北师大版1.2 直角三角形 同步训练题(含答案) (2)
1.2 一定是直角三角形吗 北师大版数学八年级上册同步练习(含解析)

1.2 一定是直角三角形吗一、单选题(在下列各题的四个选项中,只有一项是符合题意的.本题共8个小题)1.下列长度的三条线段能组成直角三角形的是()A.B.C.D.2.在三角形中,,,的对边分别为,,,且满足,则这个三角形中互余的一对角是()A.与B.与C.与D.以上都不正确3.在中,若,,,则()A.B.C.D.4.在△ABC中,AB﹦12,BC﹦16,AC﹦20,则△ABC的面积是( )A.120B.160C.216D.965.三角形的三边长a、b、c满足,则此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形6.适合下列条件的△ABC中,直角三角形的个数为()①a,b,c②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25⑤a=2,b=2,c=4.A.2个B.3个C.4个D.5个7.如果△ABC的三边分别为m2-1,2 m,m2+1(m>1)那么()A.△ABC是直角三角形,且斜边长为m2+1B.△ABC是直角三角形,且斜边长为2mC.△ABC是直角三角形,但斜边长需由m的大小确定D.△ABC不是直角三角形8.如图所示,在的正方形网格中,的顶点,,均在格点上,则是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题9.一个三角形的三边长分别为3,4,5,则这个三角形中最短边上的高为______.10.在没有直角工具之前,聪明的古埃及人用如图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中5这条边所对的角便是直角.依据是____.10题图 11题图 14题图11.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成_________个直角三角形.12.若一个三角形的三边长分别为m+1,m+2,m+3,那么当m=____时,这个三角形是直角三角形.13.一个三角形的三边的比为5∶12∶13,它的周长为60cm,则它的面积是______.14.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD 是由4个全等的直角三角形再加上中间的一个小正方形EFGH组成的.已知小正方形的边长是2,每个直角三角形的短直角边长是6,则大正方形ABCD的面积是________.15.小白兔每跳一次为1米,先沿直线跳12次后左拐,再沿直线向前跳5次后左拐,最后沿直线向前跳13次正好回到原来的地方,则小白兔第一次左拐的角度是______________.16.观察下列勾股数:3,4,5;5,12,13;7,24,25;,,.根据你的发现,与之间的关系是_______,_______.三、解答题17.如图:在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.18.在中,D是边上的点,,,,.(1)求证:是直角三角形;(2)求的长.19.如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=20.求:△ABD的面积.20.已知a,b,c为△ABC三边,且满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.21.星期天,两组同学从学校出发去郊游.分组后,第一组同学以1.8千米/时的速度向正北方向直线前进,第二组同学以2.4千米/时的速度向另一个方向直线前进半小时后,两组同学同时停了下来,此时他们相距1.5千米,试回答下面的问题:(1)第二组同学行走的方向如何?(2)如果接下来两组同学以原来的速度相向而行,多长时间后相遇?22.观察下列勾股数:6,8,10;8,15,17;10,24,26;…;,,.根据你的发现,求出当时,,的值.参考答案1.C【思路点拨】运用勾股定理的逆定理逐一判断即可.【详细解答】∵,,,∴4,6,8不能组成直角三角形.,故A不符合题意;∵,,,∴6,8,9不能组成直角三角形,故B不符合题意;∵,,,∴5,12,13能组成直角三角形,故C符合题意;∵,,,∴5,11,12不能组成直角三角形,故D不符合题意;故选:C.【方法总结】本题考查了勾股定理的逆定理,熟记勾股定理的逆定理是解决本题的关键.2.B【思路点拨】先由勾股定理的逆定理得出∠B=90°,再根据直角三角形两锐角互余即可求解.【详细解答】解:∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,且∠B=90°,∴∠C与∠A互余.故选:B.【方法总结】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,且最长边所对的角是直角.同时考查了直角三角形两锐角互余的性质.3.C【思路点拨】根据勾股定理的逆定理即可求解.【详细解答】解:∵在△ABC中,BC2+AC2=32+42=25,AB2=52=25,∴BC2+AC2=AB2,∴△ABC为直角三角形,∠C=90°.故选:C.【方法总结】本题考查了勾股定理的逆定理,解答本题的关键是掌握勾股定理的逆定理.【详细解答】.①,故不是成为直角三角形的必要条件,故=58°,∠C=180°-∠A-【思路点拨】首先依据勾股定理,结合图中每个小方格的边长,求得AC2,AB2,BC2的值;接下来,依据勾股定理的逆定理可判断出△ABC的形状.【详细解答】∵BC2=42+22=20,AB2=22+12=5,AC2=32+42=25,∴BC2 +AB2= AC2,∴△ABC是直角三角形.故选B.【方法总结】本题考查勾股定理和勾股定理的逆定理,解题的关键是掌握勾股定理和勾股定理的逆定理. 9.4【思路点拨】根据勾股定理的逆定理,可以判断题目中三角形的形状,然后即可得到这个三角形中最短边上的高的长度,本题得意解决.【详细解答】解:,三边长分别为3,4,5的三角形是直角三角形,这个三角形中最短边上的高为4,故答案为:4.【方法总结】本题考查勾股定理的逆定理,会用勾股定理的逆定理判断三角形的形状是解答本题的关键.10.如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形【思路点拨】根据勾股定理的逆定理即可判断.【详细解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故答案为:如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形.【方法总结】此题考查了勾股定理的逆定理,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.11.2【详细解答】试题分析:根据小正方形的边长可分别求,,,,,,根据勾股定理的逆定理,由知△ADB是直角三角形,由知△ABC是直角三角形.共2个.考点:勾股定理的逆定理,化简得:,m=2,,或(舍去).【思路点拨】设这个三角形的三边长分别为,再根据周长可求出边长,然后利用勾股定理的逆定理可得这个三角形是直角三角形,最后利用直角三角形的面积公式即可【详细解答】由题意,设这个三角形的三边长分别为则解得则这个三角形的三边长分别为又这个三角形是直角三角形,且两直角边长分别为则它的面积是故答案为:.【方法总结】本题考查了勾股定理的逆定理的应用等知识点,依据勾股定理的逆定理判定出这个三角形为【详细解答】因为大正方形ABCD中4个直角三角形全等,根据全等三角形的性质可得:BE=AH=DG=CF=3,又因为小正方形的边长是1,所以BF=AE=DH=CG=3+1=4,根据勾股定理可得:AB=AD=CD=BC==5,所以大正方形ABCD的面积是25,故答案为25.15.【详细解答】由题意得:小白兔第一次跳12米,第二次跳5米,第三次跳13米;∵米,而13 ²=169,刚好符合直角三角形中勾股定理的逆定理,且第一次和第二次跳的距离为直角边.故小白兔第一次左拐的角度是90°.16.