限矩型液力偶合器的传动原理和功能
限矩型液力偶合器的工作原理

限矩型液力偶合器的工作原理限矩型液力偶合器是一种动力式液力传动元件,由于它效率高,结构简单,能够带动负载平稳起动,改善起动性能,提高起动能力;具有过载保护作用;能隔离扭振和冲击;在多台电动机传动链中均衡各电动机的负荷,并减小电网的冲击电流。
所以在矿山机械、化学工业、冶金工业、食品、建筑、交通等领域得到了广泛应用。
常见的限矩型液力偶合器如下图所示。
▲限矩型液力偶合器外部结构图1、限矩型液力偶合器基本结构限矩型液力偶合器主要由泵轮、涡轮、转壳、后辅室等组成,通常泵轮通过输入联轴节与电动机连接,涡轮通过涡轮轴及输出联轴节与负载连接,转壳与泵轮外缘法兰连接,其作用是防止工作液体的散失。
后辅室能自动调整工作腔内的充液量。
下图为限矩型液力偶合器基本结构。
▲限矩型液力偶合器原理结构1—注油塞2—泵轮3—后半连轴节4—O形圈5—垫圈6—紧固螺栓7—前半连轴节8—弹性块9—外壳10—涡轮11—轴12—螺栓13、14—油封15—密封圈盖16、17—轴承18—热保护塞泵轮和涡轮对称布置,它们的若干径向辐射状叶片及内壁所组成的圆环状空腔叫做工作腔,工作腔的最大直径即为偶合器的规格尺寸。
2、工作原理如上图所示,当偶合器的工作腔内注入工作液体后,电动机带动泵轮旋转,工作液体在泵轮叶片的带动下获得能量并冲向涡轮,使涡轮跟着泵轮旋转。
工作液体在工作腔内的流动过程中,泵轮把电动机输入的机械能转换为工作液体的能量并传给涡轮,而涡轮是把工作液体的能量转换为机械能传给负载,从而实现了功能的传递。
3、易熔塞的作用易熔塞是液力偶合器的过热保护装置,是必不可少的部件之一。
它中间的填料是由低熔点合金配制而成的,熔点的温度是根据液力偶合器的使用环境和配套设备的具体要求而确定的,一般控制温度在100~140℃之间。
偶合器在制动或过载时,其损失功率约为额定功率的2~2.5倍或更高些,这样大的发热功率会使工作油温度急剧升高,并接近工作油的闪点;同时会使偶合器产生激烈的振动,会引起工作油着火,甚至造成偶合器损坏的严重后果,但安装了易熔塞后,只要工作油温度接近134℃,易熔塞中的低熔点合金就会熔化(熔点约为130~138℃),工作油在离心力的作用下,从易熔塞中喷出,使主动部分和从动部分完全断开,不再传递转矩,从而保护了偶合器和工作机械。
液力耦合器工作原理

液力耦合器工作原理液力耦合器是一种常见的机械传动装置,广泛应用于各种工业领域。
它的主要功能是将发动机的动力传递到其他机械部件,实现机械的启动、加速和改变转速等功能。
下面将详细介绍液力耦合器的工作原理。
液力耦合器由驱动轮、从动轮和液力传动介质组成。
驱动轮连接到发动机的输出轴上,从动轮连接到其他机械部件,通过液力传动介质将动力传递给从动轮。
液力传动介质主要由液体组成,通常是液压油。
当发动机启动时,驱动轮开始旋转,使液力传动介质也开始旋转。
旋转的液力传动介质产生离心力,使液体向外挪移,形成液体环流。
液力耦合器的驱动轮和从动轮之间有一个液力传动介质的转动区域,称为液力耦合器的工作腔。
液体在工作腔中形成的液体环流产生一个液力传递的力矩,将动力传递给从动轮。
液力耦合器的工作原理可以分为三个阶段:启动阶段、加速阶段和稳定阶段。
在启动阶段,当发动机启动时,液力传动介质开始旋转。
由于液体的粘性,液体环流的速度比驱动轮的转速慢,这导致液力耦合器的输出轴转速较低。
在加速阶段,随着驱动轮的转速增加,液体环流的速度也逐渐接近驱动轮的转速。
液体环流的速度增加,液力传递的力矩也增加,从而使从动轮的转速逐渐接近驱动轮的转速。
在稳定阶段,当液力耦合器的输出轴转速达到稳定状态时,液体环流的速度与驱动轮的转速相等,液力传递的力矩也达到最大值。
此时,液力耦合器实现了稳定的动力传递。
液力耦合器的工作原理具有以下特点:1. 起动平稳:液力耦合器通过液体环流实现动力传递,起动过程中没有机械接触,因此启动平稳,减少了机械部件的磨损。
2. 自动变速:液力耦合器可以根据负载的变化自动调整传递的力矩,实现自动变速。
当负载增加时,液力传递的力矩也增加,从而保持动力传递的稳定性。
3. 防止过载:液力耦合器具有一定的扭矩限制功能,当负载超过液力耦合器的承载能力时,液力耦合器会自动滑动,从而保护机械部件不受损坏。
4. 减震降噪:液力耦合器通过液体环流实现动力传递,具有一定的减震降噪效果,可以减少机械部件的振动和噪音。
限矩式液力耦合器的功能

