去括号得:5x —25+2x =—4移项合并得: 7x =21()()1221107x x +=+()()()232123x x -+=-解得: x =3.类型三、解含分母的一元一次方程3.解方程:4343431623x x x +++++=. 【答案与解析】解法1:去分母,得(4x+3)+3(4x+3)+2(4x+3)=6,去括号,得4x+3+12x+9+8x+6=6.移项合并,得24x =-12,系数化为1,得12x =-. 解法2:将“4x+3”看作整体,直接合并,得6(4x+3)=6,即4x+3=1,移项,得4x =—2,系数化为1,得12x =-. 【点评】对于解法l :(1)去分母时,“1"不要漏乘分母的最小公倍数“6";(2)注意适时添括号3(4x+3)防止3×4x+3.对于解法2:先将“4x+3"看作一个整体来解,最后求x . 举一反三:【高清课堂:一元一次方程的解法388407 解含分母的一元一次方程】【变式】22511346x x x -+--=- 【答案】解:去分母得:4(2)3(25)2(1)12x x x --+=--去括号得:486152212x x x ---=--合并同类项,得:49x -=系数化为1,得94x =-. 类型四、解较复杂的一元一次方程 4.解方程:0.170.210.70.03x x --= 【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误. 【答案与解析】原方程可以化成:101720173x x --=. 去分母,得:30x -7(17-20x )=21.去括号、移项、合并同类项,得:170x =140.系数化成1,得:1417x =. 【点评】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数,要区分开.5。

用一元一次方程解决问题的一般步骤

用一元一次方程解决问题的一般步骤

用一元一次方程解决问题的一般步骤
我们要了解使用一元一次方程解决问题的步骤。

一元一次方程是一个基础的数学工具,它可以用来解决许多实际问题。

假设我们有一个未知数 x,我们想要找到这个 x 的值来满足给定的条件。

根据题目,我们可以建立一个方程来表示这个问题。

例如,如果问题是:“一个数的两倍比这个数大3”,那么方程可以表示为:2x = x + 3。

用数学方程,我们可以表示为:
1.2x = x + 3
现在我们要来解这个方程,找出 x 的值。

计算结果为:x = 3
所以,满足给定条件的 x 的值为:3。

1 / 1。

一元一次方程的解法(基础)知识讲解

一元一次方程的解法(基础)知识讲解

一元一次方程的解法(基础)知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法.【要点梳理】要点一、解一元一次方程的一般步骤变形名称 具体做法 注意事项去分母 在方程两边都乘以各分母的最小公倍数 (1)不要漏乘不含分母的项 (2)分子是一个整体的,去分母后应加上括号去括号 先去小括号,再去中括号,最后去大括号 (1)不要漏乘括号里的项 (2)不要弄错符号移项 把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号 (2)不要丢项 合并同类项把方程化成ax =b (a ≠0)的形式 字母及其指数不变 系数化成1 在方程两边都除以未知数的系数a ,得到方程的解b x a=. 不要把分子、分母写颠倒 要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆. 要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论:(1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解.【典型例题】 类型一、解较简单的一元一次方程1.(2015•广州)解方程:5x=3(x ﹣4)【答案与解析】解:方程去括号得:5x=3x ﹣12,移项合并得:2x=﹣12,解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b (a ≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a =. 举一反三:【变式】下列方程变形正确的是( ).A .由2x -3=-x -4,得2x+x =-4-3B .由x+3=2-4x ,得5x =5C .由2332x -=,得x =-1 D .由3=x -2,得-x =-2-3【答案】D类型二、去括号解一元一次方程【高清课堂:一元一次方程的解法388407去括号解一元一次方程】2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程.【答案与解析】(1)去括号得:42107x x +=+移项合并得:65x -=解得:56x =- (2)去括号得:32226x x --=-移项合并得:47x -=- 解得:74x = 【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号.举一反三:【变式】解方程: 5(x -5)+2x =-4.【答案】解: 去括号得:5x -25+2x =-4.移项合并得: 7x =21.解得: x =3.类型三、解含分母的一元一次方程()()1221107x x +=+()()()232123x x -+=-3.解方程:4343431 623x x x+++++=.【答案与解析】解法1:去分母,得(4x+3)+3(4x+3)+2(4x+3)=6.去括号,得4x+3+12x+9+8x+6=6.移项合并,得24x=-12,系数化为1,得12x=-.解法2:将“4x+3”看作整体,直接合并,得6(4x+3)=6,即4x+3=1,移项,得4x=-2,系数化为1,得12x=-.【总结升华】对于解法l:(1)去分母时,“1”不要漏乘分母的最小公倍数“6”;(2)注意适时添括号3(4x+3)防止出现3×4x+3.对于解法2:先将“4x+3”看作一个整体来解,最后求x.举一反三:【变式】(2015•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122 ()22233 x x x-+=-再去中括号得:11122 24433 x x x-+=-移项,合并得:511 1212x-=-系数化为1,得:115 x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.。