【解析】【思路点拨】仔细观察可发现给出的勾股数中,斜边与较大的直角边的差是1,通过代入3,4,5;5,12,13;7,24,25计算可得.【详细解答】观察得给出的勾股数中,斜边与较大直角边的差是1,即c−b=1;通过代入3,4,5;5,12,13;7,24,25计算可得52-42=32,132-122=52,252-242=72,即可得到.【方法总结】本题考查勾股数、规律和勾股定理,解题的关键是掌握勾股定理.17.四边形ABCD的面积是36【思路点拨】根据勾股定理求出AC的长度,再根据勾股定理逆定理计算出,然后根据四边形ABCD的面积的面积+的面积,列式进行计算即可得解.【详细解答】解:连接,∵AB=3,BC=4,,∴在Rt△ABC中,根据勾股定理得:AC===5.=AB+AC =×3×4+×5×12=36ABCD的面积是36==9【方法总结】本题考查了勾股定理及勾股定理的逆定理,属于基础题,解答本题的关键是判断出BC===16=×7×12=42勾股定理的逆定理即可判断△ABC的形状.由已知得(a2-10a+25)+(b2-24b+144)+(c2-26c+169)=0(a-5)2+(b-12)2+(c-13)2=0由于(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.所以a-5=0,得a=5;b-12=0,得b=12;c-13=0,得c=13.又因为132=52+122,即a2+b2=c2所以△ABC是直角三角形.考点:本题考查的是勾股定理的逆定理,非负数的性质点评:解答本题的关键是熟记勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.21.(1)正东或正西;(2)小时.【解析】【思路点拨】对于(1),先分别求出两个小组走的路程,再根据勾股定理的逆定理即可作出判断;对于(2),根据“路程和÷速度和=相遇的时间”列式计算即可求解.【详细解答】(1)因为,所以两组同学行走的方向成直角.因此,第二组同学行走的方向为正东或正西.(2)根据题意,得(小时).即两组同学经过小时后相遇.【方法总结】此题考查勾股定理的逆定理的运用,牢记定理是解题的关键.22.,.【思路点拨】n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n,b=n2-1,c=n2+1(n≥3,n为正整数),满足勾股数.【详细解答】∵n=3时,a=2×3=6,b=32−1=8,c=32+1=10,n=4时,a=2×4=8,b=42−1=15,c=42+1=17,故答案为,.【方法总结】本题考查勾股数、规律和勾股定理,解题的关键是掌握勾股定理,由题意得到规律。
直角三角形(1)八年级数学下册同步备课系列(北师大版)

=
c2+4
1 2
ab
,
c
b a2+2ab+b2 = c2+2ab,
a
∴a2+b2=c2.
讲授新课
2.赵爽弦图
大正方形的面积可以表示为 c2 ;
也可以表示为
4
1 2
ab
+(b-a.)2
c a
b
b
b
b
c
c
∵ c2= 4 1 ab +(b-a)2,
2
c2 =2ab+b2-2ab+a2, c2 =a2+b2, ∴ a2+b2=c2.
观察上面两个定理,它们的条件与结论之间有怎样的关系?
讲授新课
再观察下面三组命题: 如果两个角是对顶角,那么它们相等, 如果两个角相等,那么它们是对顶角; 如果小明患了肺炎,那么他一定会发烧, 如果小明发烧,那么他一定患了肺炎; 三角形中相等的边所对的角相等, 三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论之间也有类似 的关系吗?与同伴进行交流.
解:原式可化为: a2-10a+25+b2-24b+144+c2-26c+169=0 (a-5)2+(b-12)2+(c-13)2=0 a=5,b=12,c=13. a2+b2=c2 ∴△ABC是直角三角形
当堂检测
16.指出下列命题的条件和结论,并说出它们的逆命题.
(1)如果一个三角形是直角三角形,那么它的两个 锐角互余.
4. 下列长度的三条线段能组成直角三角形的是 ( A )
A.3,4,5
B.2,3,4
C.4,6,7
2022-2023学年北师大版九年级数学下册《1-4解直角三角形》同步练习题(附答案)

2022-2023学年北师大版九年级数学下册《1.4解直角三角形》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,BC=2,,则AC的长是()A.B.3C.D.2.在△ABC中,∠A和∠C都是锐角,且sin A=,tan C=,则△ABC是()A.直角三角形B.钝角三角形C.等边三角形D.不能确定3.在平面直角坐标系xOy中,已知点P(1,3)与原点O的连线与x轴的正半轴的夹角为α(0°<α<90°),那么cosα的值是()A.3B.C.D.4.如图,在Rt△ABC中,∠C=90°,sin A=,BC=,则AC的长为()A.B.3C.D.25.在Rt△ABC中,∠B=90°,如果∠A=α,BC=a,那么AC的长是()A.a•tanαB.a•cotαC.D.6.等腰三角形底边与底边上的高的比是2:,则它的顶角为()A.30°B.45°C.60°D.120°7.阅读理解:为计算tan15°三角函数值,我们可以构建Rt△ACB(如图),使得∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,可得到∠D=15°,所以tan15°====2﹣.类比这种方法,请你计算tan22.5°的值为()A.+1B.﹣1C.D.8.如图,在△ABC中,AD⊥BC于点D.若BD=9,DC=5,cos B=,E为边AC的中点,则cos∠ADE的值为()A.B.C.D.9.如图,在△ABC中,AB=AC=10,BC=12,点D为BC的中点,DE⊥AB于点E,则tan∠BDE的值等于()A.B.C.D.10.如图,在△ABC中,∠BAC=120°,AC=8,AB=4,则BC的长是()A.B.C.6D.8二.填空题11.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A,若AC=4,cos A=,则BD的长度为.12.已知等腰三角形两条边的长分别是4,6,底角为α,则cosα=.13.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为.14.如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x轴正半轴所夹的锐角为α,当n=2时,则tanα=;当tanα的值最大时,n的值为.15.如图,在△ABC中,AD⊥BC于D,点E在AC上,∠ABE=45°,tan∠CBE=,若AD=BC,AC=2,则线段BC的长是.三.解答题16.根据下列条件解直角三角形:(1)在Rt△ABC中,∠C=90°,c=8,∠A=60°;(2)在Rt△ABC中,∠C=90°,a=3,b=9.17.如图,在平面直角坐标系中,OB=4,sin∠AOB=,点A的坐标为(,0).(1)求点B的坐标;(2)求sin∠OAB的值.18.如图,点C在线段AB上,点D,E在直线AB的同侧,∠A=∠DCE=∠CBE=90°,∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值.19.如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,过B作BE⊥CD,交CD的延长线于点E,AC=30,sin B=,求:(1)线段CD的长.(2)cos∠BDE的值.20.如图(1),在Rt△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,以下是某同学推理证明的过程:证明:∵sin A=,sin B=∴c=,c=∴根据你掌握的三角函数知识,请在图(2)中的锐角△ABC中,求证:.参考答案一.选择题1.解:如图,在Rt△ABC中,∠C=90°,BC=2,∴sin A===,∴AB=3,∴AC===.故选:A.2.解:∵sin A=,∴∠A=60°,∵tan C=,∴∠C=60°,∴∠B=180°﹣∠A﹣∠C=180°﹣60°﹣60°=60°.