§6.1 数列的概念与简单表示法
6-1数列的概念与简单表示法

2020/9/12
§6.1 数列的概念与简单表示法
1.数列的有关概念
概念 数列 数列的项
数列的通项
含义 按照一__定__顺__序___排列的一列数
数列中的_每__一__个__数__
数列{an}的第n项an
通项公式 数列{an}的第n项an与n之间的关系能用公式_a_n_=__f(_n_) 表示,这个公式叫做数列的通项公式
(1)常用方法:观察(观察规律)、比较(比较已知数列)、 归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方 法.
(2)具体策略:①分式中分子、分母的特征;②相邻项的 变化特征;③拆项后的特征;④各项的符号特征和绝对值 特征;⑤化异为同,对于分式还可以考虑对分子、分母各 个击破,或寻找分子、分母之间的关系;⑥对于符号交替 出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.
(2)已知数列{an}的前n项和Sn=n2-9n,则其通项an= ________;若它的第k项满足5<ak<8,则k=________.
角度二 形如an+1=an+f(n),求an
【例4】
设数列{an}满足a1=1,且an+1-an=n+
1(n∈N*),求数列{an}的通项公式.
角度三 形如an+1=Aan+B(A≠0且A≠1),求an 【例5】 已知数列{an}满足a1=1,an+1=3an+2,求数 列{an}的通项公式.
【思维升华】 已知Sn,求an的步骤 (1)当n=1时,a1=S1. (2)当n≥2时,an=Sn-Sn-1. (3)对n=1时的情况进行检验,若适合n≥2的通项则可以 合并;若不适合则写成分段函数形式.
跟踪训练2 (1)已知数列{an}的前n项和Sn=3n2-2n+1, 则其通项公式为________.
6.1数列的概念与简单表示法.doc

4.数列的分类
递增数列 单 递减数列
∀n∈N*,⑨_a_n_+_1_>_a__n
∀n∈N*,⑩_a_n_+_1_<_a_n_
调 常数列
∀n∈N*,an+1=an
性
摆动数列
从第 2 项起,有些项大于它的前一项,有 些项小于它的前一项的数列
周
期 周期数列 ∀n∈N*,存在正整数常数 k,an+k=an 性
有着广泛的应用.若此数列被2整除后的余数构成一个新数列{an},则数列{an} 的前2 020项的和为
A.672
B.673
C.1 347
D.2 020
解析 由数列1,1,2,3,5,8,13,21,34,55,…各项除以2的余数, 可得{an}为1,1,0,1,1,0,1,1,0,1,1,0,…, 所以{an}是周期为3的数列, 一个周期中三项和为1+1+0=2, 因为2 020=673×3+1, 所以数列{an}的前2 020项的和为673×2+1=1 347, 故选C.
3 4 5 6 7 8 9 10 11 12 13 14 15 16
3.已知数列{an}中,a1=1,其前n项和为Sn,且满足2Sn=(n+1)an(n∈N*). (1)求数列{an}的通项公式;
解 ∵2Sn=(n+1)an, ∴2Sn+1=(n+2)an+1, ∴2an+1=(n+2)an+1-(n+1)an, 即 nan+1=(n+1)an,∴na+n+11 =ann, ∴ann=na-n-11=…=a11=1, ∴an=n(n∈N*).
解析 ∵an+1=n+n 1an,a1=2,∴an≠0, ∴aan+n 1=n+n 1. ∴当 n≥2 时,an=aan-n 1·aann- -12·aann--32·…·aa32·aa21·a1 =n-n 1·nn- -21·nn--23·…·12·2=n2. 又 a1=2 也满足上式,所以 an=2n.
