连铸坯表面裂纹缺陷分析

合集下载

连铸坯表面裂纹形成及防止分析

连铸坯表面裂纹形成及防止分析


浸入式水口对中,防止偏流 合理的浸入式水口设计(合适的出口直径,倾角) 合适的水口插入深度 合适的频率和振幅
(3) 结晶器振动

2 铸坯表面纵裂纹
(4) 出结晶器铸坯运行 二次冷却均匀性 (5) 调整钢水成分 钢中碳含量避开包晶区,C向下线或上线控制 钢中S<0.015% 残余元素Cu、As、Zn控制<0.1%
图2-4 拉速对纵裂纹的影响
2 铸坯表面纵裂纹
(3) 保护渣 液渣层厚度<10mm,纵裂纹增加(图2-5)。
图2-5 液渣层厚度对纵裂纹的影响
2 铸坯表面纵裂纹
(4) 结晶器液面波动 液面波动<±5mm,纵裂纹最少(图2-6);
图2-6 结晶器液面波动对纵裂纹的影响
2W (T1 T2 ) W
连铸坯表面裂纹 形成及防止
宋晔
内容
1 2 3 4 5 前言 铸坯表面纵裂纹 铸坯表面横裂纹 铸坯表面星形裂纹 结论
1.前言
连铸坯质量概念: ◆ 铸坯洁净度(夹杂物数量、类型、尺寸、 分布) ◆ 铸坯表面质量(表面裂纹、夹渣、气孔) ◆ 铸坯内部质量(内部裂纹、夹杂物,中 心疏松、缩孔、偏析) ◆ 铸坯形状缺陷(鼓肚、脱方)
2 铸坯表面纵裂纹
2.3 影响表面纵裂纹产生的因素
(1) 钢水成分
◆ [S]>0.015%,纵裂纹增加(图2-2);
◆ [C]=0.12~0.15%,纵裂纹产生严重(图2-3)
图2-2 钢中[S]与裂纹指数的关系
2 铸坯表面纵裂纹
பைடு நூலகம்
图2-3 含碳量对板坯宽面纵裂纹的影响
2 铸坯表面纵裂纹
(2) 拉速 拉速增加,纵裂纹指数增加(图2-4);

A105连铸坯表面横裂纹形成原因分析

A105连铸坯表面横裂纹形成原因分析

A105连铸坯表面横裂纹形成原因分析(壹佰钢铁网推荐)连铸坯表面缺陷可分为纵裂纹、横裂纹、网状裂纹、皮下针孔和宏观夹杂,但主要缺陷是表面裂纹。

表面裂纹形成的一个主要原因是在结晶器弯月面区域钢水-结晶器壁-保护渣-坯壳之间不均衡凝固,它取决于钢水在结晶器中的凝固过程。

在二冷区,铸坯表面裂纹会继续扩展.它会导致轧材表面的微细裂纹,影响产品质量。

连铸坯裂纹的形成是一个非常复杂的过程,是传热、传质和应力相互作用的结果。

北京科技大学的学者应用配有能谱仪的场发射扫描电镜分析了A105钢中裂纹处及基体内残余元素Cu、As和Sn以及P含量.应用Thermo-Calc热力学计算软件计算了A105钢的主要析出相以及钢液中P含量随固相质量分数变化关系。

应用Gleeble 1500热模拟试验机对A105钢的高温热塑性进行了研究。

发现P偏析是该钢产生横裂的主要原因,残余元素Cu、As和Sn在晶界的偏聚加剧了裂纹的形成,矫直温度偏低加速了裂纹的扩展,而裂纹的形成可能与AlN的析出无关,因为析出的AlN很少。