∴△ABC是等边三角形.故选:C.3.解:如图,过P点作P A⊥x轴于A,则∠POA=α,∵点P的坐标为(1,3),∴OA=1,P A=3,∴tan∠POA===3,即tanα=3.故选:D.4.解:∵∠C=90°,sin A==,BC=,∴AB=BC=×=2,∴AC====.故选:C.5.解:如图:在Rt△ABC中,AC==.故选:D.6.解:如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.7.解:如图:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,∴∠BAD=∠D=22.5°,设AC=BC=1,则AB=BD=AC=,∴CD=BC+BD=1+,在Rt△ADC中,tan22.5°===﹣1,故选:B.8.解:∵AD⊥BC,BD=9,cos B=,∴AB==15,AD==12,∵DC=5,∴AC==13,∵E为边AC的中点,∴ED=,∴∠EDA=∠DAE,∴cos∠EDA=cos∠DAE=,故选:D.9.解:连接AD,∵△ABC中,AB=AC=10,BC=12,D为BC中点,∴AD⊥BC,BD=BC=6,∴AD=,∴tan∠BAD=.∵AD⊥BC,DE⊥AB,∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,∴∠BDE=∠BAD,∴tan∠BDE=tan∠BAD=,故选:C.10.解:如图,过点C作CE⊥BA交BA的延长线于E.∵∠BAC=120°,∴∠CAE=180°﹣120°=60°,∴AE=AC•cos60°=4,EC=AC•sin60°=4,∵AB=4,∴BE=AB+AE=8,∴BC===4,故选:B.二.填空题11.解:∵∠C=90°,AC=4,cos A=,∴AB=5,∴BC===3,∵∠DBC=∠A.∴cos∠DBC=cos∠A==,∴BD=3×=,故答案为:.12.解:分两种情况:当等腰三角形的腰长为4,底边长为6时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=4,AD⊥BC,∴BD=DC=BC=3,在Rt△ABD中,cos B==,当等腰三角形的腰长为6,底边长为4时,如图:过点A作AD⊥BC,垂足为D,∵AB=AC=6,AD⊥BC,∴BD=DC=BC=2,在Rt△ABD中,cos B===,综上所述:cosα=或,故答案为:或.13.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故答案为:2.14.解:过点A作AM⊥y轴于点M,作AN⊥BG于点N,如图所示:则∠AMC=90°,∠ANB=90°,∵直线y=﹣2与x轴平行,∴∠ABN=α,∠CGB=90°,∵AC⊥BC,∴∠ACB=90°,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∵∠AMC=∠CGB=90°,∴△AMC∽△CGB,∴,设BG=m,∵点A坐标为(4,3),点C坐标为(0,n),∴AM=4,GC=n+2,CM=3﹣n,∴=,当n=2时,可得,解得m=1,∴GB=1,BN=3,∴tanα==;∵tanα=,当BN最小,即BG最大时,tanα最大,∵=,∴m=﹣(n﹣3)(n+2)=﹣(n﹣)2+,∵﹣<0,∴当n=时,m取得最大值,即tanα最大,故答案为:,.15.解:如图,过点A作AF⊥BE于点F,设AD与BF交于点G,∵∠ABE=45°,∴△ABF是等腰直角三角形,∴AF=BF,∵∠GDB=∠AFG=90°,∠BGD=∠AGE,∴∠GBD=∠F AG,∴tan∠GBD=tan∠F AG,∴==,设DG=x,则BD=2x,∴BG==x,设FG=a,则AF=2a,∴BF=AF=2a,AG==a,∴BG=BF﹣FG=a,∴a=x,∴AD=AG+DG=a+x=6x,∵DC=BC﹣BD=AD﹣BD=a+x﹣2x=a﹣x=4x,在Rt△ADC中,根据勾股定理得AD2+DC2=AC2,∴(6x)2+(4x)2=(2)2,∴x=1(负值舍去),∴BC=AD=6x=6.故答案为:6.三.解答题16.解:(1)∵∠C=90°,∠A=60°,∴∠B=90°﹣∠A=30°,∴b=c=4,∴a=b=12,∴∠B=30°,b=4,a=12;(2)在Rt△ABC中,∠C=90°,a=3,b=9,∴tan A===,∴∠A=30°,∴∠B=90°﹣∠A=60°,c=2a=6,∴∠A=30°,∠B=60°,c=6.17.解:(1)过点B作BC⊥OA于点C,在Rt△BOC中,OB=4,sin∠AOB=,∴BC=OB•sin∠AOB=4×=3,∴,∴点B的坐标为(,3);(2)∵点A的坐标为(,0),∴OA=,∴AC=OA﹣OC==,∵∠ACB=90°,∴,∴,∴sin∠OAB的值为.18.解:如图,设CE交BD于G.∵∠A=∠A=90°,∠ADC=∠ABD,∴△ADC∽△ABD,∴,,解得AD=5,∴DC==,DB==,∵∠A=∠ECD=∠CBE=90°,∴∠ACD+∠ECB=90°,∠ACD+∠ADC=90°,∴∠ADC=∠ECB,设∠DBA=∠CDA=α,则∠ECB=α,∴∠GCB=∠GBC=α,∴CG=GB,设CG=GB=x,∴DG=﹣x,∴()2+x2=(﹣x)2,解得x=,∴tan∠CDB==.19.解:(1)∵∠ACB=90°,AC=30,sin B==,∴AB=50,∵D为直角三角形ABC斜边上的中点,∴CD=AB=25;(2)∵AB=50,D为AB的中点,∴AD=BD=25,∵BE⊥CD,∴∠E=90°,由勾股定理得:BC===40,由勾股定理得:BE2=BD2﹣DE2=BC2﹣CE2,即252﹣DE2=402﹣(25+DE)2,解得:DE=7,∴cos∠BDE==.20.解:过C点作CD⊥AB于D,过B点作BE⊥AC于E,∴sin A=,sin B=,∴CD=b sin∠A=a sin B,∴,同理,∴.。
2021-2022学年北师大版八年级数学下册《1-2直角三角形》解答题专题提升训练(附答案)

2021-2022学年北师大版八年级数学下册《1-2直角三角形》解答题专题提升训练(附答案)1.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,连接EM,DM,判断△EDM的形状,并说明理由.2.如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧),AB=12.(1)如图1,AD=;(2)如图2,①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,请直接写出EF的长.3.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,BC=12,求MN的值.4.如图,在△ABC中,AB=AC=2,∠B=30°,D为BC上一点,连接AD.(1)求S△ABC;(2)若∠BAD=45°,求证△ACD为等腰三角形;(3)若△ACD为直角三角形,求∠BAD的度数.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,BC=2.(1)求AB的长度;(2)求△ABC的面积;(3)求CD的长度.6.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF 于F,AE=CF,求证:Rt△ADE≌Rt△CDF.7.如图,四边形ABCD中,∠BAD=∠BCD=90°,M、N分别为对角线BD、AC的中点,连接MN,判定MN与AC的位置关系并证明.8.如图,四边形ABCD的对角线AC、BD相交于点O,∠ACB=∠ADB=90°,M为边AB 的中点,连接MC,MD.(1)求证:MC=MD;(2)若△MCD是等边三角形,求∠AOB的度数.9.如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,DC=BF,点E是CF的中点.(1)求证:DE⊥CF;(2)求证:∠B=2∠BCF.10.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.11.