解方程的方法与技巧

解方程的方法与技巧

解方程的方法与技巧在数学学习中,解方程是一个常见而重要的技能。

无论是在初中、高中还是大学阶段,解方程都是一个必不可少的环节。

本文将介绍一些解方程的方法与技巧,帮助读者更好地掌握这一技能。

一、一元一次方程的解法1.平衡法:对于形如a + x = b的方程,可以通过平衡法来解。

我们需要通过某种操作,使得方程两边的量相等,从而求得x的值。

例如,对于方程3 + x = 8,我们可以通过减去3的操作,得到x = 5的解。

2.移项法:对于形如ax + b = c的方程,我们可以通过移项的方式将x移到一边,将常数移到另一边,从而求得x的值。

例如,对于方程2x + 3 = 11,我们可以通过减去3再除以2的操作,得到x = 4的解。

3.消元法:对于形如ax + by = c和dx + ey = f的方程组,我们可以通过消元的方式将其中一个变量消去,从而得到只含有一个变量的方程。

然后,可以使用平衡法或移项法解得该变量的值,进而求得另一个变量的值。

二、一元二次方程的解法1.公式法:对于形如ax² + bx + c = 0的方程,我们可以使用求根公式来解。

根据二次方程的求根公式:x = (-b ± √(b² - 4ac)) / (2a),我们可以求得方程的解。

需要注意的是,方程的解可能为实数或复数,取决于判别式b² - 4ac的值。

2.配方法:对于形如ax² + bx + c = 0的方程,我们可以使用配方法将其转化为一个完全平方的形式,从而求得方程的解。

具体步骤可以参考教材或相关资料,不再赘述。

需要注意的是,配方法在某些情况下可能会得到复数解。

三、多项式方程的解法1.因式分解法:对于形如x³ - 3x² + 2x = 0的多项式方程,我们可以尝试使用因式分解来解得方程的解。

找到方程中的公因式,并将其分解为两个或多个因式的乘积,从而求得方程的解。

2.长除法:对于形如x⁴ + 3x³ + 2x² + x + 1 = 0的多项式方程,我们可以使用长除法来分解方程,并求得方程的解。

解方程的步骤及格式

解方程的步骤及格式

解方程的步骤及格式
解方程的步骤包括去分母、去括号、移项、合并同类项和化系数为1。

格式上需要注意移项要变号,移项后不含x的项移到等号的右边,移项后含x的项移到等号的左边。

具体步骤如下:
1. 有分母先去分母。

2. 有括号就去括号。

3. 需要移项就进行移项。

4. 合并同类项。

5. 系数化为1求得未知数的值。

以上是解一元一次方程的一般步骤,也可以用于其他简单的一元一次方程和二元一次方程组。

另外,解方程的方法还包括估算法、应用等式的性质、合并同类项、移项、去括号、公式法和函数图像法等。

在解方程时,需要根据方程的特点选择合适的方法,以达到快速准确的解题效果。

最后,需要注意解方程和检验的注意事项,即所有的方程都能用直接去分母的方法解答,但有的题目繁杂,不如用去括号的方法简单。

解方程时,需要把求得的x的值代入原方程进行检验,以确保所求的x的值就是原方程的解。

一元一次方程 的解法(提高)__一元一次方程的解法(提高)知识讲解

一元一次方程 的解法(提高)__一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解责编:康红梅【学习目标】1.熟悉解一元一次方程的一般步骤,理解每步变形的依据;2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3.进一步熟练掌握在列方程时确定等量关系的方法.【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号)(1)移项要变号(2)不要丢项合并同类项把方程化成ax =b (a ≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a ,得到方程的解.b x a=不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为的形式,再分类讨论:ax b c +=(1)当时,无解;(2)当时,原方程化为:;(3)当时,原0c <0c =0ax b +=0c >方程可化为:或.ax b c +=ax b c +=-2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论:(1)当a ≠0时,;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0bx a=时,方程无解.【典型例题】类型一、解较简单的一元一次方程1.(2014秋•新洲区期末)关于x 的方程2x ﹣4=3m 和x+2=m 有相同的解,则m 的值是( )A.10 B.-8 C.-10 D.8【答案】B .【解析】解:由2x ﹣4=3m 得:x=;由x+2=m 得:x=m ﹣2由题意知=m ﹣2解之得:m=﹣8.【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.举一反三:【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正? 3x+2=7x+5解:移项得3x+7x =2+5,合并得10x =7.,系数化为1得.710x =【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x 移到方程左边应变为-7x ,方程左边的2移到方程右边应变为-2.正确解法:解:移项得3x -7x =5-2, 合并得-4x =3,系数化为1得.34x =-类型二、去括号解一元一次方程2. 