山东省泰安市中考数学试卷
(完整)泰安市中考数学试卷含解析(Word版),文档

2021 年山东省泰安市中考数学试卷一、选择题〔本大题共20 小题,每题 3 分,共 60 分〕1.以下四个数:﹣ 3,﹣,﹣π,﹣1,其中最小的数是〔〕A.﹣πB.﹣ 3 C.﹣ 1 D.﹣2.以下运算正确的选项是〔〕A.a2?a2=2a2B. a2+a2=a4C.〔1+2a〕2=1+2a+4a2D.〔﹣ a+1〕〔a+1〕=1﹣a23.以以下图案其中,中心对称图形是〔〕A.①②B.②③C.②④D.③④4.“ 2021年至 2021 年,中国同‘一带一路’沿线国家贸易总数高出 3 万亿美元〞,将数据 3 万亿美元用科学记数法表示为〔〕A.3×1014美元 B. 3× 1013美元 C. 3× 1012美元 D.3×1011美元5.化简〔 1﹣〕÷〔 1﹣〕的结果为〔〕A.B.C.D.6.下面四个几何体:其中,俯视图是四边形的几何体个数是〔〕A.1B.2C.3D.4.一元二次方程2﹣6x﹣6=0 配方后化为〔〕7xA.〔x﹣3〕2=15 B.〔x﹣3〕2=3 C.〔x+3〕2=15 D.〔 x+3〕2=38.袋内装有标号分别为1,2,3,4 的 4 个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,那么组成的两位数是 3 的倍数的概率为〔〕A.B.C.D.9.不等式组的解集为x<2,那么k的取值范围为〔〕A.k>1B.k<1C.k≥1 D.k≤ 110.某衣饰店用 10000 元购进一批某品牌夏季衬衫假设干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10 元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,那么所列方程为〔〕A.﹣10=B.+ 10=C.﹣10=D.+ 10=11.为认识中考体育科目训练情况,某校从九年级学生中随机抽取局部学生进行了一次中考体育科目测试〔把测试结果分为A,B,C,D 四个等级〕,并将测试结果绘制成了以以下图的两幅不完满统计图,依照统计图中供应的信息,结论错误的选项是〔〕A.本次抽样测试的学生人数是40B.在图 1 中,∠α的度数是 126°C.该校九年级有学生500 名,估计 D 级的人数为 80D.从被测学生中随机抽取一位,那么这位学生的成绩是 A 级的概率为12.如图,△ ABC内接于⊙ O,假设∠ A=α,那么∠ OBC等于〔〕A.180°﹣2αB. 2α C.90°+αD.90°﹣α13.一次函数 y=kx﹣ m﹣2x 的图象与 y 轴的负半轴订交,且函数值 y 随自变量 x 的增大而减小,那么以下结论正确的选项是〔〕A.k<2,m> 0 B. k<2,m< 0 C. k> 2, m>0 D.k<0,m<014.如图,正方形 ABCD中,M 为 BC上一点,ME⊥AM,ME 交 AD 的延长线于点 E.假设 AB=12,BM=5,那么 DE 的长为〔〕A.18B.C.D.15.二次函数y=ax2+bx+c 的 y 与x 的局部对应值以下表:x﹣ 1013y﹣ 3131以下结论:①抛物线的张口向下;②其图象的对称轴为x=1;③当x< 1 时,函数值y 随x 的增大而增大;④方程ax2+bx+c=0 有一个根大于4,其中正确的结论有〔〕A.1 个B.2 个C.3 个D.4 个16.某班学生积极参加献爱心活动,该班50 名学生的捐款统计情况以下表:金额 /元5102050100人数4161596那么他们捐款金额的中位数和平均数分别是〔〕A.10,B. 20,C. 10,D.20,17.如图,圆内接四边形 ABCD的边 AB 过圆心 O,过点 C 的切线与边 AD 所在直线垂直于点M ,假设∠ ABC=55°,那么∠ ACD等于〔〕A.20°B.35°C. 40°D.55°18.如图,在正方形网格中,线段 A′ B是′线段 AB绕某点逆时针旋转角α获取的,点 A′与 A 对α〕应,那么角的大小为〔A.30°B.60°C. 90°D.120°19.如图,四边形 ABCD是平行四边形,点 E 是边 CD上一点,且 BC=EC,CF⊥BE交 AB 于点 F,P 是 EB延长线上一点,以下结论:①BE均分∠ CBF;② CF均分∠ DCB;③ BC=FB;④ PF=PC,其中正确结论的个数为〔〕A.1B.2C.3D.420.如图,在△ ABC中,∠ C=90°,AB=10cm,BC=8cm,点 P 从点 A 沿 AC 向点 C 以 1cm/s 的速度运动,同时点 Q 从点 C 沿 CB向点 B 以 2cm/s 的速度运动〔点 Q 运动到点 B 停止〕,在运动过程中,四边形PABQ的面积最小值为〔〕A.19cm2B.16cm2C.15cm2D.12cm2二、填空题〔本大题共 4 小题,每题 3 分,共 12 分〕21.分式与的和为 4,那么 x 的值为..关于x 的一元二次方程x2+〔2k﹣ 1〕x+〔 k2﹣1〕=0 无实数根,那么 k 的取值范围为.2223.工人师傅用一张半径为24cm,圆心角为 150°的扇形铁皮做成一个圆锥的侧面,那么这个圆锥的高为.24.如图,∠ BAC=30°,M 为 AC上一点, AM=2,点 P 是 AB 上的一动点, PQ⊥ AC,垂足为点Q,那么 PM+PQ 的最小值为.三、解答题〔本大题共 5 小题,共 48 分〕25.如图,在平面直角坐标系中, Rt△AOB的斜边 OA 在 x 轴的正半轴上,∠ OBA=90°,且 tan ∠ AOB= ,OB=2 ,反比率函数 y= 的图象经过点 B.(1〕求反比率函数的表达式;(2〕假设△ AMB 与△ AOB关于直线 AB 对称,一次函数 y=mx+n 的图象过点 M 、A,求一次函数的表达式.26.某水果商从批发市场用 8000 元购进了大樱桃和小樱桃各 200 千克,大樱桃的进价比小樱桃的进价每千克多 20 元,大樱桃售价为每千克 40 元,小樱桃售价为每千克 16 元.(1〕大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2〕该水果商第二次仍用 8000 元钱从批发市场购进了大樱桃和小樱桃各 200 千克,进价不变,但在运输过程中小樱桃耗费了 20%.假设小樱桃的售价不变,要想让第二次赚的钱很多于第一次所赚钱的 90%,大樱桃的售价最少应为多少?27.如图,四边形ABCD中, AB=AC=AD,AC 均分∠ BAD,点 P 是 AC 延长线上一点,且PD⊥AD.(1〕证明:∠ BDC=∠PDC;(2〕假设 AC 与 BD 订交于点 E,AB=1,CE: CP=2:3,求 AE 的长..如图,是将抛物线2平移后获取的抛物线,其对称轴为x=1,与 x 轴的一个交点为 A 28y=﹣ x〔﹣ 1,0〕,另一个交点为B,与 y 轴的交点为 C.(1〕求抛物线的函数表达式;(2〕假设点 N 为抛物线上一点,且 BC⊥ NC,求点 N 的坐标;(3〕点 P 是抛物线上一点,点 Q 是一次函数 y= x+ 的图象上一点,假设四边形 OAPQ为平行四边形,这样的点 P、Q 可否存在?假设存在,分别求出点 P,Q 的坐标;假设不存在,说明原由.29.如图,四边形ABCD是平行四边形, AD=AC, AD⊥ AC,E 是 AB 的中点, F 是 AC延长线上一点.(1〕假设 ED⊥EF,求证: ED=EF;(2〕在〔 1〕的条件下,假设 DC 的延长线与 FB 交于点 P,试判断四边形 ACPE可否为平行四边形?并证明你的结论〔请先补全图形,再解答〕;〔 3〕假设 ED=EF,ED 与 EF垂直吗?假设垂直给出证明.2021 年山东省泰安市中考数学试卷一、选择题〔本大题共20 小题,每题 3 分,共 60 分〕1.以下四个数:﹣ 3,﹣,﹣π,﹣1,其中最小的数是〔〕A.﹣πB.﹣ 3 C.﹣ 1 D.﹣【考点】 2A:实数大小比较.【解析】将四个数从大到小排列,即可判断.【解答】解:∵﹣ 1>﹣>﹣ 3>﹣π,∴最小的数为﹣π,应选 A.2.以下运算正确的选项是〔〕2 22 2 a2422D.〔﹣ a 12A.a ?a =2a B. a + =a C.〔1 2a〕=1 2a 4a〕〔 a 1〕 =1﹣a++ +++【考点】 4F:平方差公式; 35:合并同类项; 46:同底数幂的乘法; 4C:完满平方公式.【解析】依照整式的乘法、加法法那么及完满平方公式和平方差公式逐一计算可得.【解答】解: A、a2?a2=a4,此选项错误;B、a2?a2=2a2,此选项错误;C、〔1+2a〕2=1+4a+4a2,此选项错误;D、〔﹣ a+1〕〔a+1〕=1﹣a2,此选项正确;应选: D.3.以以下图案其中,中心对称图形是〔〕 A.①②B.②③C.②④D.③④【考点】 R5:中心对称图形.【解析】依照中心对称图形的看法求解.【解答】解:①不是中心对称图形;②不是中心对称图形;③是中心对称图形;④是中心对称图形.应选:D.4.“ 2021年至 2021 年,中国同‘一带一路’沿线国家贸易总数高出 3 万亿美元〞,将数据 3 万亿美元用科学记数法表示为〔〕A.3×1014美元 B. 3× 1013美元 C. 3× 1012美元 D.3×1011美元【考点】 1I:科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10n的形式,其中1≤ | a| <10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点搬动了多少位,n 的绝对值与小数点搬动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解: 3 万亿 =3 0000 0000 0000=3× 1012,应选: C.5.化简〔 1﹣〕÷〔1﹣〕的结果为〔〕A.B.C.D.【考点】 6C:分式的混杂运算.【解析】原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分即可获取结果.【解答】解:原式=÷=?=,应选A6.下面四个几何体:其中,俯视图是四边形的几何体个数是〔〕A.1B.2C.3D.4【考点】 U1:简单几何体的三视图.【解析】依照俯视图是分别从物体上面看,所获取的图形进行解答即可.【解答】解:俯视图是四边形的几何体有正方体和三棱柱,应选:B..一元二次方程2﹣6x﹣6=0 配方后化为〔〕7xA.〔x﹣3〕2=15 B.〔x﹣3〕2=3 C.〔x+3〕2=15 D.〔 x+3〕2=3【考点】 A6:解一元二次方程﹣配方法.【解析】方程移项配方后,利用平方根定义开方即可求出解.【解答】解:方程整理得: x2﹣6x=6,配方得: x2﹣ 6x+9=15,即〔 x﹣3〕2=15,应选 A 8.袋内装有标号分别为1,2,3,4 的 4 个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,那么组成的两位数是 3 的倍数的概率为〔〕A.B.C.D.【考点】 X6:列表法与树状图法.【解析】画树状图显现所有16 种等可能的结果数,再找出所成的两位数是 3 的倍数的结果数,尔后依照概率公式求解.【解答】解:画树状图为:共有 16 种等可能的结果数,其中所成的两位数是 3 的倍数的结果数为5,所以成的两位数是 3 的倍数的概率 = .应选 B.9.不等式组的解集为x<2,那么k的取值范围为〔〕A.k>1B.k<1C.k≥1 D.k≤ 1【考点】 CB:解一元一次不等式组.【解析】求出每个不等式的解集,依照得出关于k 的不等式,求出不等式的解集即可.【解答】解:解不等式组,得∵不等式组的解集为 x<2,∴ k+1≥2,解得 k≥1.应选: C.10.某衣饰店用 10000 元购进一批某品牌夏季衬衫假设干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10 元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,那么所列方程为〔〕A.﹣10=B.+ 10=C.﹣10=D.+ 10=【考点】 B6:由实责问题抽象出分式方程.【解析】依照题意表示出衬衫的价格,利用进价的变化得出等式即可.【解答】解:设第一批购进x 件衬衫,那么所列方程为:+10=.应选: B.11.为认识中考体育科目训练情况,某校从九年级学生中随机抽取局部学生进行了一次中考体育科目测试〔把测试结果分为A,B,C,D 四个等级〕,并将测试结果绘制成了以以下图的两幅不完满统计图,依照统计图中供应的信息,结论错误的选项是〔〕A.本次抽样测试的学生人数是 40 B.在图 1 中,∠α的度数是 126°C.该校九年级有学生 500 名,估计 D 级的人数为 80D.从被测学生中随机抽取一位,那么这位学生的成绩是 A 级的概率为【考点】 X4:概率公式; V5:用样本估计整体; VB:扇形统计图; VC:条形统计图.【解析】利用扇形统计图以及条形统计图分别解析得出总人数以及结合α的度数、利用样本估计整体即可.【解答】解: A、本次抽样测试的学生人数是:12÷30%=40〔人〕,正确,不合题意;B、∵×360°=126°,∠α的度数是126°,故此选项正确,不合题意;C、该校九年级有学生500 名,估计 D 级的人数为:500×=100〔人〕,故此选项错误,吻合题意;D、从被测学生中随机抽取一位,那么这位学生的成绩A 级的概率为:,正确,不合是题意;应选: C.12.如图,△ABC内接于⊙ O,假设∠ A=α,那么∠ OBC等〕于〔A.180°﹣2αB. 2α C.90°+αD.90°﹣α【考点】 M5:圆周角定理.【解析】第一连接 OC,由圆周角定理,可求得∠BOC的度数,又由等腰三角形的性质,即可求得∠ OBC的度数.【解答】解:∵连接 OC,∵△ ABC内接于⊙ O,∠ A=α,∴∠ BOC=2∠A=2α,∵ OB=OC,∴∠ OBC=∠ OCB==90°﹣α.应选 D.13.一次函数 y=kx﹣ m﹣2x 的图象与 y 轴的负半轴订交,且函数值 y 随自变量 x 的增大而减小,那么以下结论正确的选项是〔〕A.k<2,m> 0 B. k<2,m< 0 C. k> 2, m>0 D.k<0,m<0【考点】 F5:一次函数的性质.【解析】由一次函数y=kx﹣ m﹣2x 的图象与y 轴的负半轴订交且函数值y 随自变量x 的增大而减小,可得出 k﹣2<0、﹣ m<0,解之即可得出结论.【解答】解:∵一次函数 y=kx﹣ m﹣2x 的图象与 y 轴的负半轴订交,且函数值y 随自变量 x 的增大而减小,∴ k﹣2<0,﹣ m<0,∴ k<2,m> 0.应选 A.14.如图,正方形 ABCD中,M 为 BC上一点,ME⊥AM,ME 交 AD 的延长线于点 E.假设 AB=12,DE 的长为〔〕BM=5,那么A.18B.C.D.【考点】 S9:相似三角形的判断与性质;KQ:勾股定理; LE:正方形的性质.【解析】先依照题意得出△ ABM∽△ MCG,故可得出 CG的长,再求出DG 的长,依照△ MCG∽△ EDG即可得出结论.【解答】解:∵四边形 ABCD是正方形, AB=12,BM=5,∴MC=12﹣ 5=7.∵ME⊥ AM,∴∠ AME=90°,∴∠AMB+∠CMG=90°.∵∠ AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ ABM∽△ MCG,∴=,即=,解得CG=,∴ DG=12﹣=.∵AE∥BC,∴∠ E=CMG,∠ EDG=∠ C,∴△ MCG∽△ EDG,∴=,即=,解得DE=.应选 B.15.二次函数 y=ax2+bx+c 的 y 与 x 的局部对应值以下表:x﹣ 1013y﹣ 3131以下结论:①抛物线的张口向下;②其图象的对称轴为x=1;③当 x< 1 时,函数值 y 随 x 的增大而增大;④方程 ax2+bx+c=0 有一个根大于 4,其中正确的结论有〔〕A.1 个 B.2 个 C.3 个 D.4 个【考点】 HA:抛物线与 x 轴的交点; H3:二次函数的性质.【解析】依照二次函数的图象拥有对称性和表格中的数据,可以获取对称轴为x==,再由图象中的数据可以获适当x= 获取最大值,进而可以获取函数的张口向下以及获取函数当x <时, y 随 x 的增大而增大,当 x>时, y 随 x 的增大而减小,尔后跟距x=0 时, y=1,x=﹣1 时, y=﹣3,可以获取方程 ax2+bx+c=0 的两个根所在的大体地址,进而可以解答此题.