连铸坯表面裂纹形成及防止分析

合集下载

板坯边部纵裂纹产生的原因及解决措施

板坯边部纵裂纹产生的原因及解决措施

板坯边部纵裂纹产生的原因及解决措施一、引言板坯边部纵裂纹是钢铁生产过程中常见的缺陷之一,其产生原因复杂,需要采取多种措施加以解决。

本文将从产生原因和解决措施两个方面进行详细阐述。

二、板坯边部纵裂纹产生原因1. 温度不均匀钢铁生产过程中,板坯温度不均匀是造成板坯边部纵裂纹的主要原因之一。

在连铸过程中,板坯表面受到水冷却的影响,而内部温度却没有得到及时的调节和平衡,导致板坯表面收缩速度快于内部收缩速度,从而形成了较大的应力差异。

2. 冷却方式不当在连铸过程中,冷却方式对于板坯边部纵裂纹的产生也有着重要的影响。

如果冷却速度过快或者冷却时间不足,则会导致板坯表面形成硬质组织而内部还未完全凝固,从而引起应力集中和较大的应力差异。

3. 连铸机结构问题连铸机的结构问题也会对板坯边部纵裂纹的产生造成影响。

例如,如果连铸机的结构不合理或者设备老旧,就可能导致板坯内部温度不均匀或者冷却方式不当,从而引起板坯边部纵裂纹。

三、解决措施1. 调节温度钢铁生产过程中,调节温度是减少板坯边部纵裂纹的有效措施之一。

可以通过加强温度监测和调节系统来实现。

例如,在连铸过程中可以采用先进的热流体模拟技术来预测板坯内部温度分布情况,并及时调整冷却水量和喷淋位置等参数,以保证板坯内外温度平衡。

2. 改进冷却方式改进冷却方式也是减少板坯边部纵裂纹的有效措施之一。

可以通过增加喷淋头数量、改变喷淋角度、增加喷淋水量等方式来改善连铸过程中的冷却效果,并保证板坯表面和内部同时达到凝固要求。

3. 优化连铸机结构优化连铸机结构也是减少板坯边部纵裂纹的有效措施之一。

可以通过升级设备、改进结构、增加监测仪器等方式来提高连铸机的生产效率和准确性,从而保证板坯内部温度分布均匀和冷却方式合理。

四、总结综上所述,板坯边部纵裂纹是钢铁生产过程中常见的缺陷之一,其产生原因复杂,需要采取多种措施加以解决。

调节温度、改进冷却方式和优化连铸机结构是减少板坯边部纵裂纹的有效措施。

连铸坯缺陷的产生与防止措施 Microsoft Word 文档1

连铸坯缺陷的产生与防止措施 Microsoft Word 文档1

连铸坯裂纹的产生与防止措施连铸坯裂纹的分类 :铸坯表面裂纹包括表面纵裂纹、表面横裂纹、网状裂纹(星裂)、发裂、角部纵裂纹、角部横裂纹等;铸坯内部裂纹包括中间裂纹、角部裂纹、中心线裂纹、三角区裂纹、皮下裂纹、矫直裂纹等。

1.1 铸坯表面裂纹部纵裂纹等几种主要的缺陷形式。

铸坯表面裂纹主要有表面纵裂纹、表面横裂纹、网状裂纹、角部横裂纹、边铸坯表面裂纹是在结晶器内产生的,在二冷段得到扩展。

它会导致轧制板材表面的微细裂纹,影响最终产品的表面质量。

图1为表面裂纹示意图图 1 铸坯表面裂纹示意图1-表面纵裂纹;2-表面横裂纹;3-网状裂纹;4-角部横裂纹;5-边部纵裂纹1.1.1 表面纵裂纹连铸坯表面纵裂纹是指沿着拉坯方向在铸坯表面上发生的裂纹。

它可由工艺因素或设备因素引起。

由工艺因素引起的纵裂,大多出现在铸坯宽面的中央部位,是表面裂纹中最常见的一种裂纹缺陷。

纵裂主要是由于初生坯壳在结晶器内冷却强度不均匀,造成应力的集中,在坯壳相对较薄的地方坯壳厚度不足以承受这种应力,致使坯壳裂开而产生裂纹,并在二冷区得到扩展,形成表面纵裂纹。