(壹佰钢铁网推荐)。

连铸板坯和方坯表面缺陷的分析与判定

连铸板坯和方坯表面缺陷的分析与判定

连铸板坯和方坯表面缺陷的分析与判定在钢板、板卷、棒材、型钢上的裂纹和其他等缺陷,大多源于板坯和方坯上的缺陷。

大多数钢厂面临的最大挑战是缺乏如何判定、检查这些缺陷及相应地采取何种对策。

令人遗感的是,目前很多钢厂在遇到表面缺陷问题时所做的一些措施并不恰当,甚至没有对板坯和方坯进行检测分析便作出相应的判定和措施。

板坯和方坯的表面缺陷类型板坯和方坯上的所有表面缺陷几乎可以被分成五大类,并且在世界上大多数铸机上它们的发生位置基本上也是可以预测的。

基于经验,按照发生概率的大小顺序列出了五大类缺陷,即针状气孔/疏松、裂纹、深度振痕、不良清理、结晶器壁污染和刮伤等。

依据加热炉的氧化条件,可以确定板坯和方坯表面缺陷的临界深度,从而判定缺陷是否最终会成为板材、板卷或棒材上的轧制表面缺陷。

大部分加热炉操作会导致1%~2%厚度的铸坯氧化成氧化铁皮。

如果铸坯的厚度为220mm,就意味着在加热过程中会造成2.2mm~4.4 mm的厚度损失。

这个厚度损失同样会传递到表面缺陷。

如果铸坯表面缺陷的深度小于铸坯厚度的1%~2%,那么这些缺陷将在加热过程中稍除。

而那些比成为氧化铁的1%~2%厚度更深的缺陷,最终会造成轧材的表面缺陷。

针状气孔/疏松在所有铸机上。

针状气孔/疏松几乎都是常见的,也是最容易被忽略的铸坯缺陷。

如果钢中的气体得不到合理控制,就会在板坯和方坯表面上产生针状气孔/疏松。

当凝固率达到90%而气体总压力Ar+H2+N2+CO+CO2>1atm时,针状气孔/疏松就会在板坯和方坯表面上形成。

找出表面和皮下针状气孔/疏松的形成原因并不困难。

在实际生产中,皮下通常是指表面以下10mm的深度。

根据经验,针状气孔/疏松是影响钢板、板卷表面质量的最突出问题。

举一个板坯上的针状气孔/疏松的例子,钢种是V和Nb复合微合金化的A572 Gr50结构钢,含0.15%C,在铸坯上角部出现针状气孔/疏松,导致14.3mm厚的成材的上边部出现缺陷。

连铸坯的缺陷及控制

连铸坯的缺陷及控制

二冷段和末端区的电磁搅拌可有效抑制枝晶搭桥形成封闭 的液窝。
连铸主要工艺参数
① 拉坯速度及其控制 ② 铸坯的冷却(结晶器冷却、二次冷却)
连铸坯的内部凝固是在出结晶器后进行的,后继的二次水冷、 弯曲矫直等直接影响内部质量。
连铸坯的缺陷及控制
提高连铸坯内部质量的工艺措施:
① 控制二冷段的传热,使铸坯均匀凝固,提高等轴晶率; 偏析、缩孔、缩松
② 降低浇钢的过热度; ③ 使用性能好的保护渣,防止钢水二次氧化和污染; ④ 控制拉速,保证连铸机正常运行; ⑤ 电磁搅拌(二冷段和末端区)。 偏析、缩孔、缩松
连铸坯的缺陷及控制
提高连铸坯表面质量的工艺措施:
① 控制结晶器的传热,使初凝固壳均匀; 裂纹、凹陷
② 控制结晶器的振动;
振痕、横裂纹
③ 使用性能好的保护渣;
气孔、夹杂
④ 优化结晶器结构;
倒锥角度,弧形壁
⑤ 电磁搅拌;
气孔、夹杂
⑥ 软接触电磁连铸。
振痕、裂纹
电磁搅拌的部位:
结晶器电磁搅拌:
(1)借助旋转电磁场使连铸 机结晶器内的金属液产生平 面旋转,去除杂质、气体。
结晶器电磁搅拌:
(2)扩大等轴晶区改善宏观 偏析,减少粗大柱状晶区 。
软接触电磁连铸:
软接触电磁连铸:
(1)减轻结晶器振动对弯月 面的影响,液态渣膜连续均 匀。
软接触电磁连铸:
(2)减小初凝壳对结晶器的 连铸坯的内部缺陷
裂纹 气孔 夹杂 缩孔、缩松 成分偏析
连铸坯的缺陷及控制
连铸坯的缺陷及控制
1. 连铸坯的表面缺陷
裂纹 气孔 夹杂 振痕、凹陷 成分偏析
连铸坯的缺陷及控制
1. 连铸坯的表面缺陷