解方程:.112[(1)](1)223x x x --=-【答案与解析】解法1:先去小括号得:.11122[]22233x x x -+=- 再去中括号得:.1112224433x x x -+=-移项,合并得:.5111212x -=- 系数化为1,得:.115x =解法2:两边均乘以2,去中括号得:.14(1)(1)23x x x --=- 去小括号,并移项合并得:,解得:.51166x -=-115x =解法3:原方程可化为: .112[(1)1(1)](1)223x x x -+--=-去中括号,得.1112(1)(1)(1)2243x x x -+--=- 移项、合并,得.51(1)122x --=- 解得.115x =【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x -1),因此将方程左边括号内的一项x 变为(x -1)后,把(x -1)视为一个整体运算.3.解方程:.1111111102222x ⎧⎫⎡⎤⎛⎫----=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【答案与解析】解法1:(层层去括号)去小括号.111111102242x ⎧⎫⎡⎤----=⎨⎬⎢⎥⎣⎦⎩⎭去中括号.11111102842x ⎧⎫----=⎨⎬⎩⎭去大括号.11111016842x ----= 移项、合并同类项,得,系数化为1,得x =30.115168x =解法2:(层层去分母)移项,得.111111112222x ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭两边都乘2,得.1111112222x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦移项,得.111113222x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦ 两边都乘2,得.1111622x ⎛⎫--= ⎪⎝⎭移项,得,两边都乘2,得.111722x ⎛⎫-= ⎪⎝⎭11142x -=移项,得,系数化为1,得x =30.1152x =【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.举一反三:【变式】解方程.111116412345x ⎧⎫⎡⎤⎛⎫--+=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭【答案】解:方程两边同乘2,得.1111642345x ⎡⎤⎛⎫--+= ⎪⎢⎥⎝⎭⎣⎦移项、合并同类项,得.111162345x ⎡⎤⎛⎫--=- ⎪⎢⎥⎝⎭⎣⎦两边同乘以3,得.1116645x ⎛⎫--=- ⎪⎝⎭移项、合并同类项,得.111045x ⎛⎫-= ⎪⎝⎭两边同乘以4,得.1105x -=移项,得,系数化为1,得x =5.115x =类型三、解含分母的一元一次方程【高清课堂:一元一次方程的解法388407解较复杂的一元一次方程】4.解方程:.4 1.550.8 1.20.50.20.1x x x----=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】解法1:将分母化为整数得:.40155081210521x x x----=约分,得:8x -3-25x+4=12-10x .移项,合并得:.117x =-解法2:方程两边同乘以1,去分母得: 8x -3-25x+4=12-10x .移项,合并得:.117x =-【总结升华】解此题一般是先将分母变为整数,再去分母,如解法1;但有时直接去分母更简便一些,如解法2.举一反三:【变式】解方程.0.40.90.30.210.50.3y y++-=【答案】解:原方程可化为.4932153y y++-= 去分母,得3(4y+9)-5(3+2y )=15.去括号,得12y+27-15-10y =15.移项、合并同类项,得2y =3.系数化为1,得.32y =类型四、解含绝对值的方程5.解方程:3|2x |-2=0 .【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x 的值.【答案与解析】解:原方程可化为: .223x =当x ≥0时,得,解得:,223x =13x = 当x <0时,得,解得:,223x -=13x =-所以原方程的解是x =或x =.1313-【总结升华】此类问题一般先把方程化为的形式,再根据()的正负分ax b c +=ax b +类讨论,注意不要漏解.举一反三:【变式】(2014秋•故城县期末)已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )A.B. 2C.D.3【答案】B解:∵|x ﹣|=0,∴x=,把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣),解之得:m=2.类型五、解含字母系数的方程6. 解关于的方程: x 1mx nx -=【答案与解析】解:原方程可化为:()1m n x -=当,即时,方程有唯一解为:;0m n -≠m n ≠1x m n=-当,即时,方程无解.0m n -=m n =【总结升华】解含字母系数的方程时,先化为最简形式,再根据系数是否为零ax b =x a 进行分类讨论.【高清课堂:一元一次方程的解法388407解含字母系数的方程】举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴ 40k -≠原方程的解为:为正整数,∴应为6的正约数,即可为:1,2,3,64x k =-4k -4k -6∴为:5,6,7,10k 答:自然数k 的值为:5,6,7,10.。