图2 图3 图4为表面纵裂纹示意图图2图3 图41.影响连铸坯表面纵裂纹因素:实际生产过程中,主要有以下因素影响连铸坯表面纵裂纹的产生:1) 成品成分及钢水质量(1) 成品钢中碳含量处在亚包晶和包晶反应区时,由于初生坯壳在结晶器弯月面内激冷时收缩较大,容易造成初生坯壳厚薄不均,从而使铸坯发生纵裂纹的倾向增加。

因此,在实际生产中各连铸厂家都尽量控制其成品钢中碳含量,使其避开亚包晶和包晶反应区,从而减少铸坯纵裂纹的发生机率。

(2) 成品钢中硫、磷含量也会影响铸坯纵裂纹的产生。

钢中硫、磷含量增加时,钢的高温强度和塑性明显降低,在应力作用下就容易产生裂纹,因此,在实际生产中各连铸厂家都尽量控制其成品钢中硫、磷含量,尽量控制在0.02%以内。

(3) 钢中微合金如铌、钒等对铸坯纵裂纹的产生也有重要影响,因为微合金而产生的铸坯纵裂纹在铸坯表面上分布不规则,缺陷较短、数量较多。

连铸坯表面裂纹形成及防止(理化中心)

连铸坯表面裂纹形成及防止(理化中心)

-
15
横裂纹产生原因
(1) 横裂纹产生于结晶器初始坯壳形成振痕的波谷处,振痕越深, 则横裂纹越严重,在波谷处,由于:一是奥氏体晶界析出沉淀物 (AlN,Nb(CN)),产生晶间断裂(如下图); 二是沿振痕波谷 S、P元素呈正偏析,降低了钢高温强度。这样,振痕波谷处,奥 氏体晶界脆性增大,为裂纹产生提供了条件。
不均匀性强,振痕深,表面易产 生凹陷或横裂纹;生产实践表明, C避开这个区间时,振痕浅了, 铸坯边部横裂减少; (2)降低钢中[N],防止氮化物沉 淀; 2. 结晶器振动特点 (1)振痕深度增加,横裂纹增加 (如图所示);
图: 振痕深度与横裂纹产生几率的关系
-
18
(2)振动频率f增加,振痕变浅,横裂纹减少(如图所示); (3)负滑脱时间增加,振痕深度增加(如图所示),方圆坯 tN=0.12~0.15s,板坯tN=0.20s。
图 铸坯表面的网状裂纹
-
23
铸坯表面星形裂纹产生原因
铸坯表面星形裂纹沿一次晶界分布,裂纹边界有脱C现象,说明是 在结晶器内高温下(1400℃)坯壳奥氏体转变之前形成的。
图 振动频率与振痕深度的关系
-
图 负滑脱与振痕深度的关系
19
Байду номын сангаас
3. 合适二冷强度
调整二冷水分布,在矫 直前铸坯温度>850℃,避 开脆性区(如图所示);
合适二冷水量并降低铸 坯横向中心与边部温度差, 避免回热温度过高。
图 矫直温度与横裂纹关系
-
20
防止横裂纹措施
(1) 采用高频率,小振幅结晶器振动负滑脱时间tN与拉速v成正比, 与频率和振幅f成反比。为防止横裂纹,就要减浅振痕,则必须降 低,要降低,则必须采用高频率(100~400min-1),小振幅 (±5mm)的结晶器振动机构。

连铸坯在凝固过程中形成裂纹的原因

连铸坯在凝固过程中形成裂纹的原因

连铸坯在凝固过程中形成裂纹的原因随着市场竞争的日趋激烈,产品的质量已经成为占有市场的主要砝码,连铸坯作为炼钢厂的终端产品,其质量直接影响着轧材单位的产量和轧材质量,据统计炼钢厂连铸坯质量缺陷中约70%为连铸坯裂纹,连铸坯裂纹成为影响连铸坯产量和质量的重要缺陷之一,下面将对铸坯在凝固过程中裂纹的形成做简要分析:一、铸坯凝固过程的形成铸坯在连铸机内的凝固可看成是一个液相穴很长的钢锭,而凝固是沿液相穴的固液界面在液固相温度区间把液体转变为固体把潜热释放出来的过程。

在固液界面间刚凝固的晶体强度和塑性都非常小,当作用于凝固壳的热应力、鼓肚力、矫直力、摩擦力、机械力等外力超过所允许的外力值时,在固液界面就产生裂纹,这就形成了铸坯内部裂纹。

而已凝固的坯壳在二冷区接受强制冷却,由于铸坯线收缩,温度的不均匀性,坯壳鼓肚、导向段对弧形不准,固相变引起质点如(AlN)在晶界的沉淀等,容易使外壳受到外力和热负荷间歇式的突变,从而产生裂纹就是表面裂纹。