如图,在△ABC中,∠ACB=90°,∠B=30°,CE垂直于AB于点E,D是AB的中点.(1)求证:AE=ED;(2)若AC=2,求DE的长.12.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB 于点D,交AC于E.求:(1)∠BCD的度数;(2)若DE=3,求AB的长.13.如图,在Rt△ABC中,∠ACB=90°,∠A=28°,△ABC的外角∠CBD的平分线BE 交AC的延长线于点E,过点D作DF∥BE,交AC的延长线于点F,求∠D的度数.14.如图.在直角三角形BCD中,∠D=90°,∠DBC=15°,点A在直角边BD上,连接AC,AB=AC=4.求CD的长.15.如图,在Rt△ABC中,∠ACB=90°,D是边BC上一点,DE⊥AB于点E,点F是线段AD上一点,连接EF,CF.(1)若点F是线段AD的中点,试猜想线段EF与CF的大小关系,并加以证明.(2)在(1)的条件下,若∠BAC=45°,AD=6,求C、E两点间的距离.16.如图,△ABD是边长为2的等边三角形,点C为AB下方的一动点,∠ACB=90°.(1)若∠ABC=30°,求CD的长;(2)求点C到AB的最大距离;(3)当线段CD的长度最大时,求四边形ACBD的面积.17.如图,在等边△ABC中,点D,E分别在边BC、AC上,DE∥AB,过点E作EF⊥DE 交BC的延长线于点F.(1)求∠DFE的度数.(2)若CD=8,求DF的长.18.如图△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.19.如图,在△ABC中,∠C=90°,∠A=30°,AB=4cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?20.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).参考答案1.(1)证明:连接ME,MD.∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△EDM是等边三角形.2.解:(1)过D作DG⊥AB于G,∵AD=BD,∠ADB=120°,∴∠DAB=∠ABD=30°,AG=BG=AB=6,∴AD=2GD,∵AD2=GD2+AG2,∴4CD2=GD2+62,∴GD=2,∴AD=4,故答案为:4;(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBC,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHF、四边形AECH是平行四边形,∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=12,∵AC=8,BC=CD=4,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=4,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=,故答案为:.3.(1)证明:∵BD⊥AC于D,CE⊥AB于E,点M是BC的中点,∴MD=ME=BC,∴点N是DE的中点,∴MN⊥DE;(2)解:∵MD=ME=BM=CM,∴∠BME+∠CMD=180°﹣2∠ABC+180°﹣2∠ACB=360°﹣2(∠ABC+∠ACB),∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∴∠BME+∠CMD=360°﹣2×120°=120°,∴∠DME=60°,∴△MED是等边三角形,∴DE=DM,有(1)知DM=BC=6,∴DE=6,∵N是DE的中点,∴DN=DE=3,∴MN==3.4.(1)解:过A作AE⊥BC于E,则∠AEB=90°,∵AB=AC=2,∠B=30°,∴AE=AB=1,∵AB=AC=2,AE⊥BC,∴BC=2BE,由勾股定理得:BE===,∴BC=2BE=2,∴S△ABC==2×1=;(2)证明:∵AB=AC,∠B=30°,∴∠C=∠B=30°,∵∠BAD=45°,∴∠ADC=∠B+∠BAD=30°+45°=75°,∴∠DAC=180°﹣∠C﹣∠ADC=180°﹣30°﹣75°=75°,∴∠DAC=∠ADC,∴△ACD是等腰三角形;(3)解:分为两种情况:①∠DAC=90°时,∵∠C=∠B=30°,∴∠ADC=90°﹣∠C=60°,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°;②当∠ADC=90°时,∠BAD=∠ADC﹣∠B=90°﹣30°=60°;即∠BAD的度数是30°或60°.5.解:(1)∵∠ACB=90°,∠A=30°,∴AB=2BC,∵BC=2,∴AB=4;(2)在Rt△ABC中,∠ACB=90°,AB=4,BC=2,根据勾股定理得,AC===2,∴S△ABC=×BC×AC=×2×2=2;(3)∵S△ABC=×AB×CD=2,AB=4,∴×4×CD=2,解得CD=.6.解:连接BD,∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL).7.解:MN⊥AC,证明:连接AM,CM,∵∠BAD=∠BCD=90°,M为BD的中点,∴AM=,CM=BD,∴AM=CM,∵N为AC的中点,∴MN⊥AC.8.(1)证明:∵∠ACB=∠ADB=90°,M为边AB的中点,∴MC=AB,MD=AB,∴MC=MD;(2)解:∵MC=MD=AB=AM=BM,∴∠BAC=∠ACM,∠ABD=∠BDM,∴∠BMC=2∠BAC,∠AMD=2∠ABD,∵△MCD是等边三角形,∴∠DMC=60°,∴∠BMC+∠AMD=120°,∴2∠BAC+2∠ABD=120°,∴∠BAO+∠ABO=60°,∴∠AOB=180°﹣60°=120°.9.证明:(1)连接DF,∵AD是边BC上的高,∴∠ADB=90°,∵点F是AB的中点,∴DF=AB=BF,∵DC=BF,∴DC=DF,∵点E是CF的中点.∴DE⊥CF;(2)∵DC=DF,∴∠DFC=∠DCF,∴∠FDB=∠DFC+∠DCF=2∠DFC,∵DF=BF,∴∠FDB=∠B,∴∠B=2∠BCF.10.解:(1)∵AD是△ABC的高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,AB=8,AC=6,∴DE=AB=4,DF=AC=3,AE=4,AF=3,∴四边形AEDF的周长=AE+DE+DF+AF=14;(2)△ABC的面积=×AB×AC=24,∵E、F分别是AB、AC的中点,∴△ADE的面积=△BDE的面积,△ADF的面积=△CDF的面积,∴四边形AEDF的面积=×△ABC的面积=12.11.(1)证明:∵∠ACB=90°,∠B=30°,∴AC=AB,∵∠ACB=90°,D是AB的中点,∴CD=AB,∴AC=CD,∵CE垂直于AB于点E,∴AE=ED;(2)解:∵AC=CD=AD=AB,∴△ACD是等边三角形,∴AC=AD=AC=2,∵CE⊥AD,∴DE=AE=1.12.解:(1)∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,(2)∵∠B=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°,∴AD=2DE=6,∴AB=2AD=12.13.解:∵∠ACB=90°,∠A=28°,∴∠ABC=62°,∴∠CBD=180°﹣62°=118°,∵BE平分∠CBD,∴∠EBC=∠CBD=59°,∴∠ABE=62°+59°=121°,∵DF∥BE,∴∠D=∠ABE=121°.14.解:∵AB=AC=4,∴∠B=∠ACB=15°,∴∠DAC=∠B+∠ACB=30°,∵∠D=90°,∴CD=AC=2.15.解:(1)EF=CF.证明:∵DE⊥AB,∴∠DEA=90°,在Rt△AED和Rt△ACD中,∵点F是斜边AD的中点,∴EF=AD,CF=AD,∴EF=CF;(2)连接CE,由(1)得EF=AF=CF=AD=3,∴∠FEA=∠F AE,∠FCA=∠F AC,∴∠EFC=2∠F AE+2∠F AC=2∠BAC=2×45°=90°,∴CE===.16.