解一元一次方程的一般步骤

解一元一次方程的一般步骤
合并同类项,得:
9y=11
系数化为1,得:
y=11/9
化为1
(1)方程两边都除以系数本身;
(2)方程两边都乘以系数的倒数。
等式基本性质2
(1)符号
(2)分子、分母不要弄
颠倒
例:解方程y-(y-1)/2=1-(2y-3)/5
解:去分母,得:
10y-5(y-1)=10-2(2y-3)
去括号,得:
10y-5y+5=10-4y+6
移项,得:
10y-5y+4y=10+6-5
步骤名称
具体做法
依据
注意事项
去分母
方程两边都乘以各分母的
最小公倍数。
等式基本性质2
Байду номын сангаас不要漏乘
去括号
将括号外面的数与括号里面的每一项相乘。
分配律
(1)不要漏乘;
(2)符号
移项
把未知项移到方程的一边,
已知项移到另一边。
等式基本性质1
移项要变号
合并
同类项
字母和字母的指数不变;
系数相加。
合并同类项法则
符号
系数

解一元一次方程的九种技巧

解一元一次方程的九种技巧

解一元一次方程的九种技巧初一同学在刚刚学习解一元一次方程时,为牢固掌握其解法,按照课本上所总结的五个步骤来做是完全必要的.而在较熟练后就要根据方程的特点灵活安排求解步骤.现以义务制初中《代数》第一册(上)的部分题目为例介绍解一元一次方程的一些技巧,供同学们参考.1.巧用乘法例1 方程0.25x=4.5.分析 0.25·4=1,故两边同乘以4要比两边同除以0.25简便得多.解两边同乘以4,得x=18.2.巧用对消法分析不要急于去分母,注意到632155x x---=,两边消去这一项可避免去分母运算。