二、连铸坯裂纹形态和影响因素连铸坯裂纹形态分为表面裂纹和内部裂纹,表面裂纹有纵向、横向角部裂纹、表面横裂和纵裂、网状裂纹和凹陷等,内部裂纹有中间、中心和矫直裂纹等。

连铸坯裂纹的影响因素:连铸坯表面裂纹主要决定于钢水在结晶器的凝固过程,它是受结晶器传热、振动、润滑、钢水流动和液面稳定性所制约的,铸坯内部裂纹主要决定于二冷区凝固冷却过程和铸坯支撑系统(导向段)的对弧准确性。

铸坯凝固过程坯壳形成裂纹,从工艺设备和钢凝固特性来考虑影响裂纹形成的因素可分为:1、连铸机设备状态方面有:1)结晶器冷却不均匀2)结晶器角部形状不当。

3)结晶器锥度不合适。

4)结晶器振动不良。

5)二冷水分布不均匀(如喷淋管变形、喷咀堵塞等)。

6)支承辊对弧不准和变形。

2、工艺参数控制方面有:1)化学成份控制不良(如C、Mn/S)。

2)钢水过热度高。

3)结晶器液面波动太大。

4)保护渣性能不良。

5)水口扩径。

6)二次冷却水分配不良,铸坯表面温度回升过大。

连铸板坯表面裂纹的成因

连铸板坯表面裂纹的成因

图1 中间罐温度与拉 速的对应图
图1 中间罐温度与拉 速的对应图
2)浸入式水口对中 2)浸入式水口对中
浸入式水口与结晶器不对中极易产生偏 流冲刷坯壳,还能引起结晶器液面翻腾, 保护渣不能形成均匀渣膜,导致传热不 良,坯壳厚薄不均而引起裂纹的发生。 投产初期采用人工下装式浸人式水口, 水口不易准确对中,尤其热换水口时, 更难保证对中,这些都可能导致裂纹的 发生。
5)保护渣的行为 5)保护渣的行为
现场所用保护渣的流动性不好。研 究表明,保护渣熔融不充分,粘度 过大,使流人坯壳和结晶器间隙的 渣膜不均匀,会导致摩擦力的变化 及坯壳冷却不均匀,造成坯壳厚薄 不均,引起裂纹的发生。
4 采取的措施
1)提高出钢温度的命中率,确保过热度为15℃±5t,重 新制定中间罐温度与拉速的对应表,见表1。 2)拉速升降时必须按每分钟≤0.15m/min的幅度操作,以 保证结晶器液面波动较小。 3)引进浸入式水口快速更换装置,换水口过程仅需3s, 更换水口迅速、准确、平稳及对中良好。 4)改进保护渣,要求保护渣粘度合适,熔化均匀及形成 的渣膜厚度适中。为此,保护渣的熔点由1145℃调为 1 0 7 0 ℃ , 粘 度 由 0 . 2 3 8 Pa·s(1300℃) 调 为 0 . 1 4 2 Pa·s(1300℃)。 5)对Q235等裂纹敏感性强的钢种,结晶器宽面水量由 200m3/h调为185m3/h。
连铸板坯表面裂纹的成因 及防止措施
1 2 3 4 5 前言 铸机状况 铸坯表面裂纹的影响因素 采取的措施 效果
1 前言
连铸板坯裂纹是影响连铸机产量 和铸坯质量的重要缺陷,轻者要 进行精整,重者会导致拉漏或废 品,影响铸机生产率和铸坯质量。 本文就生产中出现的铸坯表面裂 纹进行分析,并提出减少裂纹的 措施。