解(1)∵△ABD是等边三角形,∠DBA=60°,又∠ABC=30°,∴∠DBC=90°,∵∠ACB=90°,AB=2,∴BD=AB=2,AC=AB=1,BC==,∴CD===.∴CD的长为.(2)取AB的中点E,连接CE,∵∠ACB=90°,AB=2,CE=AB=1.又点C为AB下方的一动点,∴当CE⊥AB时,点C到AB的距离最大为1.(3)连接DE,∵△ABD为等边三角形,∴DE⊥AB,∵BD=AB=2,∴DE===,根据三角形三边关系CD≤CE+DE=1+,即C,D,E共线时,CD最大,∴CD的最大长度为1+,此时CD⊥AB,四边形ABCD的面积为AB•CD=×2×(1+)=1+,∴四边形ABCD的面积为:1+.17.解:(1)∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠DFE=30°.(2)∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF,由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=8.又∵CE=CF,∴CF=8.∴DF=DC+CF=8+8=16.18.证明:(1)连接BE,∵DB=BC,点E是CD的中点,∴BE⊥CD.∵点F是Rt△ABE中斜边上的中点,∴EF=;(2)[方法一]在△ABG中,AF=BF,AG∥EF,∴EF是△ABG的中位线,∴BE=EG.在△ABE和△AGE中,AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE;[方法二]由(1)得,EF=AF,∴∠AEF=∠F AE.∵EF∥AG,∴∠AEF=∠EAG.∴∠EAF=∠EAG.∵AE=AE,∠AEB=∠AEG=90°,∴△ABE≌△AGE.19.解:在△ABC中,∵∠C=90°,∠A=30°,∴∠B=60°.∵4÷2=2,∴0≤t≤2,BP=4﹣2t,BQ=t.(1)当BP=BQ时,△PBQ为等边三角形.即4﹣2t=t.∴.当时,△PBQ为等边三角形;(2)若△PBQ为直角三角形,①当∠BQP=90°时,BP=2BQ,即4﹣2t=2t,∴t=1.②当∠BPQ=90°时,BQ=2BP,即t=2(4﹣2t),∴.即当或t=1时,△PBQ为直角三角形.20.解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.。
北师大版九年级数学下册第一章直角三角形的边角关系综合题训练

北师大版九年级数学下册第一章直角三角形的边角关系综合压轴题专项训练试题1、如图,MN是表示某引水工程的一段设计路线,从M到N的走向为南偏东30°,在M的南偏东60°方向上有一点A,以A为圆心,500 米为半径的圆形区域为居民区,取MN上另一点B,测得BA的方向为南偏东75°,已知MB=400米,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?2、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D 是BC的中点,且AD⊥BC.(1)求sin B的值;(2)现需要加装支架DE,EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F.求支架DE的长.3、如图,拦水坝的横断面为等腰梯形ABCD,坝顶宽BC为6 m,坝高为3.2 m,为了提高水坝的拦水能力需要将水坝加高2 m,并且保持坝顶宽度不变,迎水坡CD的坡度不变,但是背水坡的坡度由原来的1∶2变成1∶2.5(坡度是坡高与坡的水平长度的比).求加高后的坝底HD的长为多少.4、小红家的阳台上放置了一个晒衣架(如图∶),图∶是晒衣架的侧面示意图,立杆AB,CD相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm (参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534).(1)求证:AC ∶BD .(2)求扣链EF 与立杆AB 的夹角∶OEF 的度数(结果精确到0.1°).(3)小红的连衣裙穿在晒衣架上的总长度达到122 cm ,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.5、如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的点B 处安置测角仪,在点A 处测得电线杆上C 处的仰角为30°.已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号).6、如图,两条笔直的公路AB CD 、相交于点O ,AOC ∠为36°,指挥中心M 设在OA 路段上,与O 地的距离为18千米.一次行动中,王警官带队从O 地出发,沿OC 方向行进,王警官与指挥中心均配有对讲机,两部对讲机只能在10千米之内进行通话,通过计算判断王警官在行进过程中能否实现与指挥中心用对讲机通话.【参考数据:sin360.59cos360.81tan360.73===°,°,°.】7、在建筑楼梯时,设计者要考虑楼梯的安全程度和占地面积,如图1—136(1)所示,虚线为楼梯的斜度线,斜度线与地板的夹角为锐角θ,一般情况下,锐角θ愈小,楼梯的安全程度愈高,但占地面积较多,如图l—136(2)所示,为提高安全程度,把倾角由θ1减至θ2,这样楼梯占用地板的长度由d1增加到d2,已知d1=4 m,θ1=40°,θ2=36°,求楼梯占用地板的长度增加了多少.(精确到0.01 m,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan 36°≈0.7265,sin 40°≈0.6428,cos 40°≈0.7660,tan 40°≈0.8391)8、在旧城改造中,要拆除一烟囱AB,如图1—137所示,在地面上事先划定以B为圆心,半径与AB等长的圆形区域为危险区,现在从与B地水平距离相距(BD=21米)21米远的建筑物CD的顶端C点测得A点的仰角为45°,B点的俯角为30°,现在离B点25米远的地方有一受保护的文物,则该文物是否在危险区内?试说明理由.,精确到0.01米)9、通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1,在∶ABC中,AB =AC ,顶角A 的正对记作sadA ,这时sadA =底边腰=BC AB .容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad 60°=____________;(2)对于0°<∶A <180°,∶A 的正对值sadA 的取值范围是____________;(3)如图2,已知sinA =35,其中∶A 为锐角,试求sadA 的值. 10、根据道路管理规定,在羲皇大道秦州至麦积段上行驶的车辆,限速60千米/时.已知测速站点M 距离羲皇大道l (直线)的距离MN 为30米(如图8所示).现有一辆汽车由秦州向麦积方向匀速行驶,测得此车从点A 行驶到点B 所用时间为6秒,∠AMN =60°,∠BMN =45°.(1)计算AB 的长;(2)通过计算判断此车是否超速.11、如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km /h 的速度驶离港口O ,同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km /h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.12、如图,修公路遇到一座山,于是要修一条隧道,为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C 在AB 的延长线上,设想过C 点作直线AB 的垂线l ,过点B 作一直线(在山的旁边经过),与l 相交于D 点,经测量∶ABD =135°,BD =800米,求直线l 上距离D 点多远的C 处开挖?