【解答】解:由表格可知,二次函数 y=ax2+bx+c 有最大值,当 x==时,获取最大值,∴抛物线的张口向下,故①正确,其图象的对称轴是直线x=,故②错误,当 x<时, y 随x 的增大而增大,故③正确,方程ax2 +bx+c=0 的一个根大于﹣1,小于0,那么方程的另一个根大于=3,小于 3+1=4,故④错误,应选 B.16.某班学生积极参加献爱心活动,该班50 名学生的捐款统计情况以下表:金额 /元5102050100人数4161596那么他们捐款金额的中位数和平均数分别是〔〕A.10,B. 20,C. 10,D.20,【考点】 W4:中位数; VA:统计表; W2:加权平均数.【解析】依照中位数的定义求解即可,中位数是将一组数据从小到大重新排列后,找出最中间两个数的平均数;依照平均数公式求出平均数即可.【解答】解:共有 50 个数,∴中位数是第 25、26 个数的平均数,∴中位数是〔 20+20〕÷ 2=20;平均数=〔5×4 10×16 20× 15 50×9 100× 6〕;++++应选: D.17.如图,圆内接四边形 ABCD的边 AB 过圆心 O,过点 C 的切线与边 AD 所在直线垂直于点M ,假设∠ ABC=55°,那么∠ ACD等于〔〕A.20°B.35°C. 40°D.55°【考点】 MC:切线的性质; M6:圆内接四边形的性质.【解析】由圆内接四边形的性质求出∠ADC=180°﹣∠ ABC=125°,由圆周角定理求出∠ ACB=90°,得出∠ BAC=35°,由弦切角定理得出∠MCA=∠ABC=55°,由三角形的外角性质得出∠DCM=∠ADC﹣∠ AMC=35°,即可求出∠ ACD的度数.【解答】解:∵圆内接四边形ABCD的边 AB 过圆心 O,∴∠ ADC+∠ABC=180°,∠ ACB=90°,∴∠ ADC=180°﹣∠ ABC=125°,∠ BAC=90°﹣∠ ABC=35°,∵过点 C 的切线与边 AD 所在直线垂直于点M ,∴∠ MCA=∠ ABC=55°,∠ AMC=90°,∵∠ ADC=∠AMC+∠ DCM,∴∠ DCM=∠ ADC﹣∠ AMC=35°,∴∠ ACD=∠MCA﹣∠ DCM=55°﹣ 35°=20°;应选: A.18.如图,在正方形网格中,线段 A′ B是′线段 AB绕某点逆时针旋转角α获取的,点 A′与 A 对应,那么角α〕的大小为〔A.30°B.60°C. 90°D.120°【考点】 R2:旋转的性质.【解析】依照题意确定旋转中心后即可确定旋转角的大小.【解答】解:如图:显然,旋转角为90°,应选 C.19.如图,四边形 ABCD是平行四边形,点 E 是边 CD上一点,且 BC=EC,CF⊥BE交 AB 于点 F,P 是 EB延长线上一点,以下结论:①BE均分∠ CBF;② CF均分∠ DCB;③ BC=FB;④ PF=PC,其中正确结论的个数为〔〕A.1B.2C.3D.4【考点】 LA:菱形的判断与性质; KG:线段垂直均分线的性质;L5:平行四边形的性质.【解析】分别利用平行线的性质结合线段垂直均分线的性质以及等腰三角形的性质分别判断得出答案.【解答】证明:∵ BC=EC,∴∠ CEB=∠CBE,∵四边形 ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠ CBE=∠EBF,∴① BE均分∠ CBF,正确;∵BC=EC,CF⊥BE,∴∠ ECF=∠BCF,∴② CF均分∠ DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵ FB=BC,CF⊥BE,∴B 点必然在 FC的垂直均分线上,即 PB 垂直均分 FC,∴PF=PC,故④正确.应选: D.20.如图,在△ ABC中,∠ C=90°,AB=10cm,BC=8cm,点 P 从点 A 沿 AC 向点 C 以 1cm/s 的速度运动,同时点 Q 从点 C 沿 CB向点 B 以 2cm/s 的速度运动〔点 Q 运动到点 B 停止〕,在运动过程中,四边形PABQ的面积最小值为〔〕A.19cm2B.16cm2C.15cm2D.12cm2【考点】 H7:二次函数的最值.【解析】在 Rt△ ABC中,利用勾股定理可得出AC=6cm,设运动时间为 t〔0≤t≤ 4〕,那么 PC=〔6﹣t〕cm,CQ=2tcm,利用切割图形求面积法可得出 S四边形PABQ=t2﹣ 6t+24,利用配方法即可求出四边形 PABQ的面积最小值,此题得解.【解答】解:在 Rt△ABC中,∠ C=90°,AB=10cm, BC=8cm,∴ AC==6cm.设运动时间为 t〔0≤t ≤4〕,那么 PC=〔 6﹣ t〕cm,CQ=2tcm,∴S四边形PABQ=S△ABC﹣S△CPQ= AC?BC﹣ PC?CQ= ×6×8﹣〔6﹣t 〕× 2t=t2﹣ 6t+24=〔t ﹣3〕2+15,∴当 t=3 时,四边形 PABQ的面积取最小值,最小值为15.应选 C.二、填空题〔本大题共 4 小题,每题 3 分,共 12 分〕21.分式与的和为4,那么x的值为3.【考点】 B3:解分式方程.【解析】第一依照分式与的和为4,可得:求出 x 的值为多少即可.【解答】解:∵分式与的和为4,+=4,尔后依照解分式方程的方法,∴+=4,去分母,可得: 7﹣ x=4x﹣8解得: x=3经检验 x=3 是原方程的解,∴x 的值为3.故答案为:3..关于x 的一元二次方程x2+〔 2k﹣1〕x+〔k2﹣1〕=0 无实数根,那么 k 的取值范围为k>.22【考点】 AA:根的鉴识式.【解析】依照鉴识式的意义获取△ =〔2k﹣ 1〕2﹣4〔k2﹣ 1〕< 0,尔后解不等式即可.【解答】解:依照题意得△ =〔2k﹣ 1〕2﹣4〔k2﹣ 1〕< 0,解得 k>.故答案为 k>.23.工人师傅用一张半径为24cm,圆心角为 150°的扇形铁皮做成一个圆锥的侧面,那么这个圆锥的高为2cm.【考点】 MP:圆锥的计算.【解析】直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【解答】解:由题意可得圆锥的母线长为:24cm,设圆锥底面圆的半径为:r,那么 2πr=,解得: r=10,故这个圆锥的高为:=2〔 cm〕.故答案为:2〔cm〕.24.如图,∠ BAC=30°,M 为 AC上一点, AM=2,点 P 是 AB 上的一动点, PQ⊥ AC,垂足为点Q,那么 PM+PQ 的最小值为.【考点】 PA:轴对称﹣最短路线问题.【解析】此题作点 M 关于 AB 的对称点 N,依照轴对称性找出点P 的地址,如图,依照三角函数求出 MN,∠ N,再依照三角函数求出结论.【解答】解:作点 M 关于 AB的对称点 N,过 N 作 NQ⊥ AC于 Q 交 AB 于 P,那么 NQ 的长即为 PM+PQ的最小值,连接 MN 交 AB 于 D,那么 MD⊥ AB,DM=DN,∵∠ NPB=∠APQ,∴∠ N=∠ BAC=30°,∵∠ BAC=30°,AM=2,∴MD= AM=1,∴MN=2,∴NQ=MN?cos∠ N=2× = ,故答案为:.三、解答题〔本大题共 5 小题,共 48 分〕25.如图,在平面直角坐标系中,Rt△AOB的斜边 OA 在 x 轴的正半轴上,∠ OBA=90°,且 tan∠ AOB= ,OB=2,反比率函数y=的图象经过点B.(1〕求反比率函数的表达式;(2〕假设△ AMB 与△ AOB关于直线 AB 对称,一次函数 y=mx+n 的图象过点 M 、A,求一次函数的表达式.【考点】 G6:反比率函数图象上点的坐标特色;F8:一次函数图象上点的坐标特色;T7:解直角三角形.【解析】〔1〕过点 B 作 BD⊥OA 于点 D,设 BD=a,经过解直角△ OBD获取 OD=2BD.尔后利用勾股定理列出关于 a 的方程并解答即可;(2〕欲求直线 AM 的表达式,只需推知点 A、M 的坐标即可.经过解直角△ AOB 求得 OA=5,那么 A〔5,0〕.依照对称的性质获取: OM=2OB,结合 B〔4,2〕求得 M〔8,4〕.尔后由待定系数法求一次函数解析式即可.【解答】解:〔1〕过点 B 作 BD⊥OA 于点 D,设 BD=a,∵ tan∠AOB= = ,∴OD=2BD.∵∠ ODB=90°,OB=2,∴a2+〔 2a〕2=〔 2 〕2,解得 a=±2〔舍去﹣ 2〕,∴a=2.∴OD=4,∴B〔4,2〕,∴k=4×2=8,∴反比率函数表达式为: y= ;(2〕∵ tan∠AOB= ,OB=2 ,∴ AB= OB= ,∴ OA===5,∴A〔5,0〕.又△ AMB 与△ AOB关于直线 AB 对称, B〔4,2〕,∴OM=2OB,∴M〔8,4〕.把点 M 、 A 的坐标分别代入y=mx+n,得,解得,故一次函数表达式为:y= x﹣.26.某水果商从批发市场用 8000 元购进了大樱桃和小樱桃各 200 千克,大樱桃的进价比小樱桃的进价每千克多 20 元,大樱桃售价为每千克 40 元,小樱桃售价为每千克 16 元.(1〕大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2〕该水果商第二次仍用 8000 元钱从批发市场购进了大樱桃和小樱桃各 200 千克,进价不变,但在运输过程中小樱桃耗费了 20%.假设小樱桃的售价不变,要想让第二次赚的钱很多于第一次所赚钱的 90%,大樱桃的售价最少应为多少?【考点】 C9:一元一次不等式的应用; 9A:二元一次方程组的应用.【解析】〔1〕依照用 8000 元购进了大樱桃和小樱桃各 200 千克,以及大樱桃的进价比小樱桃的进价每千克多20 元,分别得出等式求出答案;〔 2〕依照要想让第二次赚的钱很多于第一次所赚钱的90%,得出不等式求出答案.【解答】解:〔1〕设小樱桃的进价为每千克x 元,大樱桃的进价为每千克y 元,依照题意可得:,解得:,小樱桃的进价为每千克10 元,大樱桃的进价为每千克30 元,200× [ 〔 40﹣30〕+〔16﹣ 10〕] =3200〔元〕,∴销售完后,该水果商共赚了3200 元;(2〕设大樱桃的售价为 a 元 / 千克,(1﹣ 20%〕× 200×16+200a﹣ 8000≥ 3200× 90%,解得: a≥,答:大樱桃的售价最少应为41.6 元/ 千克.27.如图,四边形 ABCD中, AB=AC=AD,AC 均分∠ BAD,点 P 是 AC 延长线上一点,且PD⊥ AD.(1〕证明:∠ BDC=∠PDC;(2〕假设 AC 与 BD 订交于点 E,AB=1,CE: CP=2:3,求 AE 的长.【考点】 S9:相似三角形的判断与性质.【解析】〔1〕直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;〔 2〕第一过点 C 作 CM⊥PD 于点 M ,进而得出△ CPM∽△ APD,求出 EC的长即可得出答案.【解答】〔1〕证明:∵ AB=AD, AC均分∠ BAD,∴AC⊥BD,∴∠ ACD+∠BDC=90°,∵AC=AD,∴∠ ACD=∠ADC,∴∠ ADC+∠BDC=90°,∴∠ BDC=∠PDC;(2〕解:过点 C 作 CM⊥PD 于点 M ,∵∠ BDC=∠PDC,∴ CE=CM,∵∠ CMP=∠ADP=90°,∠P=∠P,∴△ CPM∽△ APD,∴ = ,设 CM=CE=x,∵ CE:CP=2:3,∴ PC= x,∵ AB=AD=AC=1,∴=,解得: x=,故 AE=1﹣=.28.如图,是将抛物线y=﹣ x2平移后获取的抛物线,其对称轴为x=1,与x 轴的一个交点为A 〔﹣ 1,0〕,另一个交点为B,与 y 轴的交点为 C.(1〕求抛物线的函数表达式;(2〕假设点 N 为抛物线上一点,且 BC⊥ NC,求点 N 的坐标;(3〕点 P 是抛物线上一点,点 Q 是一次函数 y= x+ 的图象上一点,假设四边形 OAPQ为平行四边形,这样的点 P、Q 可否存在?假设存在,分别求出点 P,Q 的坐标;假设不存在,说明原由.【考点】 HF:二次函数综合题.【解析】〔1〕抛物线的对称轴,所以可以设出极点式,利用待定系数法求函数解析式;(2〕第一求得 B 和 C 的坐标,易证△ OBC是等腰直角三角形,过点 N 作 NH⊥ y 轴,垂足是 H,设点 N 纵坐标是〔 a,﹣ a2+2a+3〕,依照 CH=NH即可列方程求解;(3〕四边形 OAPQ是平行四边形,那么 PQ=OA=1,且 PQ∥OA,设 P〔t ,﹣t 2+2t+3〕,代入y=x+,即可求解.【解答】解:〔1〕设抛物线的解析式是y=﹣〔 x﹣ 1〕2+k.把〔﹣ 1,0〕代入得 0=﹣〔﹣ 1﹣ 1〕2+k,解得 k=4,那么抛物线的解析式是y=﹣〔 x﹣1〕2+4,即 y=﹣x2+2x+3;(2〕在 y=﹣x2+2x+3 中令 x=0,那么 y=3,即 C 的坐标是〔 0, 3〕,OC=3.∵B 的坐标是〔3,0〕,∴ OB=3,∴ OC=OB,那么△ OBC是等腰直角三角形.∴∠ OCB=45°,过点 N 作 NH⊥y 轴,垂足是 H.∵∠ NCB=90°,∴∠ NCH=45°,∴ NH=CH,∴ HO=OC+CH=3+CH=3+NH,设点 N 纵坐标是〔 a,﹣a2+2a+3〕.∴ a+3=﹣ a2+2a+3,解得 a=0〔舍去〕或 a=1,∴ N 的坐标是〔 1,4〕;(3〕∵四边形 OAPQ是平行四边形,那么 PQ=OA=1,且 PQ∥ OA,设 P〔t ,﹣ t2 +2t+3〕,代入 y=x+ ,那么﹣ t 2+2t +3= 〔t +1〕 + ,整理,得 2t2﹣ t=0,解得 t=0 或.∴﹣ t2+2t+3 的值为 3 或.∴ P、 Q 的坐标是〔 0,3〕,〔 1, 3〕或〔,〕、〔,〕.29.如图,四边形ABCD是平行四边形, AD=AC, AD⊥ AC,E 是 AB 的中点, F 是 AC延长线上一点.(1〕假设 ED⊥EF,求证: ED=EF;(2〕在〔 1〕的条件下,假设 DC 的延长线与 FB 交于点 P,试判断四边形 ACPE可否为平行四边形?并证明你的结论〔请先补全图形,再解答〕;(3〕假设 ED=EF,ED 与 EF垂直吗?假设垂直给出证明.【考点】 LO:四边形综合题.【解析】〔1〕依照平行四边形的想知道的 AD=AC,AD⊥AC,连接 CE,依照全等三角形的判断和性质即可获取结论;〔 2〕依照全等三角形的性质获取 CF=AD,等量代换获取 AC=CF,于是获取 CP= AB=AE,依照平行四边形的判判定理即可获取四边形 ACPE为平行四边形;〔 3〕过 E 作 EM⊥DA 交 DA 的延长线于 M ,过 E 作 EN⊥FC交 FC的延长线于 N,证得△ AME ≌△ CNE,△ ADE≌△ CFE,依照全等三角形的性质即可获取结论.【解答】〔1〕证明:在 ?ABCD中,∵AD=AC, AD⊥AC,∴ AC=BC, AC⊥ BC,连接 CE,∵E 是 AB 的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠ CEF=∠AED=90°﹣∠ CED,在△ CEF和△ AED中,,∴△ CEF≌△ AED,∴ED=EF;(2〕解:由〔 1〕知△ CEF≌△ AED,CF=AD,∵ AD=AC,∴ AC=CF,∵DP∥AB,∴ FP=PB,∴ CP= AB=AE,∴四边形 ACPE为平行四边形;〔 3〕解:垂直,原由:过 E 作 EM⊥ DA 交 DA 的延长线于 M ,过 E 作 EN⊥FC交 FC的延长线于 N,在△ AME 与△ CNE中,,∴△ AME≌△ CNE,∴∠ ADE=∠CFE,在△ ADE与△ CFE中,,∴△ ADE≌△ CFE,∴∠ DEA=∠FEC,∵∠ DEA+∠DEC=90°,∴∠ CEF+∠DEC=90°,∴∠ DEF=90°,∴ED⊥EF.2021年7月4日。
泰安市中考数学试题含答案解析