数列的概念与简单表示法

第六章 数 列§6.1 数列的概念与简单表示法考点梳理1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的________.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做__________),排在第n 位的数称为这个数列的第n 项.所以,数列的一般形式可以写成__________,其中a n 是数列的第n 项,叫做数列的通项.常把一般形式的数列简记作{a n }.(2)通项公式:如果数列{a n }的__________与序号__________之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数(离散的),当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项__________与它的前一项__________ (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有__________、__________、__________、__________. 2.数列的分类(1)数列按项数是有限还是无限来分,分为__________、__________.(2)按项的增减规律分为__________、__________、__________和__________.递增数列⇔a n +1______a n ;递减数列⇔a n +1_____a n ;常数列⇔a n +1______a n .递增数列与递减数列统称为__________.3.数列前n 项和S n 与a n 的关系已知S n ,则a n =⎩⎪⎨⎪⎧(n =1)_________,(n ≥2)_________.自查自纠:1.(1)项 首项 a 1,a 2,a 3,…,a n ,… (2)第n 项 n (3)函数值 (4)a n a n -1(5)通项公式法(解析式法) 列表法 图象法 递推公式法 2.(1)有穷数列 无穷数列 (2)递增数列 递减数列 摆动数列 常数列 > < = 单调数列 3.S 1 S n -S n -1典型例题讲练类型一 数列的通项公式例题1 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解:(1)偶数项为正,奇数项为负,故通项公式正负性可用(-1)n 调节,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n (6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.故数列的一个通项公式为a n =2n(2n -1)(2n +1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,故数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n-1,故数列的一个通项公式为a n =59(10n -1).变式1 写出下列数列的一个通项公式:(1)-1,12,-13,14,-15,…;(2)3,5,9,17,33,…; (3)23,-1,107,-179,2611,…. (4)1,2,2,4,3,8,4,16,….解:(1)a n =(-1)n ·1n ;(2)a n =2n +1;(3)由于-1=-55,故分母为3,5,7,9,11,…,即{2n +1},分子为2,5,10,17,26,…,即{n 2+1}.符号看作各项依次乘1,-1,1,-1,…,即{(-1)n +1},故a n =(-1)n +1·n 2+12n +1. (4)观察数列{a n }可知,奇数项成等差数列,偶数项成等比数列,∴a n =⎩⎨⎧n +12(n 为奇数),2n 2(n 为偶数).类型二 由前n 项和公式求通项公式例题2 (1)若数列{a n }的前n 项和S n =n 2-10n ,则此数列的通项公式为a n =______________.(2)若数列{a n }的前n 项和S n =2n +1,则此数列的通项公式为a n = .解:(1)当n =1时,a 1=S 1=1-10=-9; 当n ≥2时,a n =S n -S n -1=n 2-10n -[(n -1)2-10(n -1)]=2n -11. 当n =1时,2×1-11=-9=a 1.∴a n =2n -11. 故填2n -11.(2)当n =1时,a 1=S 1=21+1=3; 当n ≥2时,a n =S n -S n -1=(2n +1)-(2n -1+1) =2n -2n -1=2n -1.综上有 a n =⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).故填⎩⎪⎨⎪⎧3(n =1),2n -1(n ≥2).变式2 已知下列数列{a n }的前n 项和S n ,分别求它们的通项公式a n . (1)S n =2n 2-3n ; (2)S n =3n +b.解:(1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5,a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n +b )-(3n -1+b )=2·3n -1. 当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.类型三 由递推公式求通项公式例题3 写出下面各数列{a n }的通项公式.(1)a 1=2,a n +1=a n +n +1;(2)a 1=1,前n 项和S n =n +23a n;(3)a 1=1,a n +1=3a n +2.解:(1)由题意得,当n ≥2时,a n -a n -1=n , ∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,适合上式,因此a n =n (n +1)2+1.(2)由题设知,a 1=1. 当n ≥2时,a n =S n -S n -1=n +23a n -n +13a n -1. ∴a n a n -1=n +1n -1. ∴a na n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘, 得到a n a 1=n (n +1)2.又∵a 1=1,∴a n =n (n +1)2.