连铸坯表面裂纹形成及防止

连铸坯表面裂纹形成及防止

h
17
3 铸坯表面横裂纹
3 铸坯表面横裂纹
3.1表面横裂纹特征
横裂纹可位于铸坯面部或棱边
横裂纹与振痕共生,深度2~4mm,可达7mm,裂纹深处生成 FeO。不易剥落,热轧板表面出现条状裂纹。振痕深,柱状晶 异常,形成元素的偏析层,轧制板上留下花纹状缺陷。
铸坯横裂纹常常被FeO覆盖,只有经过酸洗后,才能发现。
连铸坯表面裂纹 形成及防止
宋晔
h
1内容Βιβλιοθήκη 1 前言 2 铸坯表面纵裂纹 3 铸坯表面横裂纹 4 铸坯表面星形裂纹 5 结论
h
2
1.前言
连铸坯质量概念: ◆ 铸坯洁净度(夹杂物数量、类型、尺寸、 分布) ◆ 铸坯表面质量(表面裂纹、夹渣、气孔) ◆ 铸坯内部质量(内部裂纹、夹杂物,中 心疏松、缩孔、偏析) ◆ 铸坯形状缺陷(鼓肚、脱方)
h
18
3 铸坯表面横裂纹
3.2横裂纹产生原因 (1) 横裂纹产生于结晶器初始坯壳形成振痕的
波谷处,振痕越深,则横裂纹越严重,在波谷 处,由于: -奥氏体晶界析出沉淀物,产生晶间断裂 -沿振痕波谷S、P元素呈正偏析,降低了钢高 温强度。
这样,振痕波谷处,奥氏体晶界脆性增大,为裂 纹产生提供了条件。
(2) 拉速
拉速增加,纵裂纹指数增加(图2-4);
图2-4 拉速对纵h 裂纹的影响
12
2 铸坯表面纵裂纹
(3) 保护渣 液渣层厚度<10mm,纵裂纹增加(图2-5)。
图2-5 液渣层厚度h 对纵裂纹的影响
13
2 铸坯表面纵裂纹
(4) 结晶器液面波动 液面波动<±5mm,纵裂纹最少(图2-6);
15
2 铸坯表面纵裂纹
(2) 结晶器钢水流动的合理性

连铸坯表面纵裂纹产生原因及控制措施

连铸坯表面纵裂纹产生原因及控制措施

左 右 1 00 mm

2 3 1 .

宽 大 纵 裂 纹 宽 度 深 度 :
丨 0 - 20m m ,
2 0 - 3 0m m ,
长达几米 严重时会贯穿 板坯而报废


22 .
表 面 纵 裂 纹 原 因 分 析
2 2 .
.1
纵 裂 纹 起 源 于 结 晶 器 的 弯 月 面 区 初 生 凝 固
0 2 -


> 2 1
钢 液 面 波 动 范 围 mm ,
图 4 液 面 波 动 对 裂 纹 指 数 的 影 响
2 .
2. 4
结 晶 器 冷 却 效 果 及 热 流 的 影 响重 要 纵 裂 纹 一 般 均 发 生 在 结 晶 器 内 部 在 结 晶 器


结 晶 器 冷 却 效 果 对 连 铸 坯 纵 裂 纹 的 影 响 非 常 内 部 先 形 成 微 裂 纹 进 入 二 冷 区 后 发 展 成 明 显 的 裂 ,

晶器

于 W M 7 1 .
M2

宽面 铜板平 均热 流 为
侧 面 平 均 热 流 M W M 4 6 1 .