限矩式液力耦合器的功能
限矩式液力耦合器主要用于传动系统中,具备多种功能和优势,以下是其主要功能:
1.平稳起动和软启动:
-当设备启动时,限矩型液力偶合器通过改变液体动能的方式来逐渐增加扭矩的传递,使得电动机或发动机能够更加平稳地启动负载,降低启动瞬间对机械设备及传动系统的冲击和振动。
2.过载保护:
-当负载过大或者发生意外卡死时,液力耦合器内部的液体不能快速加速,从而使传递到涡轮的扭矩受到限制,超过这个限制值时,耦合器会自动打滑,从而防止电动机或发动机因过载而损坏。
3.扭振隔离与冲击吸收:
-可以有效隔离和衰减由电动机或发动机产生的扭转振动以及由于外部冲击造成的瞬时过载,起到缓冲和保护作用。
4.负载分配和均衡:
-在多电机并联驱动同一负载的场合,限矩型液力耦合器有助于平衡各个电机之间的负荷,保证所有电机按照各自的能力均匀输出功率。
5.减缓电网冲击:
-减少启动时对电网的冲击电流,尤其是在大型设备启动时,能够显著降低电网的启动负荷。
6.速度调节:
-虽然不是连续的速度调节装置,但在一定范围内可以通过改变工作腔内的液体量或使用控制阀调整工作腔的有效容积,进而影响耦合器的输出扭矩和转速。
7.简化维护:
-液力耦合器内部无接触摩擦部件,因此相较于传统的机械连接方式,它具有更低的磨损和更长的使用寿命。
限矩型液力偶合器结构

限矩型液力偶合器限矩型液力偶合器是一种动力式液力传动元件、由于它效率高,结构简单,能够带动负载平稳起动,改善起动性能,提高起动能力;具有过载保护作用;能隔离扭振和冲击;在多台电机传动链中均衡各电机的负荷;并减小电网的冲击电流;所以在矿山机械、化学工业、冶金工业、食品、建筑、交通等部分得到了广泛应用。
特点和工作原理:我厂生产的限矩型液力偶合器有YOX型和TVA型两个系列。
YOX型主要由主动部分和被动部分组成。
主动部分包括后辅室、前半联轴节、后半连轴节、弹性块、泵轮和外壳。
从动部分主要包括轴和涡轮。
主动部分与原动机联接,被动部分与工作机联接。
TVA型的结构基本上与YOX型相同,但是密封型式采用外密封,增加了装拆结构。
原动机的扭矩,通过偶合器中的工作液体来传递,泵轮将原动机的机械能转变为工作液体的动能,涡轮又将工作液体的动能变为机械能。
通过输出轴驱动负载。
泵轮和涡轮之间没有机械联系。
用户如对液力偶合器的结构有特殊要求,我们可根据需要予以设计。
限矩型液力偶合器可装上温度报警安监器,当温度达到需要保护的临界值时,立即发出声响和闪光报警,同时切断电源,实现安全保护,用户如需要,在产品订货时必须提出。
限矩型液力偶合器结构图1.注油塞、2.泵轮、3.后半连轴节、4.O型圈、5.垫圈、6.紧固螺栓、7.前半连轴节、8.弹性块、9.外壳、10.涡轮、11.轴、12.螺栓、13.油封14.油封、15.密封圈盖、16.轴承、17.轴承、18.热保护塞YOXL TVAL型(带皮带轮式)YOX、TVA型YOXS、TVAS型(水介质)YOXE、TVAE型YOXZL YOXIIZ型(带制动轮式)。
限矩型液力耦合器使用说明书