(3)解法一:(累乘法)a n +1=3a n +2,得a n +1+1=3(a n +1),即a n +1+1a n +1=3,∴a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3. 将这些等式两边分别相乘得a n +1+1a 1+1=3n .∵a 1=1,∴a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1), ∴a n =2×3n -1-1(n ≥2), 又a 1=1也适合上式,故数列{a n }的一个通项公式为a n =2×3n -1-1. 解法二:(迭代法) a n +1=3a n +2,即a n +1+1=3(a n +1)=32(a n -1+1)=33(a n -2+1)=…=3n (a 1+1)=2×3n (n ≥1), ∴a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故数列{a n }的一个通项公式为a n =2×3n -1-1.变式3 写出下面各递推公式表示的数列{a n }的通项公式.(1)a 1=2,a n +1=a n +1n (n +1);(2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=2a n +1.解:(1)∵当n ≥2时,a n -a n -1=1n (n -1)=1n -1-1n,∴当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -2-1n -1+…+⎝⎛⎭⎫12-13+⎝⎛⎭⎫1-12+2=3-1n . 当n =1时,适合.故a n =3-1n .(2)∵a n +1a n =2n ,∴a 2a 1=21,a 3a 2=22,…,a na n -1=2n -1, 将这n -1个等式叠乘, 得a n a 1=21+2+…+(n -1)=2n (n -1)2,∴a n =2n (n -1)2.当n =1时,适合.故a n =2n (n -1)2.(3)由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.类型四 数列通项的性质例题4 已知数列{a n },且a n =(n +1)⎝⎛⎭⎫1011n(n ∈N *).求数列{a n }的最大项.解:因为a n =(n +1)⎝⎛⎭⎫1011n 是积幂形式的式子且a n >0,所以可用作商法比较a n 与a n -1的大小.解:令a na n -1≥1(n ≥2), 即(n +1)⎝⎛⎭⎫1011nn ·⎝⎛⎭⎫1011n -1≥1,整理得n +1n ≥1110,解得n ≤10.令a na n +1≥1,即(n +1)⎝⎛⎭⎫1011n (n +2)⎝⎛⎭⎫1011n +1≥1,整理得n +1n +2≥1011,解得n ≥9.∴从第1项到第9项递增,从第10项起递减.故a 9=a 10=1010119最大.变式4 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060解:易得a n =1n +90n ,运用基本不等式得,1n +90n ≤1290,由于n ∈N *,不难发现当n=9或10时,a n =119最大.故选C.方法规律总结1.已知数列的前几项,求数列的通项公式,应从以下几方面考虑:(1)如果符号正负相间,则符号可用(-1)n 或(-1)n +1来调节.(2)分式形式的数列,分子和分母分别找通项,并充分借助分子和分母的关系来解决. (3)对于比较复杂的通项公式,要借助于等差数列、等比数列和其他方法来解决.2.a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2),注意a n =S n -S n -1的条件是n ≥2,还须验证a 1是否符合a n (n ≥2),是则合并,否则写成分段形式.3.已知递推关系求通项掌握先由a 1和递推关系求出前几项,再归纳、猜想a n 的方法,以及“累加法”“累乘法”等.(1)已知a 1且a n -a n -1=f (n ),可以用“累加法”得: a n =a 1+f (2)+f (3)+…+f (n -1)+f (n ).(2)已知a 1且a na n -1=f (n ),可以用“累乘法”得:a n =a 1·f (2)·f (3)·…·f (n -1)·f (n ).注:以上两式均要求{f (n )}易求和或积. 4.数列的简单性质(1)单调性:若a n +1>a n ,则{a n }为递增数列;若a n +1<a n ,则{a n }为递减数列.(2)周期性:若a n +k =a n (n ∈N *,k 为非零正整数),则{a n }为周期数列,k 为{a n }的一个周期.(3)最大值与最小值:若⎩⎪⎨⎪⎧a n ≥a n +1,a n ≥a n -1, 则a n 最大;若⎩⎪⎨⎪⎧a n ≤a n +1,a n ≤a n -1, 则a n 最小.课后练习1.1,2,7,10,13,…中,219是这个数列的( ) A .第16项 B .第24项 C .第26项 D .第28项解:观察a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n =3n -2.令a n =3n -2=219=76,得n =26.故选C.2.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( )A .2n -1B .n 2C.(n +1)2n 2D.n 2(n -1)2解:设数列{a n }的前n 项积为T n ,则T n =n 2,当n ≥2时,a n =T n T n -1=n 2(n -1)2.故选D.3.数列{a n }满足a n +1+a n =2n -3,若a 1=2,则a 8-a 4=( ) A .7 B .6 C .5 D .4解:依题意得(a n +2+a n +1)-(a n +1+a n )=[2(n +1)-3]-(2n -3),即a n +2-a n =2,∴a 8-a 4=(a 8-a 6)+(a 6-a 4)=2+2=4.故选D.4.已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( )A .{1,2}B .{1,2,3,4}C .{1,2,3}D .{1,2,4}解:B5.