3.巧用观察法例3解方程分析原方程可化为1233234y y y+++++=,不难发现,当1y=时,左边=右边。

又原方程是一元一次方程,只能有一解,故原方程的解是y=1.解(略)4.巧用分数加减法法则∴ z=-1.5.逆用分数加减法法则解原方程化为∴ x=0.6.逆用乘法分配律例6解方程278(x-3)+463(6-2x)-888(7x-21)=0.分析直接去括号较繁,注意到左边各项均含有因式x-3而逆用分配律可巧解本题.解原方程可化为278(x-3)-463·2(x-3)-888·7(x-3)=0,即 (x-3)(278-463·2-888·7)=0,∴ x-3=0,于是x=3.7.巧用去括号法则去括号一般是从内到外,但有时反其道而行之即由外到内却能巧辟捷径.分析注意到23132-⋅=,则先去中括号可简化解题过程。

8.巧用分数基本性质例8解方程分析直接去分母较繁,观察发现本题有如下特点:①两个常数项移项后合并得整数; ②0.0220.02x -的分子、分母约去因数2后,两边的分母相同, 解 原方程可化为460.0110.010.01x x --=-。

去分母,得460.010.01x x -=--。

例9 解方程分析 根据分数基本性质,本题可将化分母为整数和去分母同时完成.解 由分数基本性质,得即 8x-3-25x +4=12-10x ,思考 例8可以这样解吗?请不妨试一试.9.巧用整体思想整体思想就是指从全局着眼,注重问题的整体结构的特殊性,把某些表面看来毫不相关而实质紧密相联的数或式看成一个整体来解决问题的一种思想方法.例10 解方程3{2x-1-[3(2x-1)+3]}=5(第244页第1③题)解 把2x-1看作一个整体,去大、中括号,得 3(2x-1)-9(2x-1)-9=5,整体合并,得-6(2x-1)=14,即64x -=,故23x =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元一次方程的一般步骤
一、等式:用等号表示相等关系的式子叫等式。

等式性质1 等式两边加上(或减去)同一个数(或式子),结果仍相等。

等式性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

等式性质3 等式两边同时乘方(或开方),两边依然相等。

等式性质4 等式具有对称性。

若a=b,则b=a。

等式性质5 等式具有对传递性。

如果a=b且b=c,那么a=c。

注意:
(1)、等式中一定含有等号;
(2)、等式两边除以一个数时,这个数必须不为0;
(3)、对等式变形必须同时进行,且是同一个数或式。

二、一元一次方程的概念:只含有一个未知数(元)且未知数的指数是1(次)的方程叫做一元一次方程。

解方程就是求出使方程中等号左右两边相等的未知数的值,能使方程左右两边相等的未知数的值,叫做方程的解
1、写出一个满足下列条件的一元一次方程:①某个未知数的系数是2;②方程的解是3;这样的方程是。

2、若关于x的方程(k-1)x²+x-1=0是一元一次方程,则k= 。

三、列一元一次方程解应用题的一般步骤:
1、审题:弄清题意.
2、找出等量关系:找出能够表示本题含义的相等关系.
3、设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。

(1)、直接设元法,求什么设什么,方程的解就是问题的答案;
( 2)、间接设元法,不是求什么设什么,方程的解并不是问题的答案,需要根据问题中的数量关系求出最后的答案。

4、解方程:解所列的方程,求出未知数的值.
5、检验并作答:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。

四、解一元一次方程的一般步骤和注意事项:
1、去分母:在方程两边都乘分母的最小公倍数。

(1)、没有分母的项不要漏乘(尤其整数项)。

也可以说方程中的每一项都要乘以分母的最小公分母。

(2)、去分母时,应把分子作为一个整体加上括号。

2、去括号:先去小括号,再去中括号,最后去大括号,注意:括号外面是负号时,去括号后,括号内的每一项都要变号。

3、移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(也就是说未知数和常数项各占等号一边,记住:被移项要改变符号。


4、合并同类项:一般左边为几个含有未知数的一次项,把它们合并同类项,右边为几个常数项,把它们合并。

5、系数化为1
把方程化成ax=b(a≠0)的形式系数化成1,在方程两边都除以未知数的系数a,得到方程的解x=b/a。

相关文档
最新文档