浅谈连铸板坯表面夹杂与裂纹的分析及预防措施

浅谈连铸板坯表面夹杂与裂纹的分析及预防措施

板坯连铸表面夹杂与表面裂纹的分析及预防措施摘 要:针对马钢板坯连铸生产过程中出现的表面夹杂与裂纹进行分析研究,提出了改进措施.关键词:连铸坯;表面夹杂;表面裂纹前 言连铸板坯表面出现夹杂与裂纹是影响铸坯质量的重要缺陷.夹杂与裂纹的出现,轻者要进行表面精整,重者会导致大宗废品的出现,既影响了铸机的生产,又影响了铸坯的质量,增加了企业的成本.本文就马钢第一炼钢厂板坯(220mmx1 300mm)生产中出现的表面夹杂和表面裂纹问题,从多角度分析研究其产生的原因,并提出减少夹杂与裂纹的措施,为板坯连铸生产提高参考.㈠ 表面夹杂缺陷1.1 夹杂来源和形成机理分析马钢第一炼钢厂板坯夹杂主要有两种类型:Ⅰ类为块状分布呈黄或白色;Ⅱ类为连续分布呈青色.通过电镜扫描分析发现:Ⅰ类夹杂是因耐火材料成块脱落而造成的,这种夹杂的结晶与上水口砖及某种耐火泥的结晶基本相同.因此,可以推断Ⅰ类夹杂的来源主要是结晶器上口与其护板之间抹的耐火泥和石英下水口成块脱落.这是因为在成分,颜色,岩相结构3方面与夹杂基本相同.在Ⅱ类夹杂的基体中有大小不等的结晶相α—A120,颗粒.而α—A12O 3有来源于脱氧产物的特征.夹杂中还有SiO 2,SiO 2为石英下水口的熔融状态.因此,可以推断Ⅱ类型夹杂的来源是石英下水口吸附A12O 3后的产物.形成机理是,A12O 3容易在石英质水口壁上附集.由于水口砖质的不均匀性及钢流冲刷的作用,A12O 3被吸附的结果会演变成凸起状颗粒.随其与基体结合面的减小,钢流冲刷及颗粒的增大,最后脱离石英水口而进入结晶器内.以A12O 3,和SiQ 2为主要组成的夹杂物因其熔点高,在保护渣中不易被熔融吸附.当它存在于结晶器四壁的钢液弯月面处时,若操作稍有不慎,这种颗粒状夹杂物就很容易被卷入铸坯表面形成表面夹杂.1.2 减少夹杂的解决办法连铸提高钢的质量控制夹杂物的办法有两类:第一类是防止夹杂物的生成和带入,第二类是去除钢液中已存在的夹杂物。

连铸板坯表面裂纹的成因

连铸板坯表面裂纹的成因

图1 中间罐温度与拉 速的对应图
图1 中间罐温度与拉 速的对应图
2)浸入式水口对中 2)浸入式水口对中
浸入式水口与结晶器不对中极易产生偏 流冲刷坯壳,还能引起结晶器液面翻腾, 保护渣不能形成均匀渣膜,导致传热不 良,坯壳厚薄不均而引起裂纹的发生。 投产初期采用人工下装式浸人式水口, 水口不易准确对中,尤其热换水口时, 更难保证对中,这些都可能导致裂纹的 发生。
5)保护渣的行为 5)保护渣的行为
现场所用保护渣的流动性不好。研 究表明,保护渣熔融不充分,粘度 过大,使流人坯壳和结晶器间隙的 渣膜不均匀,会导致摩擦力的变化 及坯壳冷却不均匀,造成坯壳厚薄 不均,引起裂纹的发生。
4 采取的措施
1)提高出钢温度的命中率,确保过热度为15℃±5t,重 新制定中间罐温度与拉速的对应表,见表1。 2)拉速升降时必须按每分钟≤0.15m/min的幅度操作,以 保证结晶器液面波动较小。 3)引进浸入式水口快速更换装置,换水口过程仅需3s, 更换水口迅速、准确、平稳及对中良好。 4)改进保护渣,要求保护渣粘度合适,熔化均匀及形成 的渣膜厚度适中。为此,保护渣的熔点由1145℃调为 1 0 7 0 ℃ , 粘 度 由 0 . 2 3 8 Pa·s(1300℃) 调 为 0 . 1 4 2 Pa·s(1300℃)。 5)对Q235等裂纹敏感性强的钢种,结晶器宽面水量由 200m3/h调为185m3/h。
连铸板坯表面裂纹的成因 及防止措施
1 2 3 4 5 前言 铸机状况 铸坯表面裂纹的影响因素 采取的措施 效果
1 前言
连铸板坯裂纹是影响连铸机产量 和铸坯质量的重要缺陷,轻者要 进行精整,重者会导致拉漏或废 品,影响铸机生产率和铸坯质量。 本文就生产中出现的铸坯表面裂 纹进行分析,并提出减少裂纹的 措施。

连铸坯表面纵裂纹产生原因及控制措施

连铸坯表面纵裂纹产生原因及控制措施

左 右 1 00 mm

2 3 1 .