1.
2 /


<z>

右 1
cr >
i . i
a M

图 5 结 晶 器 热 流对 裂 纹 指 数 的 对 应 关 系
板 表 面 纵 裂纹 发 生 率 最 小 M W 3 l .
l- 1.
/ m2 ,


经 统 计 分 析 侧 边 铜 板 热 流 与 宽 边 铜 板 热 流 之

连铸板坯角部横裂产生的原因及应对措施

连铸板坯角部横裂产生的原因及应对措施

铸坯角部横裂产生的原因及应对措施板坯可以在表面上观察到纵向裂纹,在尾部观察到中线裂纹。

要了解板坯中的角裂纹及孔隙,必须用沿板坯边部进行火焰切割处理,切割出50mm宽,2〜3mm深的槽。

在检查板坯的裂纹时,在高强低合金钢(HSLA)、包晶钢、中碳钢中发现了角部横裂,但是在低碳铝镇静钢中却很少发现裂纹。

包晶钢含有Nb,因此,角裂的百分比极高。

虽然在板坯的疏松边发现了角部横裂,但板坯中的大多数裂纹出现在板坯的固定边。

几乎板坯中所有的角部横裂纹与振动痕迹方向一致。

在出厂前,必须对板坯中的角裂纹和针孔进行处理。

处理板坯中出现的裂纹将增加产品成本,降低生产能力,耽误产品出厂日期。

经过火焰切割后的板坯样品送到米塔尔研究实验室进行分析,以便确定其中角部横裂纹的发生原因。

为减少角部横裂纹,米塔尔公司LazaroCardenas(MSLC)的操作人员、维修人员、技术人员组成了一支精干的团队,以降低板坯角部横裂纹的发生。

裂纹起因当铸流表面遭受到热力应变、机械力应变或相变时,若该应变量超过了铸件材料的最大应变值,板坯就会发生横裂。

在下列条件下板坯可能产生裂纹:(1)铸流表面温度下降至低延展区以下,拉伸应变导致铸件产生裂纹。

(2)结晶器上热收缩应变引起板坯内部热断裂,产生裂纹。

(3)结晶器上或结晶器附近所施加的外力引起表面热拉裂。

产品的延展性低是出现裂纹的主要原因。

影响板坯横裂的因素还包括化学作用。

减小温差,降低震动是避免板坯裂隙发生的主要措施。

角部裂分析对板坯切削样本(削痕深度2〜3mm)进行化学成分分析的结果如表1。

在这种钢中发现了严重的角部裂纹,主要原因是该种钢的Nb、V和C含量高,特别是C对包晶钢非常敏感。

理论上讲,Nb(C,N)在1090°C开始析出,当温度下降,析出量快速增长,当温度降低到900C时主要析出物为V(C,N),温度进一步下降到800C时,晶间继续析出。

众所周知,在温度降低过程中,Nb基及V基析出物沿奥氏体晶粒边界析出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


浸入式水口对中,防止偏流 合理的浸入式水口设计(合适的出口直径,倾角) 合适的水口插入深度 合适的频率和振幅
(3) 结晶器振动

2 铸坯表面纵裂纹
(4) 出结晶器铸坯运行 二次冷却均匀性 (5) 调整钢水成分 钢中碳含量避开包晶区,C向下线或上线控制 钢中S<0.015% 残余元素Cu、As、Zn控制<0.1%
图2-4 拉速对纵裂纹的影响
2 铸坯表面纵裂纹
(3) 保护渣 液渣层厚度<10mm,纵裂纹增加(图2-5)。
图2-5 液渣层厚度对纵裂纹的影响
2 铸坯表面纵裂纹
(4) 结晶器液面波动 液面波动<±5mm,纵裂纹最少(图2-6);
图2-6 结晶器液面波动对纵裂纹的影响
2W (T1 T2 ) W
连铸坯表面裂纹 形成及防止
宋晔
内容
1 2 3 4 5 前言 铸坯表面纵裂纹 铸坯表面横裂纹 铸坯表面星形裂纹 结论
1.前言
连铸坯质量概念: ◆ 铸坯洁净度(夹杂物数量、类型、尺寸、 分布) ◆ 铸坯表面质量(表面裂纹、夹渣、气孔) ◆ 铸坯内部质量(内部裂纹、夹杂物,中 心疏松、缩孔、偏析) ◆ 铸坯形状缺陷(鼓肚、脱方)
2 铸坯表面纵裂纹
2.3 影响表面纵裂纹产生的因素
(1) 钢水成分
◆ [S]>0.015%,纵裂纹增加(图2-2);
◆ [C]=0.12~0.15%,纵裂纹产生严重(图2-3)
图2-2 钢中[S]与裂纹指数的关系
2 铸坯表面纵裂纹
பைடு நூலகம்
图2-3 含碳量对板坯宽面纵裂纹的影响
2 铸坯表面纵裂纹
(2) 拉速 拉速增加,纵裂纹指数增加(图2-4);
1.前言
铸坯裂纹是影响连铸机产量和铸坯 质量的主要缺陷。据统计铸坯各类缺 陷中的50%为裂纹。铸坯出现裂纹, 重者会导致漏钢和废品,轻者需进行 精整。
2 铸坯表面纵裂纹
2.1 板坯表面纵裂纹特征 表面纵裂纹可能发生在板坯宽面中心区域或宽面到 棱边的任一位置产生。图 2 - 1 为板坯宽面中心区域的 纵 裂 纹 和 纵 裂 纹 的 显 微 形 貌 。 以 250×1200mm (C=0.08%)板坯为例: 细小纵裂纹:宽度1-2mm,深度3-4mm,长100mm左 右。 宽大纵裂纹:宽度10-20mm,深度20-30mm,长度有 几米,严重时会贯穿板坯而报废
3 铸坯表面横裂纹
3.2横裂纹产生原因 (1) 横裂纹产生于结晶器初始坯壳形成振痕的 波谷处,振痕越深,则横裂纹越严重,在波谷 处,由于: -奥氏体晶界析出沉淀物,产生晶间断裂 -沿振痕波谷S、P元素呈正偏析,降低了钢高 温强度。 这样,振痕波谷处,奥氏体晶界脆性增大,为裂 纹产生提供了条件。
3 铸坯表面横裂纹
3 铸坯表面横裂纹 3.1表面横裂纹特征