在数列{a n }中,a 1=2,a n +1=a n +lg ⎝⎛⎭⎫1+1n ,则a n 的值为( ) A .2+lg nB .2+(n -1)lg nC .2+n lg nD .1+n lg n解法一:∵a n +1-a n =lg n +1n,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lgn n -1+lg n -1n -2+…+lg 21+2=lg ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·32·21+2=lg n +2. 解法二:a n +1=a n +lg(n +1)-lg n ,a n +1-lg(n +1)=a n -lg n ,所以数列{a n -lg n }是常数列,a n -lg n =a 1-lg1=2,a n =2+lg n.故选A.6.若数列{a n }满足a 1=2,a n +1a n =a n -1,则a 2017的值为( )A .-1 B.12C .2D .3解:根据题意,∵数列{a n }满足a 1=2,a n +1a n =a n -1,∴a n +1=1-1a n ,∴a 2=12,a 3=-1,a 4=2,…,可知数列的周期为3,∵2017=3×672+1,∴a 2017=a 1=2.故选C.7.已知数列{a n }满足a s ·t =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.解:令s =t =2,则a 4=a 2×a 2=4,令s =2, t =4,则a 8=a 2×4=a 2×a 4=8.故填8. 8.下列关于星星图案的个数构成一个数列,该数列的一个通项公式是a n =________.解:从题图中可观察星星的个数构成规律,n=1时,有1个;n=2时,有3个;n=3时,有6个;n=4时,有10个;…,∴a n=1+2+3+4+…+n=n(n+1)2.故填n(n+1)2.9.若数列{a n}满足1a n+1-pa n=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是________.解:4依题意可得b n+1=pb n,则数列{b n}为等比数列.又b1b2b3…b99=299=b9950,则b50=2. b8+b92≥2b8·b92=2b50=4,当且仅当b8=b92,即该数列为常数列时取等号.10.已知数列{a n}的前n项和为S n.(1)若S n=(-1)n+1·n,求a5+a6及a n;(2)若S n=3n+2n+1,求a n.解:(1)a5+a6=S6-S4=(-6)-(-4)=-2,当n=1时,a1=S1=1;当n≥2时,a n=S n-S n-1=(-1)n+1·n-(-1)n·(n-1)=(-1)n+1·[n+(n-1)]=(-1)n+1·(2n-1), a1适合此式,∴a n=(-1)n+1·(2n-1).(2)当n=1时,a1=S1=6;当n≥2时,a n=S n-S n-1=(3n+2n+1)-[3n-1+2(n-1)+1]=2·3n -1+2,a 1不适合此式,∴a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.。
数列的概念及简单表示法(高三一轮复习)

所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
2021高考数学(理)人教A版一轮复习学案+作业:第六章 6.1 数列的概念与简单表示法 Word

姓名,年级:时间:§6。
1 数列的概念与简单表示法最新考纲考情考向分析1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2。
了解数列是自变量为正整数的一类特殊函数.以考查S n与a n的关系为主,简单的递推关系也是考查的热点.本节内容在高考中以选择、填空的形式进行考查,难度为低档。
1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式如果数列{a n}的第n项a n与序号n之间的关系能用公式a n =f (n)表示,这个公式叫做数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫做数列的前n项和2。
数列的表示方法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项用公式表示递推公式使用初始值a1和a n+1=f (a n)或a1,a2和a n+1=f (a n,a n-1)等表示数列的方法n n若数列{a n}的前n项和为S n,则a n=错误!4.数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列a n+1>a n其中n∈N*递减数列a n+1〈a n常数列a n+1=a n概念方法微思考1.数列的项与项数是一个概念吗?提示不是,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.数列的通项公式a n=3n+5与函数y=3x+5有何区别与联系?提示数列的通项公式a n=3n+5是特殊的函数,其定义域为N*,而函数y=3x+5的定义域是R,a n=3n+5的图象是离散的点,且排列在y=3x+5的图象上.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ×)(2)所有数列的第n项都能使用公式表达.(×)(3)根据数列的前几项归纳出数列的通项公式可能不止一个.(√)(4)1,1,1,1,…不能构成一个数列.(×)题组二教材改编2.在数列{a n}中,已知a1=1,a n+1=4a n+1,则a3=________。
数列的概念与简单表示法 课件

由数列的前几项求通项公式
[典例]
(1)数列
3 5
,
1 2
,
5 11
,
3 7
,…的一个通项公式是
________.
(2)根据以下数列的前4项写出数列的一个通项公式.
①2×1 4,3×1 5,4×1 6,5×1 7,…;
②-3,7,-15,31,…;
③2,6,2,6,….
[解析] (1)数列可写为:35,48,151,164,…,分子满足:3 =1+2,4=2+2,5=3+2,6=4+2,…,
已知数列{an}的通项公式,判断某一个数是否是数列{an}的 项,即令通项公式等于该数,解关于n的方程,若解得n为正整 数k,则该数为数列{an}的第k项,若关于n的方程无解或有解且 为非正整数解则该数不是数列{an}中的项.