宽 大 纵 裂 纹 宽 度 深 度 :
丨 0 - 20m m ,
2 0 - 3 0m m ,
长达几米 严重时会贯穿 板坯而报废


22 .
表 面 纵 裂 纹 原 因 分 析
2 2 .
.1
纵 裂 纹 起 源 于 结 晶 器 的 弯 月 面 区 初 生 凝 固
0 2 -


> 2 1
钢 液 面 波 动 范 围 mm ,
图 4 液 面 波 动 对 裂 纹 指 数 的 影 响
2 .
2. 4
结 晶 器 冷 却 效 果 及 热 流 的 影 响重 要 纵 裂 纹 一 般 均 发 生 在 结 晶 器 内 部 在 结 晶 器


结 晶 器 冷 却 效 果 对 连 铸 坯 纵 裂 纹 的 影 响 非 常 内 部 先 形 成 微 裂 纹 进 入 二 冷 区 后 发 展 成 明 显 的 裂 ,

晶器

于 W M 7 1 .
M2

宽面 铜板平 均热 流 为
侧 面 平 均 热 流 M W M 4 6 1 .

1.
2 /


<z>

右 1
cr >
i . i
a M

图 5 结 晶 器 热 流对 裂 纹 指 数 的 对 应 关 系
板 表 面 纵 裂纹 发 生 率 最 小 M W 3 l .
l- 1.
/ m2 ,


经 统 计 分 析 侧 边 铜 板 热 流 与 宽 边 铜 板 热 流 之

连铸板坯缺陷图谱及产生的原因分析(新)

连铸板坯缺陷图谱及产生的原因分析(新)

第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。

在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。

表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。

2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。

当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。

保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。

危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
No .1 Mac 2 1 r h 01
《 中国重型装备》
C I A H A Y E UP N H N E V Q I ME T
从 图 4可 以看 出 , 轧 态 、 火 态 和 调 质 态 热 正 6 S2 n钢 8 0C亚温 淬 火 的 转 变 产物 为 马 氏体 0 iM 0 ̄
体延 伸形成 的三 角 区部 位 晶粒 明显要 比裂 纹的 另 侧 晶粒要 细 , 纹两侧 组织 不 同 , 明裂纹 两侧 裂 说

端存 在沿 奥 氏体 晶界 向基体 延 伸 的 现象 , 明横 说
裂是 沿 晶开裂 , 钢水 结 晶成 固体 以后 产生 的 , 是 是

形成 组织 的温度不 同。三角 区部位 晶粒 细说 明该
钢亚 温淬火 后韧性 好 、 度高 的原 因之一 。 强
双相合 金 中双 相 的形 态对 试样 的力学性 能有
影响 , 主要表 现 在 对 裂纹 扩 展 的 阻碍 作 用 上 。当
铁 素体 呈针状 时 , 氏体 被铁 素 体 最 大限 度 的分 马 开 , 裂纹 的扩展 不仅 通过 马氏体 , 故 还必然 通过 铁 素体 。铁素 体在 断裂前会 产生 大量 塑性变形 而 消
若铁 素体呈 块状 形 态 时 , 则裂 纹 容 易 只沿 着 马 氏 体基 体扩展 , 而不 与孤立 的铁 素体相 遇 , 从而 使试 样 的韧性变 差 。另外 , 素体 呈针状 、 氏体 为细 铁 马
小板条 状时 , 晶界 总面积 较块状 时要 大 的多 , 也有 利 于力学性 能 的提 高 。针状组 织 比颗 粒状组 织细 小 , 材料变 形 和断 裂 的过 程 中能 吸收 更 多 的能 在
耗较 多 能量 , 而 对 裂 纹 的 扩 展 起 到 阻碍 作 用 。 从
[ ] 徐 祖耀 . 2 马氏体 相 变及 马 氏体 [ . M] 北京 : 学 出版社 , 科
1 8 1 6— 1 4. 9 0: 5 6
编辑
杜 青 泉
( 接第 4 上 2页 )
裂纹 的关键 原 因。金相 检测 可 以明显看 出裂纹 尾
经亚 温淬火 后获 得 的颗 粒 状 双相 组 织 相 比, 淬火
量 J 。由于淬 火态组 织 形 态 中针 状 组 织最 多 , 故 其 综合 力学性 能最 好 。
3 结 论
态试 样 的组 织更 细 小 , 具有 更 高 的综 合 力 学性 故
能。
亚温淬 火 较 常 规 完 全 淬 火 更 有 利 于 细 化 晶
分布 的碳化 物在 细化 晶粒 的同 时 , 也有 利 于 滑移
正 火态 和调质 态时 , 淬火组 织 中铁素体 呈颗粒 状 , 组 织较 为粗 大 。原始 组 织 为淬 火 态 时 , 铁素 体 呈
针 状均 匀分 布 , 组织 细 小 。这 是 淬火 态 试样 力 学
和晶 界 移 动 的 晶 粒 取 向 , 而 提 高 材 料 的 塑 从
部位 冷却速 度快 , 氏体 的过 冷度 大 , 奥 形成 铁素体
和珠 光体 的温 度 范 围低 , 以 晶粒 就细 。裂 纹 另 所