山东省泰安市中考数学试卷(含解析)一、(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个,均记零分)1.计算(﹣2)0+9÷(﹣3)的结果是()A.﹣1 B.﹣2 C.﹣3 D.﹣4【分析】根据零指数幂和有理数的除法法则计算即可.【解答】解:原式=1+(﹣3)=﹣2,故选:B.【点评】本题考查的是零指数幂和有理数的除法运算,掌握任何不为0的数的零次幂为1、灵活运用有理数的除法法则是解题的关键.2.下列计算正确的是()A.2=﹣4a2C.m3m2=m6D.a6÷a2=a4【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则和幂的乘方运算法则分别化简求出答案.【解答】解:A、(a2)3=a6,故此选项错误;B、(﹣2a)2=4a2,故此选项错误;C、m3m2=m5,故此选项错误;D、a6÷a2=a4,正确.故选:D.【点评】此题主要考查了同底数幂的乘除法运算法则以及积的乘方运算法则和幂的乘方运算等知识,正确掌握相关法则是解题关键.3.下列图形:任取一个是中心对称图形的概率是()A.B.C.D.1【分析】由共有4种等可能的结果,任取一个是中心对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵共有4种等可能的结果,任取一个是中心对称图形的有3种情况,∴任取一个是中心对称图形的概率是:.故选C.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.化简:÷﹣的结果为()A.B.C.D.a【分析】先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的加法即可.【解答】解:原式=×﹣=﹣=,故选:C.【点评】本题主要考查分式的混合运算,熟练掌握分式的混合运算顺序和运算法则是解题的关键.5.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为()A.90°B.120°C.135°D.150°【分析】根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.【解答】解:∵圆锥的底面半径为3,∴圆锥的底面周长为6π,∵圆锥的高是6,∴圆锥的母线长为=9,设扇形的圆心角为n°,∴=6π,解得n=120.答:圆锥的侧面展开图中扇形的圆心角为120°.故选B.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.6.国家统计局的相关数据显示,我国国民生产总值(GDP)约为67.67万亿元,将这个数据用科学记数法表示为()A.6.767×1013元B.6.767×1012元C.6.767×1012元D.6.767×1014元【分析】首先把5.3万亿化为53000亿,再用科学记数法表示53000,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67.67万亿元=6.767×1013元,故选:A.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于()A.2 B.3 C.4 D.6【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果.【解答】解:∵四边形AB CD是平行四边形,∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵∠C平分线为CF,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理:DE=CD=6,∴AF=BF﹣AB=2,AE=AD﹣DE=2,∴AE+AF=4;故选:C.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.p B.q C.m D.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.9.一元二次方程(x+1)2﹣2(x﹣1)2=7的根的情况是()A.无实数根B.有一正根一负根C.有两个正根D.有两个负根【分析】直接去括号,进而合并同类项,求出方程的根即可.【解答】解:∵(x+1)2﹣2(x﹣1)2=7,∴x2+2x+1﹣2(x2﹣2x+1)=7,整理得:﹣x2+6x﹣8=0,则x2﹣6x+8=0,(x﹣4)(x﹣2)=0,解得:x1=4,x2=2,故方程有两个正根.故选:C.【点评】此题主要考查了一元二次方程的解法,正确利用完全平方公式计算是解题关键.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.【点评】本题考查的是圆周角定理、平行四边形的性质定理、等边三角形的性质的综合运用,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、等腰三角形的三线合一是解题的关键.11.某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整)选修课 A B C D E F人数 40 60 100根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E、F的人数分别为80,70D.喜欢选修课C的人数最少【分析】通过计算得出选项A、B、C正确,选项D错误,即可得出结论.【解答】解:被调查的学生人数为60÷15%=400(人),∴选项A正确;扇形统计图中D的圆心角为×360°=90°,∵×360°=36°,360°(17.5%+15%+12.5%)=162°,∴扇形统计图中E的圆心角=360°﹣162°﹣90°﹣36°=72°,∴选项B正确;∵400×=80(人),400×17.5%=70(人),∴选项C正确;∵12.5%>10%,∴喜欢选修课A的人数最少,∴选项D错误;故选:D.【点评】本题考查了条形统计图、扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.12.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B. C.D.【分析】由y=ax2+bx+c的图象判断出a>0,b<0,于是得到一次函数y=ax+b的图象经过一,二,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向上,∴a>0,∵对称轴在y轴的左侧,∴b>0,∴一次函数y=ax+b的图象经过一,二,三象限.故选A.【点评】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可以判断a、b的取值范围.13.某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A. =B. =C. =D.×30=×20【分析】直接利用现要加工2100个A零件,1200个B零件,同时完成两种零件的加工任务,进而得出等式即可.【解答】解:设安排x人加工A零件,由题意列方程得:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出加工两种零件所用的时间是解题关键.14.当x满足时,方程x2﹣2x﹣5=0的根是()A.1±B.﹣1 C.1﹣D.1+【分析】先求出不等式组的解,再求出方程的解,根据范围即可确定x的值.【解答】解:,解得:2<x<6,∵方程x2﹣2x﹣5=0,∴x=1±,∵2<x<6,∴x=1+.故选D.【点评】本题考查解一元一次不等式、一元二次方程的解等知识,熟练掌握不等式组以及一元二次方程的解法是解题的关键,属于中考常考题型.15.在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.16.如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.63【分析】过点P作PA⊥MN于点A,则若该船继续向南航行至离灯塔距离最近的位置为PA的长度,利用锐角三角函数关系进行求解即可【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CPN=46°,∴∠MNP=∠MNC+∠CPN=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PNsin∠PNA=60×0.6947≈41.68(海里)故选:B.【点评】此题主要考查了方向角问题,熟练应用锐角三角函数关系是解题关键.17.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE:S△CDB的值等于()A.1:B.1:C.1:2 D.2:3【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到=,求出AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,由CE平分∠ACB交⊙O于E,得到OE⊥AB,求出OE=AB,CE=AB,根据三角形的面积公式即可得到结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴,∵CE平分∠ACB交⊙O于E,∴=,∴AD=AB,BD=AB,过C作CE⊥AB于E,连接OE,∵CE平分∠ACB交⊙O于E,∴=,∴OE⊥AB,∴OE=AB,CE=AB,∴S△ADE:S△CDB=(ADOE):(BDCE)=():()=2:3.故选D.【点评】本题考查了圆周角定理,三角形的角平分线定理,三角形的面积的计算,直角三角形的性质,正确作出辅助线是解题的关键.18.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.19.当1≤x≤4时,mx﹣4<0,则m的取值范围是()A.m>1 B.m<1 C.m>4 D.m<4【分析】设y=mx﹣4,根据题意列出一元一次不等式,解不等式即可.【解答】解:设y=mx﹣4,由题意得,当x=1时,y<0,即m﹣4<0,解得m<4,当x=4时,y<0,即4m﹣4<0,解得,m<1,则m的取值范围是m<1,故选:B.【点评】本题考查的是含字母系数的一元一次不等式的解法,正确利用函数思想、数形结合思想是解题的关键.20.如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD 交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP 是关键.二、填空题(本大题共4小题,满分12分.只要求填写最后结果,每小题填对得3分,)21.将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为y=2(x+2)2﹣2.【分析】按照“左加右减,上加下减”的规律求得即可.【解答】解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.22.如图,半径为3的⊙O与Rt△AOB的斜边AB切于点D,交OB于点C,连接CD交直线OA于点E,若∠B=30°,则线段AE的长为.【分析】要求AE的长,只要求出OA和OE的长即可,要求OA的长可以根据∠B=30°和OB的长求得,OE可以根据∠OCE和OC的长求得.【解答】解:连接OD,如右图所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=,∵∠COE=90°,OC=3,∴OE=OCtan60°=,∴AE=OE﹣OA=,故答案为:.【点评】本题考查切线的性质,解题的关键是明确题意,找出所求问题需要的条件.23.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF 的面积为.【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF,根据勾股定理求出OF,根据三角形的面积公式计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴BD==10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴=,即=,解得,BF=,则OF==,则△BOF的面积=×OF×OB=,故答案为:.【点评】本题考查的是矩形的性质、线段垂直平分线的性质以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.24.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l 上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为2n+1﹣2.【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为 2n+1﹣2.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.三、解答题(共5小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.(1)求反比例函数和一次函数的表达式;(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.【分析】(1)由正方形OABC的顶点C坐标,确定出边长,及四个角为直角,根据AD=2DB,求出AD 的长,确定出D坐标,代入反比例解析式求出m的值,再由AM=2MO,确定出MO的长,即M坐标,将M与D坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)把y=3代入反比例解析式求出x的值,确定出N坐标,得到NC的长,设P(x,y),根据△OPM 的面积与四边形OMNC的面积相等,求出y的值,进而得到x的值,确定出P坐标即可.【解答】解:(1)∵正方形OABC的顶点C(0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=AB=2,∴D(﹣3,2),把D坐标代入y=得:m=﹣6,∴反比例解析式为y=﹣,∵AM=2MO,∴MO=OA=1,即M(﹣1,0),把M与D坐标代入y=kx+b中得:,解得:k=b=﹣1,则直线DM解析式为y=﹣x﹣1;(2)把y=3代入y=﹣得:x=﹣2,∴N(﹣2,3),即NC=2,设P(x,y),∵△OPM的面积与四边形OMNC的面积相等,∴(OM+NC)OC=OM|y|,即|y|=9,解得:y=±9,当y=9时,x=﹣10,当y=﹣9时,x=8,则P坐标为(﹣10,9)或(8,﹣9).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.26.某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最大值,最大值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.27.如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.(1)求证:AC2=CDBC;(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;②若∠B=30°,求证:四边形AKEC是菱形.【分析】(1)欲证明AC2=CDBC,只需推知△ACD∽△BCA即可;(2)①连接AH.构建直角△AHC,利用直角三角形斜边上的中线等于斜边的一半、等腰对等角以及等量代换得到:∠FHG=∠CAB=90°,即FH⊥GH;②利用“在直角三角形中,30度角所对的直角边等于斜边的一半”、“直角三角形斜边上的中线等于斜边的一半”推知四边形AKEC的四条边都相等,则四边形AKEC是菱形.【解答】证明:(1)∵AC平分∠BCD,∴∠DCA=∠ACB.又∵AC⊥AB,AD⊥AE,∴∠DAC+∠CAE=90°,∠CAE+∠EAB=90°,∴∠DAC=∠EAB.又∵E是BC的中点,∴AE=BE,∴∠EAB=∠ABC,∴∠DAC=∠ABC,∴△ACD∽△BCA,∴=,∴AC2=CDBC;(2)①证明:连接AH.∵∠ADC=∠BAC=90°,点H、D关于AC对称,∴AH⊥BC.∵EG⊥AB,AE=BE,∴点G是AB的中点,∴HG=AG,∴∠GAH=GHA.∵点F为AC的中点,∴AF=FH,∴∠HAF=∠FHA,∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°,∴FH⊥GH;②∵EK⊥AB,AC⊥AB,∴EK∥AC,又∵∠B=30°,∴AC=BC=EB=EC.又EK=EB,∴EK=AC,即AK=KE=EC=CA,∴四边形AKEC是菱形.【点评】本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30度角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题,难度较大.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴当x=﹣=时,∴S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值.29.(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程)【分析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论;(3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=AD,即可得出结果.【解答】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(2)解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(3)解: =;理由如下:作DF∥BC交AC于F,如图3所示:同(1)得:△DBE≌△CFD(AAS),∴EB=DF,∵△ABC是等腰直角三角形,DF∥BC,∴△ADF是等腰直角三角形,∴DF=AD,∴=,∴=.【点评】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