一、结构与原理1、结构限矩型液力偶合器是一种应用广泛的通用液力传动元件。
它置于动力机与工作机之间传递动力。
典型的限矩型液力偶合器机构由对称布置的泵轮与涡轮及主轴、外壳等构件组成。
外壳与泵轮通过螺栓联接,其作用是防止传动介质外溢。
输入端(与泵轮固定联接)与输出墙(与涡轮固定联接)分别与动力机和工作机相联接。
泵轮与涡轮均为具有径向直叶片的叶轮。
由泵轮和涡轮具有叶片的凹腔所形成的圆环空腔称为工作腔,供传动介质(工作液体)在其中循环流动,传递动力进行工作。
工作腔的最大直径称为液力偶合器的有效直径,是液力偶合器的重要特征尺寸——规格大小的标志尺寸。
2、工作原理在液力偶合器泵轮被动力机带动旋转时,存在于偶合器腔体内的工作液体,受泵轮搅动,既液体对泵轮做相对运动又随泵轮做圆周牵连运动。
由于旋转运动的离心力作用,工作液体从半径较小的流道进口被加速,并被抛向半径较大的流道出口处,从而工作液体的动量矩加大,即泵轮从动力机吸收机械能,并转化为液体的动能。
在泵轮出口处液流以较高的速度和压强冲向涡轮叶片,并沿着叶片的表面与工作腔外环所构成的流道做向心流动。
液流对涡轮叶片的冲击减低了自身的速度和压强,使液体的动量矩降低,释放的液体能推动涡轮及工作机旋转做功(涡轮将液体能转化为机械能)。
液流的液体能释放减少后,在其后液流的推动下,由涡轮流入泵轮,再开始下一个能量转化的循环流动,如此周而复始不断循环。
泵轮与涡轮之间无机械联接,仅靠工作液体传动扭矩,由此,液流偶合器可使动力机与工作机之间的动力联接变成一种柔性联接。
二、功能与用途1、功能具有减缓启动冲击与隔离扭振的功能。
具有过载保护功能。
具有轻载启动功能,有效解决沉重大惯量负载启动困难的问题,从而降低电机机座型号,节电节能。
具有使负载延时缓慢启动的功能。
具有协调多机驱动的功能。
具有延长所在的整个传动系统使用寿命的功能,易于维护检修,节约费用。
2、用途限矩型液力偶合器广泛使用于矿山、电力、钢铁、化工、冶金、水泥、铸造、纺织、建筑、陶瓷、石油、制革、轻工、邮电等行业和部门,在连续输送机、破碎机、球磨机、搅拌机、塔机、抽油机、斗提机、绞直机、梳棉机、分离机等机械设备上均收到极好的经济效益。
液力耦合器工作原理

液力耦合器工作原理液力耦合器是一种常见的传动装置,广泛应用于各种机械设备中。
它的主要作用是通过液体的流动来传递动力,并实现不同轴之间的传动。
液力耦合器的工作原理可以简单地概括为液体的流动和转动力矩的传递。
下面将详细介绍液力耦合器的工作原理。
液力耦合器由驱动轮、从动轮和液体填充的转子组成。
驱动轮和从动轮通过液体填充的转子相互连接。
当驱动轮旋转时,液体填充的转子也会随之旋转。
液力耦合器的工作过程可以分为三个阶段:启动阶段、加速阶段和稳定工作阶段。
在启动阶段,当驱动轮开始旋转时,液体填充的转子也开始旋转。
由于液体的黏性,转子旋转时会产生涡流,涡流的方向是与转子旋转方向相反的。
这种涡流会使液体填充的转子产生扭矩,从而带动从动轮旋转。
在启动阶段,液力耦合器的输出扭矩较小。
在加速阶段,随着驱动轮的转速逐渐增加,涡流的强度也会增加。
涡流的增强会使液力耦合器的输出扭矩逐渐增大,直到达到最大扭矩。
在加速阶段,液力耦合器的输出扭矩与驱动轮的转速成正比。
在稳定工作阶段,当驱动轮的转速达到稳定值时,涡流的强度也会达到稳定值。
在这个阶段,液力耦合器的输出扭矩保持不变,只要驱动轮的转速不发生变化,液力耦合器就能保持稳定的工作状态。
液力耦合器的工作原理可以通过以下几个关键概念来解释:1. 液体填充的转子:液力耦合器中的液体填充的转子起到传递动力的作用。
它由螺旋形叶片组成,当驱动轮旋转时,液体填充的转子也会旋转,并通过涡流传递动力。
2. 涡流:涡流是液力耦合器中液体流动时形成的旋转流动。
涡流的方向与液体填充的转子的旋转方向相反。
涡流的产生和增强会使液力耦合器的输出扭矩逐渐增大。
3. 输出扭矩:液力耦合器的输出扭矩是指从动轮所承受的转动力矩。
输出扭矩的大小取决于驱动轮的转速和液力耦合器的设计参数。
液力耦合器具有以下几个优点:1. 起动平稳:液力耦合器在启动过程中,由于液体的黏性,可以实现平稳的启动,减少机械设备的冲击和振动。
2. 自动变速:液力耦合器可以根据驱动轮的转速自动调整输出扭矩,实现自动变速,适应不同工况的需求。
液力耦合器的作用及工作原理