(2≈1.414,结果精确到1米)13、已知:如图,在山脚的C 处测得山顶A 的仰角为 45°,沿着坡度为30°的斜坡前进400米到D 处(即 ∠,CD =400米),测得A 的仰角为,求山的高度AB .14、如图,在南北方向的海岸线MN 上,有A ,B 两艘巡逻船,现均收到故障船C 的求救信号.已知A ,B 两船相距1003+1)海里,船C 在船A 的北偏东60°方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75°方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD (如果运算结果有根号,请保留根号).(2)已知距观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 去营救船C ,在23≈1.73)6015、如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1∶,且AB=30 m,李亮同学在大堤上A点处用高1.5 m的测量仪测出高压电线杆CD顶端D的仰角为30°,已知地面BC宽30 m,求高压电线杆CD的高度.(结果保留三位有效数字,≈1.732)16、如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1∶的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).17、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BP Q的度数;(2)求该电线杆PQ的高度(结果精确到1 m).(参考数据:≈1.7,≈1.4)18、乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示).建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测).无人机飞行到B处正上方的D处时能看到C处,此时测得C处的俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P,D的连线与水平方向的夹角为30°,求引桥BC的长度.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)。
北师大版八年级数学上册1.2直角三角形(2)

我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通过作等腰三角形底边的高来证明“等边对等角”.
2:引入新课(1).“HL”定理.由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,B′C′.
求证:Rt△ABC≌Rt△A′B′C′
定理斜边和一条直角边对应相等的两个直角三角形全等.
这一定理可以简单地用“斜边、直角边”或“HL”表示.
练习:判断下列命题的真假,并说明理由:
(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D' (如图).
求证:Rt△ABC≌Rt△A'B'C'.
3:例题学习如图,在△ABC≌△A'B'C'中,CD,C'D'分别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.
求证:△ABC≌△A'B'C'.
4:课时小结
本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理。
北师大版八年级(上)数学《一定是直角三角形吗》课堂练习(含答案)

1.2 一定是直角三角形吗1.做一做作一个三角形,使三边长分别为3 cm,4 cm,5 cm,哪条边所对的角是直角?为什么?2. 设三角形的三边分别等于下列各组数:①7,8,10 ②7,24,25③12,35,37 ④13,11,10(1)请判断哪组数所代表的三角形是直角三角形,为什么?(2)把你判断是Rt△的哪组数作出它所表示的三角形,并用量角器来进行验证.3.想一想一个零件的形状如图1所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?4.思维拓展若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状. (1)a2+b2+c2+200=12a+16b+20c(2)a3-a2b+ab2-ac2+bc2-b3=0参考答案1.做一做:5 cm 所对的角是直角,因为在直角三角形中直角所对边最长.2.断一断:(1)②③ ∵72+242=252, 122+352=372 (2)略3.想一想:∵42+32=52,52+122=132,即AB 2+BC 2=AC 2,故∠B =90°,同理,∠ACD =90° ∴S 四边形ABCD =S △ABC +S △ACD =21×3×4+21×5×12=6+30=36.4.思维拓展(1)∵a 2+b 2+c 2+100=12a +16b +20c∴(a 2-12a +36)+(b 2-16b +64)+(c 2-20c +100)=0即(a -6)2+(b -8)2+(c -10)2=0∴a -6=0,b -8=0,c -10=0即a =6,b =8,c =10而62+82=100=102,∴a 2+b 2=c 2∴△ABC 为直角三角形.(2)(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0a 2(a -b )+b 2(a -b )-c 2(a -b )=0∴(a -b )(a 2+b 2-c 2)=0∴a -b =0或a 2+b 2-c 2=0∴此三角形ABC 为等腰三角形或直角三角形.。
2022-2023学年北师大版八年级数学上册一定是直角三角形吗 同步训练

1.2 一定是直角三角形吗(同步训练)-北师大版八年级上册一.选择题1.以下列各组数为边长,能构成直角三角形的是()A.3,4,5B.6,7,8C.,,D.,2,2.如图所示的网格是正方形网格,A,B,C,D是网格线交点,则∠BAC与∠DAC的大小关系为()A.∠BAC>∠DAC B.∠BAC<∠DAC C.∠BAC=∠DAC D.无法确定3.下列各组数据中,能构成直角三角形的三边的长的一组是()A.1,2,3B.4,5,6C.5,12,13D.13,14,154.下列条件:①b2=c2﹣a2;②∠C=∠A﹣∠B;③a:b:c=::;④∠A:∠B:∠C=3:4:5,能判定△ABC是直角三角形的有()A.4个B.3个C.2个D.1个5.如图,在2×3的正方形网格中,∠AMB的度数是()A.22.5°B.30°C.45°D.60°6.在如图所示的方格纸中,点A,B,C均为格点,则∠ABC的度数是()A.30°B.35°C.45°D.60°7.如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个8.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c.那么下列条件中能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A=25°,∠B=75°C.a=,b=,c=D.a=6,b=10,c=129.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a2=b2+c2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠C=∠A+∠B 10.若△ABC的三边a、b、c满足(a﹣b)2+|a2+b2﹣c2|=0,则△ABC是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二.填空题11.如图,用6个边长为1的小正方形构造的网格图,角α,β的顶点均在格点上,则α+β=.12.某住宅小区有一块草坪如图所示,已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是米2.13.