2023年山东省泰安市中考数学试卷(含答案)061950

2023年山东省泰安市中考数学试卷试卷考试总分:149 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1. 的倒数是( )A.B.C.D.2. 下列计算正确的是( )A.B.C.D.3.报告数据显示,年中国国防预算将为亿美元,将亿用科学记数法表示应为( )A.B.C.D.4. 下列四个圆形图案中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.33−313−132+3=5a 2a 2a 4=+ab +(a +b)2a 2b 2=−8(−2)a 23a 6−2⋅3=−6a 2a 2a 220191776.11776.117.761×10101.7761×10111.7761×10100.17761×10115. 如图,将一块三角板的直角顶点放在直尺的一边上,当时,的度数为( )A.B.C.D.6. 立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:则下列关于这组数据的说法,正确的是( )A.众数是B.平均数是C.中位数是D.方差是7. 如图,,,,是 上的点,则图中与 相等的角是( )A.B. C.D.8. 函数与在同一坐标系内的图象可以是( )A.B.∠2=37∘∠153∘54∘43∘37∘2.32.42.50.01A B C D ⊙O ∠A ∠B∠C∠DEB∠Dy =x+m y =(m≠0)m xC. D.9. 如图,内接于,连结、.若=,=,则图中阴影部分的面积为( )A. B. C.D.10. 我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有个和尚分个馒头,正好分完;如果大和尚一人分个,小和尚人分一个,试问大、小和尚各几人?设大、小和尚各有,人,以下列出的方程组正确的是( )A.B.C.D.11. 如图,在中,,以点为圆心,适当长为半径画弧,分别交、于点,,再分别以点、为圆心,大于为半径画弧,两弧交于点,作射线交边于点,若,则的面积是 ( )A.△ABC ⊙O OA OB OA 4∠C 45∘π−24π−810010033x y { x+y =100+3y =100x 3{ x+y =1009x+y =100{ x+y =1003x+=100y 3{ x+y =100x+9y =100Rt △ABC ∠B =90∘A AB AC D E D E DE 12F AF BC C BG =1,AC =4△ACG 13B.C.D.12. 如图,在平面直角坐标系中,点的坐标为,以原点为中心,将点顺时针旋转得到点,则点的坐标为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13. 抛物线与坐标轴的交点个数是________.14. 如图,菱形的顶点,,在上,过点作的切线交的延长线于点.若的半径为,则的长为________.15. 当________时,二次函数有最小值________.16. 如图,在大楼的楼顶处测得另一栋楼底部的俯角为度,已知、两点间的距离为米,那么大楼的高度为________米.(结果保留根号)17. 如图,在中, ,,是边上的动点,连接,若为直角三角形,则的度数________.18. 如图,在直角坐标系中,第一次将变换成,第二次将变换成,第三次将变换成.已知,,,,,,,.32252A (−1,)3–√O A 150∘A'A'(0,−2)(1,−)3–√(2,0)(,−1)3–√y =−3−x+4x 2OABC A B C ⊙O B ⊙O OA D ⊙O 1BD x =y =−2x+6x 2AB B CD C 60A C 15AB △ABC AB =AC ∠B =35∘D BC AD △ABD ∠DAC △OAB △OA 1B 1△OA 1B 1△OA 2B 2△OA 2B 2△OA 3B 3A(1,4)(2,4)A 1(4,4)A 2(8,4)A 3B(2,0)(4,0)B 1(8,0)B 2(16,0)B 3观察每次变换后的三角形有何变化,找出规律,按此规律再将变换成,则点的坐标是________,的坐标是________.若按第一题找到的规律将进行了次变换,得到,比较每次变换中三角形顶点坐标有何变化,找出规律,推测的坐标是________,的坐标是________.三、 解答题 (本题共计 7 小题 ,每题 11 分 ,共计77分 )19. (1)解不等式组(2) 20. 为弘扬安徽传统文化,某校开展“汉剧进课堂”的活动,该校随机抽取部分学生,按四个类别:表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”,调查他们对汉剧的喜欢情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:这次共抽取________名学生进行统计调查,扇形统计图中,类所对应的扇形圆心角的度数为________;将条形统计图补充完整;若调查的类学生中有名男生,其余为女生,现从中抽人进行采访,请画树状图或列表法求选中名学生恰好是男女的概率. 21. 如图,直角坐标系中,直线分别与轴、轴交于,两点,与双曲线交于点,点,关于轴对称,连接,将沿方向平移,使点移动到点,得到.(1)的值是________,点的坐标是________;(2)在 的延长线上取一点 ,过点作轴,交于点,连接,求直线的解析式;(3)直接写出线段 扫过的面积.22. 如下图,左边是某公司的一份进货单,该公司会计欲查询乙商品的进价,发现进货单已被墨水污染.于是,会计向商品采购员和仓库保管员了解情况.商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:(1)△OA 3B 3△OA 4B 4A 4B 4(2)△OAB n △OA n B n A n B nx+1>3x−122x−(x−3)≥5(+a −2)÷3a +2−2a +1a 2a +2A B C D (1)D (2)(3)A 22211xOy :y =l 1tx−t(t ≠0)x y A B :y =(k ≠0)l 2k x D(2,2)B C x AC Rt △AOC AD A D Rt △DEF k A ED M(4,2)M MN//y l 2N ND ND AC李阿姨:我记得甲商品进价比乙商品进价每件高;王师傅:甲商品比乙商品的数量多件.请你根据上面的信息,求出乙商品的进价,并帮助他们补全进货单.23. 如图,在▱中,对角线,相交于点,,分别是,的中点,交于点,连接,.求证:线段与线段互相平分.24. 如图,中,,是斜边上一点,且,过点作垂直于,垂直延长线于.求证:;如图,若是的中点,试判断的形状,并进行证明.25. 在平面直角坐标系中,抛物线的顶点在轴上,与轴交于点.用含的代数式表示;若,求的值;横、纵坐标都是整数的点叫做整点.若抛物线在点,之间的部分与线段所围成的区域(不含边界)内恰好没有整点,结合函数的图象,直接写出的取值范围.50%40ABCD AC BD O E F AB BC EF BD G OE OF OB EF Rt △ABC AB =AC D BC BD >DC B BE AD E CF AD F (1)AE =CF (2)2M BC △EMF xOy y=a +4ax+b(a >0)x 2A x y B (1)a b (2)∠BAO=45∘a (3)A B AB a参考答案与试题解析2023年山东省泰安市中考数学试卷试卷一、 选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 )1.【答案】C【考点】倒数【解析】根据乘积是的两个数互为倒数计算即可得解.【解答】解:乘积是的两个数互为倒数.∵,∴的倒数是.故选.2.【答案】C【考点】幂的乘方与积的乘方合并同类项完全平方公式单项式乘单项式【解析】分别根据同底数幂的乘法和除法,幂的乘方和积的乘方以及合并同类项的法则计算即可判断正误.【解答】解:应为,故本选项错误;,应为,故本选项错误;,,正确;,应为,故本选项错误.故选.3.【答案】B【考点】科学记数法--表示较大的数113×=113313C A 2+3a 2a 2=5a 2B (a +b =+2ab +)2a 2b 2C =−8(−2)a 23a 6D −2⋅3=−6a 3a 2a 5C此题暂无解析【解答】解:由科学记数法的性质可知,是把一个数表示成与的次幂相乘的形式(为整数),所以亿应表示为.故选.4.【答案】C【考点】中心对称图形轴对称图形【解析】此题暂无解析【解答】此题暂无解答5.【答案】A【考点】平行线的性质【解析】由平行线的性质求出==,根据平角的定义,垂直的定义,角的和差求得=.【解答】解:如图所示:∵,∴,又∵,∴.又∵,,∴.故选.6.【答案】Ba 10n 1≤a <10,n 1776.1 1.7761×1011B ∠2∠337∘∠153∘a//b ∠2=∠3∠2=37∘∠3=37∘∠1+∠3+∠4=180∘∠4=90∘∠1=53∘A方差中位数众数算术平均数【解析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】解:这组数据中出现次数最多的是,众数是,选项不符合题意;∵,∴这组数据的平均数是,∴选项符合题意.,,,,的中位数是,选项不符合题意.,∴这组数据的方差是,∴选项不符合题意.故选7.【答案】D【考点】圆周角定理【解析】此题暂无解析【解答】解:根据同弧所对的圆周角相等,则.故选.8.【答案】C【考点】一次函数的图象反比例函数的图象2.4 2.4A (2.3+2.4+2.5+2.4+2.4)÷5=12÷5=2.4 2.4B 2.5 2.4 2.4 2.4 2.3 2.4C =×[(2.3−2.4+(2.4−2.4s 215)2)2+(2.5−2.4+(2.4−2.4+(2.4−2.4])2)2)2=×(0.01+0+0.01+0+0)15=×0.0215=0.0040.004D B.∠A =∠D D由一次函数系数=,可得出一次函数在其定义域内单调递增,由此可排除、选项,再根据函数图象分析、选项中得的取值范围,即可得出结论.【解答】解:∵一次函数中,∴一次函数图象单调递增,∴,选项不符合题意;,一次函数图象过第一、三、四象限,,反比例函数图象在第一、三象限,,∴不符合题意;,一次函数图象过第一、二、三象限,,反比例函数图象在第一、三象限,,∴符合题意.故选.9.【答案】D【考点】扇形面积的计算三角形的外接圆与外心【解析】此题暂无解析【解答】此题暂无解答10.【答案】C【考点】数学常识由实际问题抽象出二元一次方程组【解析】分别利用大、小和尚一共人以及馒头大和尚一人分个,小和尚人分一个,馒头一共个分别得出等式得出答案.【解答】设大、小和尚各有,人,则可以列方程组:.11.【答案】C【考点】k 1>0B D A C m y =x+m k =1>0B D A m<0m>0A C m>0m>0C C 10033100x y { x+y =1003x+=100y 3作图—基本作图线段垂直平分线的性质角平分线的性质【解析】【解答】解:由作法得平分,∴点到的距离等于的长,即点到的距离为,所以的面积.故选.12.【答案】D【考点】坐标与图形变化-旋转勾股定理含30度角的直角三角形【解析】作轴于点,由、=可得=,从而知将点顺时针旋转得到点后如图所示,=,=,继而可得答案.【解答】解:作轴于点,∴,,在中,.∴,∴.∴将点顺时针旋转得到点后,,,∴,,即.故选.二、 填空题 (本题共计 6 小题 ,每题 4 分 ,共计24分 )13.【答案】【考点】根的判别式AG ∠BAC G AC BG G AC 1△ACG =×4×1=212C AB ⊥x B AB =3–√OB 1∠AOy 30∘A 150∘A'OA'OA ==2(+3–√)212−−−−−−−−−√∠A'OC 30∘AB ⊥x B AB =3–√OB =1Rt △ABO OA ==2A +O B 2B 2−−−−−−−−−−√OB =OA 12∠OAB =,∠AOB =30∘60∘A 150∘A'OA'=OA =2∠A'OC =30∘A'C =1OC =3–√A'(,−1)3–√D 3【解析】此题考查了抛物线与坐标轴交点个数的判定求法以及一元二次方程的解法。
山东省泰安市中考数学试题(含答案)

2022年中考往年真题练习: 山东省泰安市中考数学试卷一.挑选题 1.(2021泰安) 下列各数比﹣3小的 数是 ( ) A .0 B .1 C .﹣4 D .﹣1 考点分析: 有理数大小比较。
解答: 解: 根据两负数比较大小, 其绝对值大的 反而小, 正数都大于负数, 零大于一切负数, ∴1>﹣3, 0>﹣3,∵|﹣3|=3, |﹣1|=1, |﹣4|=4,∴比﹣3小的 数是 负数, 是 ﹣4. 故选C . 2.(2021泰安) 下列运算正确的 是 ( )A .2(5)5-=-B .21()164--= C .632x x x ÷= D .325()x x =考点分析: 二次根式的 性质与化简;幂的 乘方与积的 乘方;同底数幂的 除法;负整数指数幂。
解答: 解: A 、 2(5)55-=-=, 所以A 选项不正确;B 、 21()164--=, 所以B 选项正确;C 、 633x x x ÷=, 所以C 选项不正确; D 、 326()x x =, 所以D 选项不正确.故选B . 3.(2021泰安) 如图所示的 几何体的 主视图是 ( )A .B .C .D .考点分析: 简单组合体的 三视图。
解答: 解: 从正面看易得第一层有1个大长方形, 第二层中间有一个小正方形. 故选A . 4.(2021泰安) 已知一粒米的 质量是 0. 000021千克, 这个数字用科学记数法表示为( ) A .42110-⨯千克 B .62.110-⨯千克 C .52.110-⨯千克 D .42.110-⨯千克 考点分析: 科学记数法—表示较小的 数。
解答: 解: 0. 000021=52.110-⨯; 故选: C .5.(2021泰安) 从下列四张卡片中任取一张, 卡片上的图形是中心对称图形的概率是()A.0B.C.D.考点分析: 概率公式;中心对称图形。
解答: 解: ∵在这一组图形中, 中心对称图形只有最后一个,∴卡片上的图形是中心对称图形的概率是.故选D.6.(2021泰安) 将不等式组841163x xx x+<-⎧⎨≤-⎩的解集在数轴上表示出来, 正确的是()A.B.C.D.考点分析: 在数轴上表示不等式的解集;解一元一次不等式组。
精品解析:2022年山东省泰安市中考数学真题(原卷版)

A B. C. 5D.