液力耦合器的作用及工作原理1. 液力耦合器的作用液力耦合器是一种常用于传动系统中的装置,它的作用是将发动机的动力传递到传动系统中的其他部件,如变速器、驱动轴等。
液力耦合器能够实现发动机和传动系统之间的无级传动,使车辆能够平稳启动和加速,并且能够在发动机转速和负载变化时自动调节传动比,提高车辆的驾驶性能和燃油经济性。
2. 液力耦合器的基本原理液力耦合器基于液体在容器中流动时产生的液体动量守恒原理,利用液体的黏性和转动容器的动力学原理来传递动力。
液力耦合器由两个相互连接的转子组成:泵轮和涡轮。
泵轮由发动机通过输入轴驱动,涡轮则连接到传动系统的输入轴。
液力耦合器内部充满了液体,通常是液压油。
当发动机工作时,输入轴带动泵轮旋转,液体被泵轮的叶片推动流动。
液体的流动产生离心力,将液体从泵轮的中心推向外侧。
液体离开泵轮后,经过导向叶片的引导,流向涡轮。
涡轮的叶片与液体的流动方向相反,液体的流动冲击涡轮的叶片,使涡轮开始旋转。
液体流过涡轮后,流向液力耦合器的出口,并回到泵轮的中心,形成一个闭合的流体循环。
在这个循环中,液体的动量被传递到涡轮,从而将发动机的动力传递到传动系统中的其他部件。
3. 液力耦合器的工作原理液力耦合器的工作可以分为三个阶段:启动阶段、过渡阶段和耦合阶段。
3.1 启动阶段在启动阶段,发动机的转速较低,液力耦合器的液体流动速度也较低。
此时,液体的动量传递效率较低,涡轮的转速较慢,无法将足够的动力传递到传动系统中。
因此,在启动阶段,大部分动力是通过液力耦合器的液体摩擦来传递的。
3.2 过渡阶段随着发动机转速的提高,液力耦合器中液体的流动速度也增加。
在过渡阶段,液体的动量传递效率逐渐提高,涡轮的转速也逐渐增加。
此时,液力耦合器开始将动力通过液体的冲击传递到涡轮,实现动力的传递。
3.3 耦合阶段当发动机转速达到一定值时,液力耦合器进入耦合阶段。
在耦合阶段,液体的动量传递效率达到最高,涡轮的转速与发动机的转速之间的差异最小。
液力耦合器工作原理

液力耦合器工作原理引言概述:液力耦合器是一种常用的动力传动装置,广泛应用于各种机械设备中。
它通过液体的力学传动来实现两个轴之间的动力传递。
本文将详细介绍液力耦合器的工作原理,包括液力传动原理、结构组成、工作过程、优缺点以及应用领域。
一、液力传动原理:1.1 流体动力传递机制液力耦合器利用液体流体的动力传递机制来实现动力的转换和传递。
当液体在转子内部流动时,由于离心力的作用,液体会形成一个涡流,涡流的动能将通过液体的黏性传递给输出轴,从而实现动力的传递。
1.2 流体动力传递的特点液力传动具有以下几个特点:- 平稳传动:液力耦合器的液体传动机制使得传动过程平稳无冲击,减少了机械设备的振动和噪音。
- 自动变速:液力耦合器能够根据负载的变化自动调整转速,实现自动变速的功能。
- 负载分配:液力耦合器能够根据负载的大小合理分配动力,确保机械设备的正常运行。
- 起动平稳:液力耦合器的起动过程平稳,不会对机械设备造成冲击和损坏。
1.3 液力耦合器的基本构造液力耦合器由输入轴、输出轴和液力传动装置组成。
液力传动装置包括泵轮、涡轮和导向叶片。
输入轴通过泵轮将动力传递给液体,液体经过涡轮的作用将动力传递给输出轴。
导向叶片用于控制液体流动的方向和速度,从而实现动力的传递和调节。
二、工作过程:2.1 起动过程当启动机械设备时,输入轴开始转动,泵轮通过输入轴将动力传递给液体。
液体在泵轮的作用下形成涡流,涡流的动能将通过液体的黏性传递给涡轮,从而使输出轴开始转动。
2.2 调速过程在机械设备工作时,负载的大小会发生变化,液力耦合器能够根据负载的变化自动调整转速。
当负载增加时,涡轮的转速会下降,导致液体流动速度减小,涡轮上的动力也会减小。
相反,当负载减小时,涡轮的转速会增加,液体流动速度加快,涡轮上的动力也会增加。
2.3 停止过程当停止机械设备时,输入轴停止转动,液体的动力传递也会停止。
液体停止流动后,涡轮上的动力也会消失,输出轴停止转动。