横裂纹可位于铸坯面部或棱边 横裂纹与振痕共生,深度2~4mm,可达7mm,裂纹深处生成 FeO。不易剥落,热轧板表面出现条状裂纹。振痕深,柱状晶 异常,形成元素的偏析层,轧制板上留下花纹状缺陷。 铸坯横裂纹常常被FeO覆盖,只有经过酸洗后,才能发现。
图3-1 振痕深度与横裂纹产生几率的关系
3 铸坯表面横裂纹
图3-2 振动频率与振痕深度的关系
3 铸坯表面横裂纹
图3-3 结晶器液面波动与角裂发生率的关系
(3) 结晶器液面波动 结晶器液面波动增加,横裂纹加重(图3-3)。
3 铸坯表面横裂纹
(4) 合适二冷强度 调整二冷水分布, 在矫直前铸坯温度 >900℃,避开脆性区 (图3-4); 合适二冷水量并降 低铸坯横向中心与边 部温度差,尤其是避 免角部温度过低。
2 铸坯表面纵裂纹
综合分析表明纵裂纹有以下特征: (1) 产生纵裂纹的表面常伴有凹陷(depression),纵 裂纹的严重性与表面凹陷相对应。 (2) 裂纹沿树枝晶干方向扩展。 (3) 裂纹内发现有硅、钙、铝等元素的夹杂物。 (4) 在裂纹周围发现有P,S,Mn的偏析 (5) 在裂纹边缘出现有一定的脱碳层,说明裂纹是在高 温下形成扩展的。
2 铸坯表面纵裂纹
2.4. 防止表面纵裂纹措施
防止纵裂纹产生的根本措施,就是使结晶器弯月 面区 域坯壳生长厚度均匀。 (1) 结晶器初始坯壳均匀生长 合适结晶器锥度

调节结晶器水量和进出水温度,控制结晶器弯 月面铜板温度为恒定值。
2 铸坯表面纵裂纹
(2) 结晶器钢水流动的合理性
液面波动±3~±5mm
3 铸坯表面横裂纹
3.3影响产生横裂纹因素
(1) 钢成分 C=0.10~0.15%,坯壳厚度不均 匀性强,振痕深,表面易产生凹陷 或横裂纹;生产实践表明,C= 0.15~0.18%或0.15~0.20%时, 振痕浅了,铸坯边部横裂减少; 降低钢中[N],防止氮化物沉淀; (2) 结晶器振动特点 振痕深度增加,横裂纹增加(图31); 振动频率f增加,振痕变浅,横裂纹 减少(图3-2);
这些力的的综合作用在坯壳上,当张应力超过钢的高温允许的 强度,则就在坯壳薄弱处萌生裂纹,出结晶器后在二冷区继续扩展。
2 铸坯表面纵裂纹
在结晶器弯月面区坯壳厚度生长不均匀的主要原 因是: (1)包晶相变(L+δ→γ)收缩特征,气隙过早形成, 导致坯壳生长不均匀。 (2)工艺因素影响结晶的坯壳生长不均匀。 显然要防止产生纵裂纹,就是要使结晶的弯月面初 生坯壳厚度均匀,避免坯壳产生应力梯度。要做到这点, 对于包晶相变的收缩特征是由Fe-C相图决定的,人为 无法改变,而重要的是准确控制影响结晶的初生坯壳生 长的工艺因素,来防止产生纵裂纹。

2 铸坯表面纵裂纹
图2-1 板坯表面纵裂纹形貌
2 铸坯表面纵裂纹
2.2 表面纵裂纹产生的原因 ◆ 板坯横断面低倍检验指出,纵裂纹起源于激冷层薄弱处(约23mm)。 ◆ 结晶器的模拟试验指出,纵裂纹起源于结晶的弯月面区(几十毫 米到150mm)周边坯壳厚度薄弱处。这说明纵裂纹起源于结晶 器 的弯月面区初生凝固壳厚度的不均匀性。由于受力的作用: (1)板坯凝固壳四周温度不均匀而产生的收缩力。 (2)板坯收缩由钢水静压力产生的鼓胀力。 (3)宽度收缩受侧面约束产生的弯曲应力。
相关文档
最新文档