2.计算(a3)2•a3的结果是( )
A.a8B.a9C.a10D.a11
3.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )
A. B. C. D.
4.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=( )
(2)若八年级共有200人参与答卷,请估计八年级测试成绩大于95分的人数;
(3)从测试成绩优秀的学生中选出5名语言表达能力较强的学生,其中八年级3名,七年级2名.现从这5名学生中随机抽取2名到当地社区担任党史宣讲员.请用画树状图或列表的方法,求恰好抽到同年级学生的概率.
22.某电子商品经销店欲购进A、B两种平板电脑,若用9000元购进A种平板电脑12台,B种平板电脑3台;也可以用9000元购进A种平板电脑6台,B种平板电脑6台.
八年级:100 98 98 89 87 98 95 90 90 89
整理数据:
成绩x(分)
年级
85<x≤90
90<x≤95
95<x≤100
七年级
3
4
3
八年级
5
a
b
分析数据:
统计量
年级
平均数
中位数
众数
七年级
94.1
95
d
八年级
93 4
c
98
应用数据:
(1)填空: ______, ______, ______, ______;
A. B. C. D.
12.如图, ,点M、N分别在边 上,且 ,点P、Q分别在边 上,则 的最小值是()
A. B. C. D.
第Ⅱ卷(非选择题共102分)
(中考精品卷)山东省泰安市中考数学真题 (解析版)

泰安市2022年初中学业水平考试数学试题注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至7页,考试时间120分钟.2.答题前请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答. 3.考试结束后,监考人员将本试题和答题卡一并收回.第Ⅰ卷(选择题)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来)1. 计算()162⎛⎫-⨯- ⎪⎝⎭的结果是( ) A. -3 B. 3C. -12D. 12【答案】B 【解析】【分析】直接计算即可得到答案. 【详解】()162⎛⎫-⨯- ⎪⎝⎭=162⨯ =3 故选:B .【点睛】本题考查有理数的乘法,解题的关键是熟练掌握有理数乘法的知识. 2. 下列运算正确的是( ) A. 624x x -= B. 236a a a --⋅= C. 633x x x ÷= D. ()222x y x y -=-【答案】C 【解析】【分析】根据合并同类项,负整数指数幂,同底数幂相除,完全平方公式,逐项判断即可求解.【详解】解:A 、624x x x -=,故本选项错误,不符合题意; B 、23-⋅=a a a ,故本选项错误,不符合题意; C 、633x x x ÷=,故本选项正确,符合题意;D 、()2222x y x xy y -=-+,故本选项错误,不符合题意; 故选:C【点睛】本题主要考查了合并同类项,负整数指数幂,同底数幂相除,完全平方公式,熟练掌握相关运算法则是解题关键. 3. 下列图形:其中轴对称图形的个数是( ) A. 4 B. 3C. 2D. 1【答案】B 【解析】【分析】对每个图形逐一分析,能够找到对称轴的图形就是轴对称图形. 【详解】从左到右依次对图形进行分析:第1个图在竖直方向有一条对称轴,是轴对称图形,符合题意; 第2个图在水平方向有一条对称轴,是轴对称图形,符合题意; 第3个图找不到对称轴,不是轴对称图形,不符合题意; 第4个图在竖直方向有一条对称轴,是轴对称图形,符合题意; 因此,第1、2、4都是轴对称图形,共3个. 故选:B .【点睛】本题考查轴对称图形的概念,解题的关键是寻找对称轴.4. 2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力.将44.8万度用科学记数法可以表示为( ) A. 60.44810⨯度 B. 444.810⨯度 C. 54.4810⨯度 D. 64.4810⨯度【答案】C 【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a ×10n ,n 为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:44.8万度=448000度=54.4810⨯度. 故选:C【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形的式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键. 5. 如图,12l l ∥,点A 在直线1l 上,点B 在直线2l 上,AB BC =,25C ∠=︒,160∠=︒,则2∠的度数是( )A. 70︒B. 65︒C. 60︒D. 55︒【答案】A 【解析】【分析】先根据等边对等角求出∠BAC 的度数,然后根据平行线的性质求出∠ABD 的度数,最后利用三角形内角和定理求解即可. 【详解】解:∵AB =BC , ∴∠BAC =∠C =25°, ∵12l l ∥, ∴∠ABD =∠1=60°,∴∠2=180°-∠C -∠BAC -∠ABD ==180°-25°-25°-60°=70°, 故选A .【点睛】本题主要考查了平行线的性质,等腰三角形的性质,三角形内角和定理,正确求出∠BAD 和∠ABD 的度数是解题的关键.6. 如图,AB 是⊙O 的直径,ACD CAB ∠=∠,2AD =,4AC =,则⊙O 的半径为(A. B. C.【答案】D【解析】【分析】连接CO并延长CO交⊙于点E,连接AE,根据OA=OC,可得∠ACD=∠ACE,从而得到AE=AD=2,然后根据勾股定理,即可求解.【详解】解:如图,连接CO并延长CO交⊙于点E,连接AE,∵OA=OC,∴∠ACE=∠CAB,∠=∠,∵ACD CAB∴∠ACD=∠ACE,∴AD AE=,∴AE=AD=2,∵CE是直径,∴∠CAE=90°,∴CE===∴⊙O故选:D.【点睛】本题主要考查了圆周角定理,勾股定理,熟练掌握圆周角定理,勾股定理是解题的关键.7. 某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是()A. 最高成绩是9.4环B. 平均成绩是9环C. 这组成绩的众数是9环D. 这组成绩的方差是8.7【答案】D 【解析】【分析】根据统计图即可判断选项A ,根据统计图可求出平均成绩,即可判断选项B ,根据统计图即可判断选项C ,根据所给数据进行计算即可判断选项D .【详解】解:A 、由统计图得,最高成绩是9.4环,选项说法正确,不符合题意; B 、平均成绩:1(9.48.49.29.28.898.6999.4)910⨯+++++++++=,选项说法正确,符合题意;C 、由统计图得,9出现了3次,出现的次数最多,选项说法正确,不符合题意;D 、方差:22222222221(9.49)(8.49)(9.29)(9.29)(8.89)(99)(8.69)(99)(99)(9.49)0.09610⎡⎤⨯-+-+-+-+-+-+-+-+-+-=⎣⎦,选项说法错误,符合题意; 故选D .【点睛】本题考查了平均数,众数,方差,解题的关键是理解题意掌握平均数,众数和方差的计算方法.8. 如图,四边形ABCD 中.60A ∠=︒,AB CD ∥,DE AD ⊥交AB 于点E ,以点E 为圆心,DE 为半径,且6DE =的圆交CD 于点F ,则阴影部分的面积为( )A. 6π-B. 12π-C. 6πD.12π 【答案】B 【解析】【分析】过点E 作EG ⊥CD 于点G ,根据平行线的性质和已知条件,求出30EDG AED ∠=∠=︒,根据ED =EF ,得出30DFE FDE ∠=∠=︒,即可得出1803030120DEF ∠=︒-︒-︒=︒,解直角三角形,得出GE 、DG ,最后用扇形的面积减三角形的面积得出阴影部分的面积即可.【详解】解:过点E 作EG ⊥CD 于点G ,如图所示:∵DE ⊥AD , ∴∠ADE =90°, ∵∠A =60°,∴∠AED =90°-∠A =30°, ∵AB CD ,∴30EDG AED ∠=∠=︒, ∵ED =EF ,∴30DFE FDE ∠=∠=︒,∴1803030120DEF ∠=︒-︒-︒=︒, ∵EG CD ⊥, ∴DG FG =,∵DE =6,30EDF ∠=︒, ∴132EG DE ==,cos30DG DE =⨯︒=∴2DF DG == ∴DEF DEF S S S ∆=-阴影扇形21206133602π⨯=-⨯12π=-,. 故选:B .【点睛】本题主要考查了平行线的性质,垂径定理,等腰三角形的判定和性质,扇形面积计算公式,解直角三角形,作出辅助线,求出∠DEF =120°,DF 的长,是解题的关键. 9. 抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表:x -2 -1 0 6 y461下列结论不正确的是( ) A. 抛物线的开口向下B. 抛物线的对称轴为直线12x =C. 抛物线与x 轴的一个交点坐标为()2,0D. 函数2y ax bx c =++的最大值为254【答案】C 【解析】【分析】利用待定系数法求出抛物线解析式,由此逐一判断各选项即可【详解】解:由题意得42046a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得116a b c =-⎧⎪=⎨⎪=⎩,∴抛物线解析式为22125624y x x x ⎛⎫=-++=--+ ⎪⎝⎭,∴抛物线开口向下,抛物线对称轴为直线12x =,该函数的最大值为254,故A 、B 、D 说法正确,不符合题意; 令0y =,则260x x -++=, 解得3x =或2x =-,∴抛物线与x 轴的交点坐标为(-2,0),(3,0),故C 说法错误,符合题意; 故选C .【点睛】本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.10. 我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株楼后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A. ()316210x x -=B. ()316210x -=C.()316210x x -=D. 36210x =【答案】A 【解析】【分析】设这批椽的数量为x 株,则一株椽的价钱为3(x −1)文,利用总价=单价×数量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这批椽的数量为x 株,每株椽的运费是3文,少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,∴一株椽的价钱为3(x −1)文,依题意得:3(x −1)x =6210, 故选:A .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11. 如图,平行四边形ABCD 的对角线AC ,BD 相交于点O .点E 为BC 的中点,连接EO 并延长交AD 于点F ,60ABC ∠=︒,2BC AB =.下列结论:①AB AC ⊥;②4AD OE =;③四边形AECF 是菱形;④14BOE ABC S S =△△.其中正确结论的个数是( )A. 4B. 3C. 2D. 1【答案】A 【解析】【分析】通过判定ABE ∆为等边三角形求得60=︒∠BAE ,利用等腰三角形的性质求得30EAC ∠=︒,从而判断①;利用有一组邻边相等的平行四边形是菱形判断③,然后结合菱形的性质和含30°直角三角形的性质判断②;根据三角形中线的性质判断④. 【详解】解: 点E 为BC 的中点,22BC BE CE ∴==,又2BC AB = ,AB BE ∴=,60ABC ∠=︒ ,ABE ∴∆是等边三角形,60BAE BEA ∴∠=∠=︒,30EAC ECA ∴∠=∠=︒,90BAC BAE EAC ∴∠=∠+∠=︒,即AB AC ⊥,故①正确;在平行四边形ABCD 中,//AD BC ,AD BC =,AO CO =,CAD ACB ∴∠=∠,在AOF ∆和COE ∆中,CAD ACB OA OCAOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOF COE ASA ∴∆≅∆,AF CE ∴=,∴四边形AECF 是平行四边形,又AB AC ⊥ ,点E 为BC 的中点,AE CE ∴=,∴平行四边形AECF 是菱形,故③正确;AC EF ∴⊥,在Rt COE ∆中,30ACE ∠=︒, 111244OE CE BC AD ∴===,故②正确; 在平行四边形ABCD 中,OA OC =, 又 点E 为BC 的中点,ΔΔΔ1124BOE BOC ABC S S S ∴==,故④正确; 综上所述:正确的结论有4个, 故选:A .【点睛】本题考查平行四边形的性质,等边三角形的判定和性质,菱形的判定和性质,含30°的直角三角形的性质,掌握菱形的判定是解题关键.12. 如图,四边形ABCD 为矩形,3AB =,4BC =.点P 是线段BC 上一动点,点M 为线段AP 上一点.ADMBAP ∠=∠,则BM 的最小值为()A.52B.12532D.2-【答案】D 【解析】【分析】证明=90AMD ︒∠,得出点M 在O 点为圆心,以AO 为半径的园上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形 ∴+=90BAP MAD ︒∠∠ ∵ADMBAP ∠=∠∴+=90MAD ADM ︒∠∠ ∴=90AMD ︒∠∴点M 在O 点为圆心,以AO 为半径的园上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵222BO AB AO =+,1==22AO AD ∴29413BO =+=∴BO =∵2BN BO AO =-=故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识. 第Ⅱ卷(非选择题)二、填空题(本大题共6小题,只要求填写最后结果)13. -=__________.【答案】【解析】【分析】先计算乘法,再合并,即可求解.-3=-==,故答案为:【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.14. 如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【解析】【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --, 故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15. 如图,在ABC 中,90B ∠=︒,⊙O 过点A 、C ,与AB 交于点D ,与BC 相切于点C ,若32A ∠=︒,则ADO ∠=__________【答案】64︒##64度【解析】【分析】根据同弧对应的圆心角是圆周角的2倍计算出DOC ∠,再根据//AB OC ,内错角ADO DOC ∠=∠得到答案.【详解】如下图所示,连接OC从图中可以看出,DAC ∠是圆弧 DC对应的圆周角,DOC ∠是圆弧 DC 对应的圆心角 得264DOC DAC ︒∠=∠=.