[点睛] (1)数列中的数是按一定顺序排列的.因此,如 果组成两个数列的数相同而排列顺序不同,那么它们就是 不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4 是不同的数列.
(2)在数列的定义中,并没有规定数列中的数必须不 同,因此,同一个数在数列中可以重复出现.例如:1,- 1,1,-1,1,…;2,2,2,….
2.数列的分类
分类标准 名称
含义
按项的 个数
按项的变 化趋势
有穷数列 无穷数列 递增数列
递减数列 常数列 摆动数列
项数_有__限__的数列 项数_无__限__的数列
从第_2_项起,每一项都_大__于__它的前 一项的数列
从第_2_项起,每一项都_小__于__它的前 一项的数列
_各__项__相__等__的数列 从第_2_项起,有些项_大__于__它的前一 项,有些项小__于__它的前一项的数列
数列的概念与简单表示法

课题 数列的概念与简单表示法1、概括数列的概念:(1)按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….(2)数列的一般形式:ΛΛ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项⑴数列的数是按一定顺序排列的,因此,如果组成两个数列的数相同而排列顺序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2、数列的分类:(1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。
无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…(2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列。
递减数列:从第2项起,每一项都不大于它的前一项的数列。
常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列3、数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式. 4、递推公式与数列的通项公式的区别是:(1)通项公式反映的是项与项数之间的关系,而递推公式反映的是相邻两项(或n 项)之间的关系.(2)对于通项公式,只要将公式中的n 依次取1, 2, 3, 4,…即可得到相应的项,而递推公式则要已知首项(或前n 项),才可依次求出其他项.3. 用递推公式求通项公式的方法:观察法、累加法、迭乘法.则项之和为的前若记数列, }{ n n S n a ⎪⎩⎪⎨⎧=≥-=-1)( 2)( 11n S n S S a n n n 题型一、已知通项,求数列的每一项例1 、 根据下面数列 {a n }的通项公式,写出它的前5项:(1)1n na n =+ ()(2)1n n a n =-⋅解:1)在通项公式中依次取 n =1,2,3,4,5,得到数列{a n } 的前5项为.65,54,43,32,21(2)数列 {a n } 的前5项为-1,2, - 3,4, - 5.变式1、根据下面数列{an}的通项公式,写出它的前5项:⑶a n =5×(-1)n+1 5,-5,5,-5,5∴ n n n a a 2211=⋅=-变式5、 根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式.1111(1)0,(21)(2)1,2n n nn n a a a n a a a a ++==+-==+题型五、根据数列和求通项公式例6. 已知数列{a n }的前n 项和为1322++=n n s n ,求n a 。
数列的概念与简单表示法 课件

(4)将数列各项改写为93,939,9939,9 9399,…,分母都是 3, 而分子分别是 10-1,102-1,103-1,104-1,…,
所以 an=13(10n-1).
1.据所给数列的前几项求其通项公式时,需仔细观察分析, 抓住以下几方面的特征:
【解】 (1)数列的前三项:a1=12+2×1-5=-2; a2=22+2×2-5=3; a3=32+2×3-5=10. (2)∵an=n2+2n-5, ∴an+1-an=(n+1)2+2(n+1)-5-(n2+2n-5) =n2+2n+1+2n+2-5-n2-2n+5 =2n+3. ∵n∈N*,∴2n+3>0,∴an+1>an. ∴数列{an}是递增数列.
1.数列的通项公式给出了第 n 项 an 与它的位置序号 n 之间的 关系,只要用序号代替公式中的 n,就可以求出数列的相应项.
2.判断某数值是否为该数列的项,需假定它是数列中的项去 列方程.若方程有正整数解则是数列的一项;若方程无解或解不是 正整数,则不是该数列的一项.
将数列的通项变为“an=n2+2n-5”,第(2)问改为“判断数 列{an}的单调性”.
【解】 (1)各项减去 1 后为正偶数,所以 an=2n+1. (2)每一项的分子比分母少 1,而分母组成数列 21,22,23,24,…, 所以 an=2n2-n 1.
(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各 项绝对值的分母组成数列 1,2,3,4,…;而各项绝对值的分子组成的 数列中,奇数项为 1,偶数项为 3,即奇数项为 2-1,偶数项为 2 +1,所以 an=(-1)n·2+n-1n.
其中,有穷数列是________,无穷数列是________,递增数列 是________,递减数列是________,摆动数列是________,周期数 列是________.(将合理的序号填在横线上)