一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是cm.14.如图所示,点D为△ABC的边BC上一点,AB=13,AD=12,AC=15,BD=5,则S=.△ABC15.如图,已知△ABC的三边长分别为6cm、8cm、10cm,分别以它的三边为直径向上作三个半圆,则图中阴影部分的面积=.三.解答题16.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,已知a=2,,,△ABC是直角三角形吗?小亮的解答如下:解:△ABC不是直角三角形.理由如下:因为,所以a2≠b2+c2,所以△ABC不是直角三角形.请问小亮的解答正确吗?若不正确,请给出正确的解答过程.17.如图,在△ABC中,AC=10,BC=17,CD=8,AD=6.(1)求BD的长;(2)求△ABC的面积.18.如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.19.如图,在△ABC中,AB=AC,点D为AC上一点,连接BD,BC=10.CD=6,BD=8.(1)试判断△ABD的形状,并说明理由;(2)求△ABC的周长.20.勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”;这三个整数叫做一组“勾股数”.在一次“构造勾股数”的探究性学习中,老师给出了下表:m2334…n1123…a22+1232+1232+2242+32…b461224…c22﹣1232﹣1232﹣2242﹣32…其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b =,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.参考答案与试题解析一.选择题1.【解答】解:A.∵32+42=9+16=25,52=25,∴32+42=52,∴以3,4,5为边能组成直角三角形,故本选项符合题意;B.∵62+72=36+49=85,82=64,∴62+72≠82,∴以6,7,8为边不能组成直角三角形,故本选项不符合题意;C.∵()2+()2=+=,()2=,∴()2+()2≠()2,∴以,,为边不能组成直角三角形,故本选项不符合题意;D.∵()2+22=3+4=7,()2=5,∴()2+22≠()2,∴以,2,为边不能组成直角三角形,故本选项不符合题意;故选:A.2.【解答】解:连接CD,BC,设小正方形的边长为1,由勾股定理得:AB2=22+42=4+16=20,BC2=12+32=1+9=10,AC2=12+32=1+9=10,AD2=12+22=1+4=5,CD2=12+22=1+4=5,所以BC=AC,AD=CD,AC2+BC2=AB2,AD2+CD2=AC2,即△ACB和△ADC都是等腰直角三角形,所以∠BAC=∠DAC=45°,故选:C.3.【解答】解:A.∵12+22=1+4=5,32=9,∴12+22≠32,∴以1,2,3为边的三角形不是直角三角形,故本选项不符合题意;B.∵42+52=16+25=41,62=36,∴42+52≠62,∴以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;C.∵52+122=25+144=169,132=169,∴52+122=132,∴以5,12,13为边的三角形是直角三角形,故本选项符合题意;D.∵132+142=169+196=365,152=225,∴132+142≠152,∴以13,14,15为边的三角形不是直角三角形,故本选项不符合题意;故选:C.4.【解答】解:∵b2=c2﹣a2,∴a2+b2=c2,∴△ABC是直角三角形,故①能判断是直角三角形,∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故②能判断是直角三角形,∵a:b:c=::,∴可以假设,a=20k,b=15k,c=12k,∴a2≠b2+c2,∴△ABC不是直角三角形,故③不能判断是直角三角形,∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=()°>90°,故④不能判断是直角三角形故选:C.5.【解答】解:连接AB,设小正方形的边长为1,由勾股定理得:AM2=12+22=5,AB2=12+22=5,BM2=12+32=10,∴AM=AB,AM2+AB2=BM2,∴△MAB是等腰直角三角形,∴∠AMB=45°,故选:C.6.【解答】解:连接AC,则AC=BC==,AB==,∵()2+()2=()2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故选:C.7.【解答】解:如图,分情况讨论:①AB为直角△ABC斜边时,符合条件的格点C点有2个;②AB为直角△ABC其中的一条直角边时,符合条件的格点C点有1个.故共有3个点,故选:C.8.【解答】解:A.∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C=×180°=75°,∴△ABC不是直角三角形,故本选项不符合题意;B.∵∠A=25°,∠B=75°,∴∠C=180°﹣∠A﹣∠B=80°,∴△ABC不是直角三角形,故本选项不符合题意;C.∵a=,b=,c=,∴a2+b2=c2,∴△ABC是直角三角形,故本选项符合题意;D.∵a=6,b=10,c=12,∴a2+b2≠c2,∴△ABC不是直角三角形,故本选项不符合题意;故选:C.9.【解答】解:∵∠A、∠B、∠C的对边分别为a、b、c,a2=b2+c2,∴∠A=90°,∵∠A+∠B+∠C=180°,∴∠B+∠C=90°=∠A,故选:A.10.【解答】解:∵(a﹣b)2+|a2+b2﹣c2|=0,∴a﹣b=0,a2+b2﹣c2=0,解得:a=b,a2+b2=c2,∴△ABC的形状为等腰直角三角形;故选:C.二.填空题11.【解答】解:如图,由勾股定理得,EB2=12+22=5,EC2=12+22=5,BC2=12+32=10,∴EB2+EC2=BC2,∴△EBC是直角三角形,∵EB=EC,∴△EBC是等腰直角三角形,由SAS可证△BME≌△ANC,∴∠α=∠EBA,∴∠α+∠β=∠EBA+∠β=45°.故答案为:45°.12.【解答】解:连接AC,如图,∵AB⊥BC,∴∠ABC=90°,∵AB=3米,BC=4米,∴AC=5米,∵CD=12米,DA=13米,∴△ACD为直角三角形,∴草坪的面积等于=S△ABC+S△ACD=3×4÷2+5×12÷2=6+30=36米2.故答案为36.13.【解答】解:如图:设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D,∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°,∵S△ACB=AC×BC=AB×CD,∴AC×BC=AB×CD15×20=25CD,∴CD=12(cm);故答案为:12.14.【解答】解:在△ABD中,AB=13,AD=12,BD=5,∵AD2+BD2=122+52=169,AB2=132=169,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∵AC=15,∴CD===9,∴BC=BD+CD=5+9=14,∴S△ABC=BC•AD=×14×12=84,故答案为:84.15.【解答】解:∵直角△ABC的两直角边分别为6,8,∴AB==10,∵以BC为直径的半圆的面积是π()2=8π,以AC为直径的半圆的面积是π(3)2=,以AB为直径的面积是×π(5)2=,△ABC的面积是AC•BC=24,∴阴影部分的面积是8π++24﹣=24cm2.故答案为24.三.解答题16.【解答】解:小亮的解答不正确.正确的解答过程如下:△ABC是直角三角形,理由如下:因为,,所以a2+c2=b2,所以△ABC是直角三角形.17.【解答】解:(1)∵在△ABC中,AC=10,CD=8,AD=6∴AD2+CD2=AC2,即62+82=102,∴△ACD是直角三角形,∴CD⊥AB,∵在Rt△BCD中,CD=8,BC=17,∴BD==15;(2)由(1)可知BD=15,∴AD+BD=6+15=21,∴S△ABC=AB•CD=(AD+BD)•AD=84,答:△ABC的面积是84.18.