∵BC 是圆O 的切线∴OC BC ⊥∵90B ∠=︒∴AB BC ⊥∴//AB OC∴64ADO DOC ︒∠=∠=故答案为:64︒.【点睛】本题考查圆的切线的性质,圆周角定理、平行线的判定和性质,解题的关键是熟练掌握圆和平行线的相关知识.16. 如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).【答案】4.4m##4.4米【解析】【分析】根据题意可得AD ∥CP ,从而得到∠ADB =30°,利用锐角三角函数可得tan 0.46m AB AD ADB =⨯∠=≈,从而得到BC =AF +CF -AB =2.54m ,即可求解.【详解】解:根据题意得:AD ∥CP ,∵∠DPC =30°,∴∠ADB =30°,∵0.8m AD =,∴tan 0.80.46m AB AD ADB =⨯∠=≈, ∵AF =2m ,CF =1m ,∴BC =AF +CF -AB =2.54m , ∴ 2.54 4.4m tan tan 30BC CP BPC ︒==≈∠, 即CP 的长度为4.4m .故答案为:4.4m .【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.17. 将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【解析】【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y当99y =时 221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质. 18. 如图,四边形ABCD 为正方形,点E 是BC 的中点,将正方形ABCD 沿AE 折叠,得到点B 的对应点为点F ,延长EF 交线段DC 于点P ,若6AB =,则DP 的长度为___________.【答案】2【解析】【分析】连接AP ,根据正方形的性质和翻折的性质证明Rt △AFP ≌Rt △ADP (HL ),可得PF =PD ,设PF =PD =x ,则CP =CD −PD =6−x ,EP =EF +FP =3+x ,然后根据勾股定理即可解决问题.【详解】解:连接AP ,如图所示,∵四边形ABCD 为正方形,∴AB =BC =AD =6,∠B =∠C =∠D =90°,∵点E 是BC 的中点,∴BE =CE =12AB =3,由翻折可知:AF =AB ,EF =BE =3,∠AFE =∠B =90°,∴AD =AF ,∠AFP =∠D =90°,在Rt △AFP 和Rt △ADP 中, AP AP AF AD =⎧⎨=⎩, ∴Rt △AFP ≌Rt △ADP (HL ),∴PF =PD ,设PF =PD =x ,则CP =CD −PD =6−x ,EP =EF +FP =3+x ,在Rt △PEC 中,根据勾股定理得:EP 2=EC 2+CP 2,∴(3+x )2=32+(6−x )2,解得x =2,则DP 的长度为2,故答案为:2.【点睛】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.三、解答题(本大题共7小题,解答应写出必要的文字说明、证明过程或推演步骤)19. (1)化简:244224a a a a -⎛⎫--÷ ⎪--⎝⎭ (2)化简:52312>34x x -+- 【答案】(1)22a a +;(2)1x <【解析】【分析】(1)先将小括号内的式子进行通分计算,然后算括号外面的除法;(2)根据“去分母,去括号,移项,合并同类项,系数化1”的步骤解一元一次不等式.【详解】(1)解:原式()2224424a a a a ---=⨯-- 224424a a a a a --=⨯-- ()()()42224a a a a a a -+-=⨯-- ()2a a =+22a a =+(2)解:()()212452>331x x ⨯--+24208>93x x -++209>3248x x ----29>29x --1x <【点睛】本题考查分式的混合运算,解一元一次不等式,理解分式的基本性质,掌握分式混合运算的运算顺序和计算法则以及解一元一次不等式的基本步骤是解题关键.20. 2022年3月23日.“天宫课堂”第二课开讲.“太空教师”翟志刚、王亚平、叶光富在中国空间站为广大青少年又一次带来了精彩的太空科普课.为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组(满分100分),A 组:7580x ≤<,B 组:8085x ≤<.C 组:8590x ≤<,D 组:9095x ≤<,E 组:95100x ≤≤,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:(1)本次调查一共随机抽取了 名学生的成绩,频数直方图中,所抽取学生成绩的中位数落在 组;(2)补全学生成绩频数直方图:(3)若成绩在90分及以上为优秀,学校共有3000名学生,估计该校成绩优秀的学生有多少人?(4)学校将从获得满分的5名同学(其中有两名男生,三名女生)中随机抽取两名,参加周一国旗下的演讲,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.【答案】(1)400 名,D(2)见解析(3)1680人(4)见解析,3 5【解析】【分析】(1)用C组的人数除以C组所占的百分比可得总人数,再用总人数乘以B组所占的百分比,可求出m,从而得到第200位和201位数落在D组,即可求解;(2)求出E租的人数,即可求解;(3)用学校总人数乘以成绩优秀的学生所占的百分比,即可求解;(4)根据题意,画树状图,可得共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,再根据概率公式计算,即可求解.【小问1详解】解:9624%400÷=名,所以本次调查一天随机抽取400 名学生的成绩,频数直方图中40015%60m=⨯=,∴第200位和201位数落在D组,即所抽取学生成绩的中位数落在D组;故答案为:400,D【小问2详解】解:E组的人数为40020609614480----=名,补全学生成绩频数直方图如下图:【小问3详解】解:该校成绩优秀的学生有1448030001680400+⨯=(人);【小问4详解】解:根据题意,画树状图如图,共有20种等可能的结果,恰好抽中一名男生和一名女生的结果有12种,∴恰好抽中一名男生和一名女生的概率为123205P ==. 【点睛】本题主要考查了频数直方图和扇形统计图,用样本估计总体,利用树状图或列表法求概率,明确题意,准确从统计图中获取信息是解题的关键.21. 如图,点A 在第一象限,AC x ⊥轴,垂足为C ,OA =,1tan 2A =,反比例函数k y x=的图像经过OA 的中点B ,与AC 交于点D .(1)求k 值;(2)求OBD 的面积.【答案】(1)2(2)32 【解析】【分析】(1)在Rt ACO ∆中,90ACO ∠=︒,1tan 2A =,再结合勾股定理求出2OC =,4AC =,得到()2,4A ,再利用中点坐标公式即可得出()1,2B ,求出k 值即可;(2)在平面直角坐标系中求三角形面积,找平行于坐标轴的边为底,根据AD y ∥轴,选择AD 为底,利用O B D O A D B A D S S S =-△△△代值求解即可得出面积.小问1详解】【解:根据题意可得,在Rt ACO ∆中,90ACO ∠=︒,1tan 2A =, 2AC OC ∴=,222(2)OC OC ∴+=,2OC ∴=,4AC =,()2,4A ∴,OA 的中点是B ,()1,2B ∴,2k ∴=;【小问2详解】解:当2x =时,1y =,()2,1D ∴,413AD ∴=-=,∴O B D O A D B A D S S S =-△△△()11332321222=⨯⨯-⨯⨯-=. 【点睛】本题考查反比例函数的图像与性质,涉及到勾股定理,三角函数求线段长,中点坐标公式、待定系数法确定函数关系式中的k ,平面直角坐标系中三角形面积的求解,熟练掌握反比例函数的图像与性质是解决问题的关键.22. 泰安某茶叶店经销泰山女儿茶,第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元.求第一次购进的A 、B 两种茶每盒的价格.【答案】A 种茶每盒100元,B 种茶每盒150元【解析】【分析】设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据第一次购进了A 种茶30盒,B 种茶20盒,共花费6000元;第二次购进时,两种茶每盒的价格都提高了20%,该店又购进了A 种茶20盒,B 种茶15盒,共花费5100元列出方程组求解即可.【详解】解:设第一次购进A 种茶每盒x 元,B 种茶每盒y 元,根据题意,得30206000,1.220 1.2155100.x y x y +=⎧⎨⨯+⨯=⎩ 解,得100,150.x y =⎧⎨=⎩∴A 种茶每盒100元,B 种茶每盒150元.【点睛】本题主要考查了二元一次方程组的实际应用,正确设出未知数列出方程组求解是解题的关键.23. 如图,矩形ABCD 中,点E 在DC 上,DE BE =,AC 与BD 相交于点O .BE 与AC 相交于点F .(1)若BE 平分CBD ∠,求证:BF AC ⊥;(2)找出图中与OBF 相似的三角形,并说明理由;(3)若3OF =,2EF =,求DE 的长度.【答案】(1)证明见解析(2)ECF △,BAF △与OBF 相似,理由见解析(3)3【解析】【分析】(1)根据矩形的性质和角平分线的定义即可得出结论;(2)根据判定两个三角形相似判定定理,找到相应的角度相等即可得出;(3)根据OBF ECF ∽△△得出329OA BF =+,根据OBF BAF ∽△△得出()233BF OA =+,联立方程组求解即可.【小问1详解】证明:如图所示:四边形ABCD 为矩形,234∴∠=∠=∠,DE BE = ,的12∠∠∴=,13∠∠∴=,又BE 平分DBC ∠,16∴∠=∠,36∴∠=∠,又3∠ 与5∠互余,6∴∠与5∠互余,BF AC ∴⊥;【小问2详解】解:ECF △,BAF △与OBF 相似.理由如下:12∠=∠ ,24∠∠=,14∴∠=∠,又OFB BFO ∠=∠ ,OBF BAF ∴∽△△,13∠=∠ ,OFB EFC ∠=∠,OBF ECF ∴∽△△;【小问3详解】解:OBF ECF ∽△△,EF CF OF BF ∴=, 23CF BF∴=, 32CF BF ∴=,在矩形ABCD 中对角线相互平分,图中OA OC =3OF FC FC =+=+, 329OA BF ∴=+①,OBF BAF ∽△△,OF BF BF AF∴=, 2BF OF AF ∴=⋅,矩形ABCD 中3AF OA OF OA =+=+,()233BF OA ∴=+②,由①②,得1B F =±(负值舍去),213D E B E ∴==++=+.在【点睛】本题考查矩形综合问题,涉及到矩形的性质、角平分线的性质、角度的互余关系、两个三角形相似的判定与性质等知识点,熟练掌握两个三角形相似的判定与性质是解决问题的关键.24. 若二次函数2y ax bx c =++的图象经过点()2,0A -,()0,4B -,其对称轴为直线1x =,与x 轴的另一交点为C .(1)求二次函数的表达式;(2)若点M 在直线AB 上,且在第四象限,过点M 作MN x ⊥轴于点N .①若点N 在线段OC 上,且3MN NC =,求点M 的坐标;②以MN 为对角线作正方形MPNQ (点P 在MN 右侧),当点P 在抛物线上时,求点M 的坐标.【答案】(1)2142y x x =-- (2)①836,55⎛⎫- ⎪⎝⎭;②1,52⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)利用待定系数解答,即可求解;(2)①先求出直线AB 的表达式为24y x =--,然后设点N 的坐标为()0m ,.可得(),24M m m --.可得到24MN m =+,4NC m =-.再由3MN NC =,即可求解;②连接PQ 与MN 交与点E .设点M 的坐标为(),24t t --,则点N 的坐标为(),0t 根据正方形的性质可得E 的坐标为(),2t t --,进而得到P 的坐标()22,2t t +--.再由点P 在抛物线上,即可求解.【小问1详解】解: 二次函数2y ax bx c =++的图象经过点()0,4-,4c ∴=-.又 抛物线经过点()2,0A -,对称轴为直线1x =,1,24240,b a a b ⎧-=⎪∴⎨⎪--=⎩ 解得∶1,21,a b ⎧=⎪⎨⎪=-⎩∴抛物线的表达式为2142y x x =--. 【小问2详解】解∶①设直线AB 的表达式为y kx n =+.点A ,B 的坐标为()2,0A -,()0,4B -,∴204k n n -+=⎧⎨=-⎩, 解得∶24k n =-⎧⎨=-⎩, ∴直线AB 的表达式为24y x =--.根据题意得∶点C 与点()2,0A -关于对称轴直线1x =对称,()4,0C ∴.设点N 的坐标为()0m ,.MN x ⊥ 轴,(),24M m m ∴--.∴24MN m =+4NC m ∴=-.3MN NC =()2434m m ∴+=-, 解,得85m =. ∴点M 的坐标836,55⎛⎫- ⎪⎝⎭; ②连接PQ 与MN 交与点E .设点M 的坐标为(),24t t --,则点N 的坐标为(),0t四边形MPNQ 是正方形,PQ M N ∴⊥,NE EP =,12NE MN =. ∵MN ⊥x 轴, //PQ x ∴轴.∴E 的坐标为(),2t t --.2NE t ∴=+.222ON EP ON NE t t t ∴+=+=++=+.∴P 的坐标()22,2t t +--.点P 在抛物线2142yx x =--上, ()()212222422t t t ∴+-+-=--. 解,得112t =,22t =-. 点P 在第四象限,2t ∴=-舍去. 即12t =. ∴点M 坐标为1,52⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了二次函数的综合题,熟练掌握二次函数的图形和性质,正方形的性质,一次函数的图象和性质是解题的关键.25. 问题探究(1)在ABC 中,BD ,CE 分别是ABC ∠与BCA ∠的平分线.①若60A ∠=︒,AB AC =,如图,试证明BC CD BE =+;②将①中的条件“AB AC =”去掉,其他条件不变,如图,问①中的结论是否成立?并说明理由.迁移运用(2)若四边形ABCD 是圆内接四边形,且2ACB ACD ∠=∠,2CAD CAB ∠=∠,如图,试探究线段AD ,BC ,AC 之间的等量关系,并证明.【答案】(1)①见解析;②结论成立,见解析;(2)AC AD BC =+,见解析【解析】【分析】(1)①证明ABC 是等边三角形,得出E 、D 为中点,从而证明BC CD BE =+;②在BC 上截取BG BE =,根据角平分线的性质,证明EBF GBF ≌△△,DFC GFC ≌△△,从而得到答案;(2)作点B 关于AC 的对称点E ,证明2360∠+∠=︒,从而得到60M ∠=︒,再根据AE 、DC 分别是MAC ∠、MCA ∠的角平分线,得到AC AD BC =+.【详解】(1)①60A ∠=︒ ,AB AC =,的AB AC BC ∴==.又BD Q 、CE 分别是ABC ∠、BCA ∠的平分线.∴点D 、E 分别是AC 、AB 的中点.1122BE AB BC ∴==,1122CD AC BC ==. BC BE CD ∴=+.②结论成立,理由如下:设BD 与CE 交于点F ,由条件,得12∠=∠,34∠=∠.又60A ∠=︒120ABC BCA ∴∠+∠=︒.()113602ABC BCA ∴∠+∠=∠+∠=︒. 120BFC ∴∠=︒.∴5660∠=∠=︒.在BC 上截取BG BE =.由∵BF =BF ,∴EBF GBF ≌△△.7660∴∠=∠=︒860∴∠=︒.85∴∠=∠.又∵CF =CF ,∴DFC GFC ≌△△.DC GC ∴=∴BC BG GC BE CD =+=+.(2)AC AD BC =+,理由如下:∵四边形ABCD 是圆内接四边形,∴180DAB BCD ∠+∠=︒.∵2ACB ACD ∠=∠,2CAD CAB ∠=∠∴21DAC ∠=∠,22BCA ∠=∠,∴3132180∠+∠=︒.∴1260∠+∠=︒.作点B 关于AC 的对称点E ,连结CE ,EA ,CE 的延长线与AD 的延长线交于点M ,AE 与CD 交于点F ,∴13∠=∠,BC CE =.∴2360∠+∠=︒.∴2223120∠+∠=︒∴120MAC MCA ∠+∠=︒∴60M ∠=︒∵AE 、DC 分别是MAC ∠、MCA ∠的角平分线由②得AC AD BC =+.【点睛】本题考查三角形、等边三角形、全等三角形、圆的内接四边形的性质,解题的关键是熟练掌握三角形、等边三角形、全等三角形、圆的内接四边形的相关知识。