冷 水强 度过 大 , 在热 应 力 等 的作 用 下 产生 开 裂
形成 的裂 纹 。
侧 晶粒粗 大说 明在 该 部位 冷 却 速度 慢 , 氏 体 奥
学 性 能有影 响 , 过 预处 理 的 淬火 态 试样 亚 温 淬 经 火 后 的综 合力 学性 能 优 于 热 轧态 、 火 态 和调 质 正
态 试样 。
() 2 显微组 织分 析 表 明 : 始 组织 为热 轧 态 、 原
6 S Mn钢经 亚 温 淬火 处 理 , 溶 铁 素体 和 弥 散 0i 2 未
存在 疏松孔 洞 的试 样 , 其孔 洞 没 有气 泡 所 具
有 的一般 特征 , 且该 部位 为夹杂 物的集 中区 , 最 是
后凝 固区 , 以该 孔 洞是 最 后 凝 固形 成 的疏 松 孔 所
的过冷度小 , 形成 铁 素体和珠 光体 的温度 范 围高 ,
所 以 晶粒就 粗 大 。
() 1 原始组 织对 6 S2 0 iMn钢 亚 温淬 火后 的力
粒, 也更利于提 高钢 的强度 、 硬度 、 塑性和韧性。 这是 因为 : 方面 亚温淬 火有 未溶铁 素体存 在 , 一 阻
止 了奥 氏体 晶粒 的 长大 ; 另~ 方 面 亚温 淬 火较 低
的加 热 温 度 , 慢 了 原 子 扩 散 的 速 度 。另 外 , 减
性 ¨ 。晶粒 细 化 , 界 总 面 积 增 加 , 6 S2 晶 是 0 iMn
性 能优 于热 轧态 、 火态 和调质 态试样 的原 因 。 正
参 考 文 献
[ ] 闫春波 , 1 周维龙.1 N ( 5 a级 ) 8 i240MP 马氏体时效钢细化晶 粒工艺 [ ] 大型铸锻件 ,0 4 2 : 7 J. 20 ( ) 1— .
和铁 素体 双相组 织 , 组织形 态相 同 , 氏体 与铁 其 马 素体 呈颗粒 状均 匀分 布 。
显微 组 织 分 析 表 明 : 火 态 6 S2 n钢 经 淬 0 iM
80C 温淬 火后 得 到 极 细小 的针状 铁 素 体 和 马 0  ̄亚 氏体 双相组 织 。与 热 轧 态 、 正火 态 和 调质 态 试 样
综合 以上 检验 结 果 分析 可 知 : 铸坯 表 面 出 连 现 裂纹 缺陷 , 一方 面的原 因是冷 水强度 大 , 冷却 速
度快 , 另一个 关键原 因是冷 却不 均匀 。
编辑 傅 冬 梅
4 结论
洞, 而不是气泡。该孔洞距铸坯表面约 1 m~ 5m 2 0mm左右 , 在该部 位形 成疏松 孔} 说 明铸 坯表 同,
面冷 却速度 非常 的快 。 对 于裂 纹两侧 组 织 不ቤተ መጻሕፍቲ ባይዱ同 的试 样 , 相 分 析发 金 现两 条裂纹 两侧 的组 织 明显 不 同 , 条裂 纹 向基 两
相关文档
最新文档