【解答】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴CD==12,AD==16;(2)△ABC为直角三角形,理由:∵AD=16,BD=9,∴AB=AD+BD=16+9=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.19.【解答】解:(1)△ABD是直角三角形,理由:在△CBD中,BC=10.CD=6,BD=8,∵CD2+BD2=62+82=100,BC2=102=100,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴∠BDC=90°,∴∠ADB=180°﹣∠BDC=90°,∴△ABD是直角三角形;(2)设AD=x,则AC=x+6,∵AB=AC,∴AB=x+6,在Rt△ABD中,BD2+AD2=AB2,∴82+x2=(x+6)2,∴x=,∴AB=AC=x+6=,∴△ABC的周长=AB+AC+BC=,∴△ABC的周长为.20.【解答】解:(1)当m=2,n=1时,a=5、b=4、c=3,∵32+42=52,∴a、b、c的值能为直角三角形三边的长;(2)观察得,a=m2+n2,b=2mn,c=m2﹣n2;故答案为:m2+n2,2mn,m2﹣n2;(3)以a,b,c为边长的三角形一定为直角三角形,∵a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2 直角三角形全等的判定(HL) 同步练习
1.下列可使两个直角三角形全等的条件是( )
A.一条边对应相等B.两条直角边对应相等
C.一个锐角对应相等D.两个锐角对应相等
2.如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=4,则下列各图中的直角三角形与Rt△ABC全等的是( )
3. 如图,AB=AC,AC≠BC,AH⊥BC于点H,BD⊥AC于点D,CE⊥AB于点E,AH,BD,CE交于点O,图中全等直角三角形的对数为( )
A.3B.4C.5D.6
4. 如图,AB⊥BC于点B,AD⊥DC于点D,若CB=CD,且∠1=30°,则∠BAD的度数是( )
A.90°B.60°C.30°D.15°
5. 如图,∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CD于点D,AE=5 cm,BD=2 cm,则DE的长是( )
A.8 cm B.5 cm C.3 cm D.2 cm
6. 如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则有下列结论:①AB=DE;②∠ABC=∠DEF;③∠ACB=∠DFE;④∠ABC+∠DFE=90°.其中成立的是( )
A.①②③④B.①②③C.①②D.②③
7. 如图,D为Rt△ABC斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E,若AE=12 cm,则DE=_________cm.
8. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D,E,AD,CE交于点H,请你添加一个适当的条件__________________________________,使Rt△AEC≌Rt△CD A.
9.3 如图,MN∥PQ,AB⊥PQ,点A,D和点B,C分别在直线MN与PQ上,点E在AB上,AD+BC=7,AD=BE,DE=EC,则AB=____.
10. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=_______________时,△ABC与△QP A全等.
11. 如图,AB⊥BE于点B,DE⊥BE于点E.
(1)若∠A=∠D,AB=DE,则△ABC与△DEF全等的理由是___________;
(2)若∠A=∠D,BC=EF,则△ABC与△DEF全等的理由是___________;
(3)若AB=DE,BC=EF,则△ABC与△DEF全等的理由是_____________;
(4)若AB=DE,AC=DF,则△ABC与△DEF全等的理由是___________.
12. 如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF. 求证:Rt△ABF≌Rt△DCE.
13. 如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是点E,F,那么CE=DF吗?请说明理由.
14. 如图,已知△ABC为等腰直角三角形,∠BAC=90°,且EC⊥AC于点C,AE=BF.试判断AE和BF的位置关系,并说明理由.
15. 如图,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD 内部,延长AF交CD于点G,请判断线段GF与GC的大小关系.
16. 如图,在△ABC中,AC>AB,AD平分∠BAC,点D到点B与点C的距离相等,过点D作DE⊥BC于点E.
(1)求证:BE=CE;
(2)请直接写出∠ABC,∠ACB,∠ADE三者之间的数量关系;
(3)若∠ACB=40°,∠ADE=20°,求∠DCB的度数.
参考答案
1---6 BADBC A
7. 12
8. AD=CE(答案不唯一)
9. 7
10. 5或10 11. (1) ASA (2) AAS (3) SAS (4) HL
12. 证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵∠A =∠D =90°,
∴△ABF 与△DCE 都为直角三角形,在Rt △ABF 和Rt △DCE 中,⎩
⎪⎨⎪
⎧BF =CE ,AB =CD ,
∴Rt △ABF ≌Rt △DCE (HL ).
13. 解:CE =DF .理由如下:在Rt △ABC 和Rt △BAD 中,⎩
⎪⎨⎪⎧BC =AD ,
AB =BA ,∴Rt △ABC ≌Rt △BAD (HL ),∴AC
=BD ,∠CAB =∠DB A.在△ACE 和△BDF 中,⎩⎪⎨⎪
⎧∠CAB =∠DBA ,
∠AEC =∠BFD =90°
,AC =BD ,
∴△ACE ≌△BDF (AAS ),∴CE =DF .
14. 解:AE ⊥BF ,理由如下:∵AE =BF ,AB =AC ,∴Rt △ABF ≌Rt △CAE (HL ),∴∠CAE =∠ABF ,∵∠ABF +∠AFB =90°,∴∠CAE +∠AFB =90°,∴∠ADF =90°,即AE ⊥BF .
15. 解:GF =GC ,理由如下:连接EG ,图略.∵点E 是BC 的中点,∴BE =CE ,∵将△ABE 沿AE 折叠后得到△AFE ,∴BE =EF ,∴EF =EC ,同理,∠B =∠EF A =90°,∴∠EFG =90°,又∵∠C =90°,∴∠C =∠EFG =90°,又∵EG =EG ,∴Rt △ECG ≌Rt △EFG (HL ),∴GF =G C.
16. 解:(1)证明:∵DB =DC ,DE ⊥BC ,∴CE =BE (三线合一).(2)结论:∠ABC -∠ACB =2∠ADE .点拨:作BF ⊥AD 于点F ,交AC 于点G ,求出∠ABG =∠BGA ,∠ADE =∠CBG .(3)作DM ⊥AC 于点M ,DN ⊥AB 的延长线于点N ,图略.∵∠DAN =∠DAM ,DM ⊥AC ,DN ⊥AB ,∴DM =DN ,∵DB =DC ,∴Rt △DBN ≌Rt △DCM (HL ),∴∠BDN =∠CDM ,∴∠CDB =∠MDN ,∵∠CAB +∠MDN =180°,∴∠CDB +∠CAB =180°,∵∠ACB =40°,∠ADE =20°,∠ABC -∠ACB =2∠ADE ,∴∠ABC =80°.∴∠CAB =180°-80°-40°=60°,∴∠CDB =120°,∴∠EDB =∠EDC =60°,∴∠DCB =90°-∠EDC =30°.。