2023年山东省泰安市中考数学真题(解析版)

泰安市2023年初中学业水平考试数学试题一、选择题1.【答案】D 【解析】解:∵23132⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,∴23-的倒数是32-,故选:D .2.【答案】D【解析】解:2a 和3b 不是同类项,不能合并,故A 选项错误,不符合题意;222()2a b a ab b -=-+,故B 选项错误,不符合题意;()3236ab a b =,故C 选项错误,不符合题意;()3253412a a a ⋅-=-,故D 选项正确,符合题意;故选:D .3.【答案】B【解析】解:20.3亿年2030000000=年92.0310=⨯年,故选B .4.【答案】D【解析】解:A 选项,既不是轴对称图形也不是中心对称图形,故该选项不符合题意;B 选项,既不是轴对称图形也不是中心对称图形,故该选项不符合题意;C 选项,既不是轴对称图形也不是中心对称图形,故该选项不符合题意;D 选项,是轴对称图形也是中心对称图形,故该选项符合题意;故选:D .5.【答案】B【解析】解:如图所示,过点O 作OE ∥AB ,∵AB CD ,∴OE AB CD ∥∥,∴21EOC AOE ==∠∠,∠∠,∵90AOC EOC AOE =+=︒∠∠∠,∴1290∠+∠=︒,∵135∠=︒,∴290155∠=︒-=︒∠,故选B .6.【答案】B【解析】解:A 选项,这组数据中出现次数最多的是11,故众数是11,正确,不符合题意;B 选项,这组数据重新排序为:6,7,9,10,10,11,11,11,11,14,故中位数是101110.52+=,错误,符合题意;C 选项,这组数据的平均数是71110116141110119100101010+++++++++==,故平均数是10,正确,不符合题意;D 选项,这组数据的平均数是10,方差是2222(107)(1011)(109) 4.610S ⎡⎤-+-++-⎣⎦== ,故方差是4.6,正确,不符合题意;故选:B .7.【答案】A【解析】解:∵115ADC ∠=︒,∴65B ∠=︒,∵AB 是O 的直径,∴90ACB ∠=︒,∴180906525BAC ∠=︒-︒-︒︒=,故选:A .8.【答案】D【解析】解:A 选项,∵一次函数图象经过第一、二、三象限,∴00a b >>,,∴0ab >,∴反比例函数ab y x=的图象见过第一、三象限,这与图形不符合,故A 不符合题意;B 选项,∵一次函数图象经过第一、二、四象限,∴00a b <>,,∴0ab <,∴反比例函数ab y x=的图象见过第二、四象限,这与图形不符合,故B 不符合题意;C 选项,∵一次函数图象经过第一、三、四象限,∴00a b ><,,∴0ab <,∴反比例函数ab y x=的图象见过第二、四象限,这与图形不符合,故C 不符合题意;D 选项,∵一次函数图象经过第一、二、四象限,∴00a b <>,,∴0ab <,∴反比例函数ab y x =的图象见过第二、四象限,这与图形符合,故D 符合题意;故选D .9.【答案】C【解析】解:∵OC OB =,OA OC =,40CAO ∠=︒,∴40OCA OAC ∠=∠=︒,OCB OBC ∠=∠,∵70ACB ∠=︒,∴704030OBC OCB ACB ACO ∠=∠=∠-∠=︒-︒=︒,∴180302120BOC ∠=︒-︒⨯=︒,∴22120116ππ4π36033S r ︒=⨯=⨯⨯=︒阴影,故选:C .10.【答案】C【解析】解:设每枚黄金重x 两,每枚白银重y 两,由题意得,()()91110813x y y x x y =⎧⎨+-+=⎩,故选C .11.【答案】C【解析】∵ABC 中,AB AC =,36A ∠=︒,∴()1180722ABC C A ∠=∠=︒-∠=︒,由作图知,BD 平分ABC ∠,MN 垂直平分BD ,∴1362ABD CBD ABC ∠=∠=∠=︒,EB ED =,∴EBD EDB ∠=∠,∴EDB CBD ∠=∠,∴DE BC ∥,∴AED ABC ∠=∠,①正确;ADE C ∠=∠,∴AED ADE ∠=∠,∴AD AE =,∵A ABD ∠=∠,∴AD BD =,∵72BDC A ABD ∠=∠+∠=︒,∴BDC C ∠=∠,∴BC BD =,∴BC AE =,②正确;设ED x =,BC a =,则AD a =,BE x =,∴CD BE x ==,∵AED ABC △∽△,∴ED AD AD BC AC AD DC ==+,∴x a a a x =+,∴220x ax a +-=,∵0x >,∴12x a -=,即12ED BC -=,③错误;当2AC =时,2CD AD =-,∵12CD AD -=,∴122AD AD -=-,∴1AD =,④正确∴正确的有①②④,共3个.故选:C .12.【答案】A【解析】解:如图所示,延长BA 到E ,使得AE AB =,连接OE CE ,,∵Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,,∴46AB OB ==,,∴4AE AB ==,∴8BE =,∵点M 为BC 中点,点A 为BE 中点,∴AM 是BCE 的中位线,∴12AM CE =;在Rt COD 中,9030COD OD D ∠=︒=∠=︒,,∴43OC ==,∵将Rt COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,∴当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,∵10OE ==,∴CE 的最小值为1046-=,∴AM 的最小值为3,故选A .二、填空题13.【答案】4a >-##4a-<【解析】解:∵关于x 的一元二次方程240x x a --=有两个不相等的实数根,∴()()22Δ44410b ac a =-=--⨯⋅->,∴4a >-,故答案为:4a >-.14.【答案】6.9【解析】解:设光盘的圆心为O ,三角尺和光盘的切点为C ,连接OC OB OA ,,,如下图所示:∵AC AB ,分别为圆O 的切线,∴OA 为BAC ∠的角平分线,即OC AC OB AB ⊥⊥,,又∵60CAD ∠=︒,∴1602OAC OAB BAC ∠=∠=∠=︒,在Rt AOB △中,60OAB ∠=︒,4cm AB =,∴tan tan 60OB OAB AB ∠=︒=,4OB =∴ 6.9cm OB ≈=,则这张光盘的半径为6.9cm ;故答案为:6.9.15.【答案】254【解析】解:利用配方法,将一般式化成顶点式:234y x x =--+232524x =-++( 二次函数开口向下,∴顶点处取最大值,即当32x =-时,最大值为254.故答案为:254.16.【答案】55【解析】解:如图所示,过点E 作EF AB ⊥于F ,由题意得,AB AD DE AD ⊥,⊥,∴四边形ADEF 是矩形,∴2m AF DE EF AD ===,,设m BF x =,则()2m AB AF BF x =+=+,在Rt ABC △中,tan AB ACB AC ∠=,∴()252m tan tan506AB x AC x ACB +==≈+︒∠,在Rt BEF △中,tan BF BEFEF ∠=,∴2m tan tan 26.6BF x EF x BEF ==≈∠︒,∵EF AD =,∴()522606x x =++,∴53x ≈,∴255m AB x =+≈,故答案为:55.17.【答案】4.5【解析】解:∵16AC BC ==,∴A B ∠=∠,由折叠的性质可得B B '∠=∠,∴A B '∠=∠,又∵AFD B FG ∠=∠',∴AFD B FG ' ∽,∴AF DF B F GF =',即874GF=,∴ 3.5GF =,∴ 4.5CG AC AF GF =--=,故答案为:4.5.18.【答案】(2023,3-【解析】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1AB x ⊥轴,∵12,OA A ∴111cos601,sin 603,OB OA A B OA =︒⨯==︒⨯=∴(13A ,同理:(((4774,,7,,10,,A A A ∴()()(3133131,0,3,0,31,n n n A n A n A n -+-+()31n +为偶数,(3131,n A n ++为奇数;∵202336741÷= ,2023为奇数∴(20232023,A .故答案为(2023,.三、解答题19.【答案】(1)25x x -+;(2)25x -<<【解析】解:(1)2211025224x x x x x -++⎛⎫-÷ ⎪+-⎝⎭()()()252412222x x x x x x x ++-⎛⎫=-÷ ⎪+++-⎝⎭()()()222525x x x x x +-+=⋅++25x x -=+;(2)2731132x x x +>⎧⎪⎨+->⎪⎩①②解不等式①得:2x >-,解不等式②得:5x <,∴不等式组的解集为25x -<<20.【答案】(1)200,108(2)见解析(3)13【解析】(1)解:14480200360︒÷=︒名,∴本次竞赛共有200名选手获奖,∴C 级的人数为2008020025%1060--⨯-=名,∴扇形统计图中扇形C 的圆心角度数是60360108200︒⨯=度,故答案为:200,108;(2)解:B 级的人数为20025%50⨯=名,补全统计图如下:(3)解:设这三个出口分别用E 、F 、G 表示,列表如下:EF G E(E ,E )(F ,E )(G ,E )F(E ,F )(F ,F )(G ,F )G (E ,G )(F ,G )(G ,G )由表格可知一共有9种等可能性的结果数,其中参赛选手小丽和小颖由馆内恰好从同一出口走出的结果数有3种,∴参赛选手小丽和小颖由馆内恰好从同一出口走出的概率3193==.21.【答案】(1)4y x =-;(2)10x -<<;(3)()9,0-.【解析】(1)∵4OE =,AE y ⊥轴,∴()0,4E ,点A 的纵坐标为4,∵点A 在122y x =-+图象上,∴当4y =时,422x =-+,解得:1x =-,∴点A 坐标为()1,4-,∵反比例函数2k y x=的图象过点A ,∴144k =-⨯=-,∴反比例函数的表达式为:4y x =-;(2)如图,在第二象限内,当12y y <时,10x -<<,(3)如图,过A 作AM x ⊥轴于点M ,∵AE y ⊥轴,∴90AEO EOM OMA ∠=∠=∠=︒,∴四边形AEOM 是矩形,∴4AM OE ==,1OM AE ==,∵PA AB ⊥,∴90PAD ∠=︒,即:90PAM DAM ∠+∠=︒,∵90DAM ADM ∠+∠=︒,∴PAM ADM ∠=∠,∴DAM APD ∠=∠,∴PAD AMD ∽,∴AD PD MD AD=,由22y x =-+得:0y =时,220x -+=,解得:1x =,∴点()1,0D ,∴AD ==2MD =,∴252=∴10PD =,∴点()9,0P -.22.【答案】这个学校九年级学生有300人.【解析】解:设零售价为x 元,批发价为y ,根据题意可得:50603600360060x y y x =⎧⎪⎨=+⎪⎩,解得:1210x y =⎧⎨=⎩,则学校九年级学生360012300÷=人.答:这个学校九年级学生有300人.23.【答案】(1)证明见解析(2)证明见解析【解析】(1)证明:∵四边形ABCD 是矩形,∴1902AB CD AD BC ADC ABC BAD AC BD ====︒=∥,,∠∠,,由折叠的性质可得AD AG =,90AGF ADF ∠=∠=︒,∴90AGE DAB ==︒∠∠,∵AC AE =,AC BD =,∴AE BD =,∴()Rt Rt HL ABD GEA △≌△,∴AEG DBA ∠=∠,∴BD EF ∥,又∵BE DF ∥,∴四边形DBEF 是平行四边形;(2)证明:∵四边形DBEF 是平行四边形,∴BE DF =,由折叠的性质可得GF DF =,∴BE GF =,∵CD AB ∥,∴HFG E =∠∠,又∵18090FGH AGF MBE ∠=︒-∠=︒=∠,∴()ASA FGH EBM △≌△,∴FH ME =.24.【答案】(1)60︒(2)见详解(3)见详解【解析】(1)∵EF AD ⊥,∴90EFA EFD ∠=∠=︒,∵EF EF =,AF DF =,∴EFA EFD ≌,∴EA ED =,∵ABC 、CDE 是两个等腰直角三角形,∴45ACB BAC CED CDE Ð=Ð=°=Ð=Ð,AB BC =,∴18090EGC BCA CED Ð=°-Ð-Ð=°,∴GC DE ⊥,∴等腰直角CDE 中,EG GD =,∴GC 是线段ED 的垂直平分线,∴EA AD =,∴EA AD DE ==,即EAD 是等边三角形,∴60AED ∠=︒;(2)在(1)中有GC DE ⊥,EF AD ⊥,∴90AGE AGD AFH Ð=Ð=Ð=°,又∵EHG AHF Ð=Ð,∴HEG HAF Ð=Ð,∴EHG ADG ∽△△;(3)过H 点作HK BC ⊥于点K ,如图,∵HK BC ⊥,45BCH ∠=︒,∴90HKB HKC ∠=∠=︒,∴45KHC KCH ∠=∠=︒,即是等腰Rt KHC △,∴HK KC =,∵180EHK HKE HEK ∠=︒-∠-∠,45DEC ∠=︒,HEK HEG DEC ∠=∠+,∴45EHK HEG ∠=︒-∠,∵GC 是线段ED 的垂直平分线,∴EAG DAG ∠=∠,在(1)中已证明HEG DAG ∠=∠,∴HEG EAG ∠=∠,∵45BAE BAC EAG EAG ∠=∠-∠=︒-∠,∴45BAE HEG EHK ∠=︒-∠=∠,∵90B HKE ∠=∠=︒,∴ABE HKE ∽,∴AE ABHE HK =,∵AB BC =,HK KC =,∴AE AB BCHE HK KC ==,∵HK BC ⊥,AB BC ⊥,∴HK AB ∥,∴ABC HKC ∽,∴BC AC KC HC =,∴AE ACHE HC =.25.【答案】(1)254y x x =++(2)5,42⎛⎫- ⎪⎝⎭或5,162⎛⎫-- ⎪⎝⎭(3)正确,820,39D ⎛⎫--⎪⎝⎭【解析】(1)解:将(4,0),(1,0)A B --代入24y ax bx =++得:1644040a b a b -+=⎧⎨-+=⎩,解得:15a b =⎧⎨=⎩,∴抛物线解析式为:254y x x =++;(2)解:由抛物线254y x x =++可知,其对称轴为直线52x =-,()0,4C ,设直线BC 解析式为:y kx c =+,将()1,0B -,()0,4C 代入解得:44k c =⎧⎨=⎩,∴直线BC 解析式为:44y x =+,此时,如图所示,作PQ x ∥轴,交BC 于点Q ,∵点P 在二次函数对称轴上,∴设5,2P m ⎛⎫- ⎪⎝⎭,则4,4m Q m -⎛⎫ ⎪⎝⎭,∴456424m m PQ -+⎛⎫=--= ⎪⎝⎭,∴()116642242BCP C B m m S PQ y y ++=-=⨯⨯= ,∵要使得BCP 面积为5,∴652m +=,解得:4m =或16m =-,∴P 的坐标为5,42⎛⎫- ⎪⎝⎭或5,162⎛⎫-- ⎪⎝⎭;(3)解:正确,820,39D ⎛⎫-- ⎪⎝⎭,理由如下:如图所示,连接AC ,BC ,设AC 与对称轴交点为K ,对称轴与x 轴交点为H ,连接BK ,延长AD 与对称轴交于点M ,由(1)、(2)可得4OA OC ==,=90AOC ∠︒,∴45CAO ∠=︒,AC =,根据抛物线的对称性,AK BK =,∴45KAB KBA ∠=∠=︒,90AKB ∠=︒,∵3AB =,∴2AK BK ==,∴522CK AC AK =-=,在Rt CKB 中,5tan 3CK CBK BK ∠==,∵90CBK ACB ∠+∠=︒且90DAB ACB +=︒∠∠,∴DAB CBK ∠=∠,∴5tan tan 3DAB CBK ∠=∠=,即:在Rt AHM 中,53HM AH =,∵()53422AH =---=,∴355232HM =⨯=,∴55,22M ⎛⎫-- ⎪⎝⎭,设直线AM 解析式为:y sx t =+,将()4,0A -、55,22M ⎛⎫-- ⎪⎝⎭代入解得:53203s t ⎧=-⎪⎪⎨⎪=-⎪⎩,∴直线AM 解析式为:52033y x =--,联立25452033y x x y x ⎧=++⎪⎨=--⎪⎩,解得:83209x y ⎧=-⎪⎪⎨⎪=-⎪⎩或40x y =-⎧⎨=⎩(不合题,舍去)∴小明说法正确,D 的坐标为820,39D ⎛⎫-- ⎪⎝⎭.。
最新版山东省泰安市2022届中考数学试卷(答案不全)和答案解析详解完整版

收集数据:
七年级:86 88 95 90 100 95 95 99 93 100
山东省泰安市2022届中考
数学试卷
本试题分第Ⅰ卷(选择题)和第卷(非选择题)两部分,第卷Ⅰ至3页,第Ⅱ卷3至8页,共150分,考试时间120分钟.
注意事项:
1.答题前请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.
2,考试结束后,监考人员将本试卷和答题卡一并收回.
第Ⅰ卷(选择题共48分)
一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求)
A.40°B.45°C.50°D.60°
5.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()
A.15.5,15.5B.15.5,15C.15,15.5D.15,15
6.某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用 天,现在甲、乙两队合做 天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为 天,下面所列方程中错误的是()
(1)求A、B两种平板电脑的进价分别为多少元?
(2)考虑到平板电脑需求不断增加,该商城准备投入3万元再购进一批两种规格的平板电脑,已知A型平板电脑售价为700元/台,B型平板电脑售价为1300元/台.根据销售经验,A型平板电脑不少于B型平板电脑的2倍,但不超过B型平板电脑的2.8倍.假设所进平板电脑全部售完,为使利润最大,该商城应如何进货?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3分)(2018•泰安)不等式组有3个整数解,则a 的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5 9.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB 的度数为()A.40°B.50°C.60°D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(,)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(,)B.(﹣,﹣)C.(,)D.(﹣,﹣)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P 是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
只要求填写最后结果,每小题填对得3分)13.(3分)(2018•泰安)一个铁原子的质量是,将这个数据用科学记数法表示为kg.14.(3分)(2018•泰安)如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为.15.(3分)(2018•泰安)如图,在矩形ABCD中,AB=6,BC=10,将矩形ABCD沿BE折叠,点A落在A'处,若EA'的延长线恰好过点C,则sin∠ABE的值为.16.(3分)(2018•泰安)观察“田”字中各数之间的关系:则c的值为.17.(3分)(2018•泰安)如图,在△ABC中,AC=6,BC=10,tanC=,点D是AC 边上的动点(不与点C重合),过D作DE⊥BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.18.(3分)(2018•泰安)《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)请你计算KC的长为步.三、解答题(本大题共7小题,满分66分。
解答应写出必要的文字说明、证明过程或推演步骤)19.(6分)(2018•泰安)先化简,再求值÷(﹣m﹣1),其中m=﹣220.(9分)(2018•泰安)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润(购进的两种图书全部销售完.)21.(8分)(2018•泰安)为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取一个班学生的成绩进行整理,分为A,B,C,D四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为A的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.22.(9分)(2018•泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E 是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.23.(11分)(2018•泰安)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F 是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.(1)求证:△ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.24.(11分)(2018•泰安)如图,在平面直角坐标系中,二次函数y=ax2+bx+c 交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E (0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形若存在,请直接写出所有P点的坐标,若不存在请说明理由.25.(12分)(2018•泰安)如图,在菱形ABCD中,AC与BD交于点O,E是BD 上一点,EF∥AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等若相等,请证明;若不相等,请说明理由;(2)找出图中与△AGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF•MH.2018年山东省泰安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.3【考点】6E:零指数幂.【专题】11 :计算题.【分析】根据相反数的概念、零指数幂的运算法则计算.【解答】解:﹣(﹣2)+(﹣2)0=2+1=3,故选:D.【点评】本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6 C.(3y2)3=9y6D.y3÷y﹣2=y5【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.【专题】11 :计算题.【分析】根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.【解答】解:2y3+y3=3y3,A错误;y2•y3=y5,B错误;(3y2)3=27y6,C错误;y3÷y﹣2=y3﹣(﹣2)=y5,故选:D.【点评】本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.【考点】U3:由三视图判断几何体.【专题】1 :常规题型.【分析】直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.【解答】解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选:C.【点评】此题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题关键.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°.【解答】解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故选:A.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、43【考点】W4:中位数;W1:算术平均数.【专题】11 :计算题.【分析】根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.【解答】解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42,故选:B.【点评】本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.【解答】解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.7.(3分)(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象;H2:二次函数的图象.【专题】1 :常规题型.【分析】首先利用二次函数图象得出a,b的值,进而结合反比例函数以及一次函数的性质得出答案.【解答】解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选:C.【点评】此题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的值是解题关键.8.(3分)(2018•泰安)不等式组有3个整数解,则a 的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣5【考点】CC:一元一次不等式组的整数解.【专题】52:方程与不等式.【分析】根据解不等式组,可得不等式组的解,根据不等式组的解有3个整数解,可得答案.【解答】解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,解得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选:B.【点评】本题考查了一元一次不等式组,利用不等式的解得出关于a的不等式是解题关键.9.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB 的度数为()A.40°B.50°C.60°D.70°【考点】MC:切线的性质.【专题】1 :常规题型;55A:与圆有关的位置关系.【分析】连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由内角和定理知∠AOB=80°,根据圆周角定理可得答案.【解答】解:如图,连接OA、OB,∵BM是⊙O的切线,∴∠OBM=90°,∵∠MBA=140°,∴∠ABO=50°,∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查切线的性质,解题的关键是掌握切线的性质:①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3【考点】HA:抛物线与x轴的交点.【专题】1 :常规题型.【分析】直接整理原方程,进而解方程得出x的值.【解答】解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选:D.【点评】此题主要考查了一元二次方程的解法,正确解方程是解题关键.11.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(,)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(,)B.(﹣,﹣)C.(,)D.(﹣,﹣)【考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.【专题】531:平面直角坐标系.【分析】由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P 1与P2关于原点对称,即可解决问题;【解答】解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(,),∴P1(﹣,﹣),∵P1与P2关于原点对称,∴P2(,),故选:A.【点评】本题考查坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P 是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8【考点】M8:点与圆的位置关系;KQ:勾股定理;R6:关于原点对称的点的坐标.【专题】1 :常规题型;55A:与圆有关的位置关系.【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.【解答】解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.二、填空题(本大题共6小题,满分18分。