浅谈基尔霍夫定律
简述基尔霍夫定律的基本内容

简述基尔霍夫定律的基本内容
基尔霍夫定律可以分为两个方面讲,分别称为基尔霍夫第一定律(kcl)和基尔霍夫
第二定律(kvl),我们又把第二定律称为回路电压定律。
第一定律的简要意思是:在任
意瞬间,流进某一节点的电流之和恒等于流出该节点的电流之和。
用数学表达式表示为
σi=0.
基尔霍夫定律可以扩展为:在任意时刻,流入某一封闭面的电流之和等于流出该封闭
面的电流之和。
比如我们可以把三极管外壳看成是一个封闭面,它的基极电路、集电极电流、发射极电流之间存在的关系如下:ib+ic=ie;同时还使用在交流电中,例如在三相三
线制交流电中,若把三相负载看成是一个封闭面,那么也可以根据基尔霍夫第一定律得出:iu+iv+iw=0。
基尔霍夫第二定律:在任何时刻,沿着电路中的任一回路行经方向,那么电路中各段
电压的代数和恒等于零,即为σu=0。
在这段话中,标出各支路电流的参考方向并选择回路绕行方向;电阻元件的端电压,
当电流i的参考方向与回路绕行方向一致时,选“十”号,否则就选“一”号;电源端电
压参考方向与回路绕行方向一致时,选取“十”号,否则就选“-”。
基尔霍夫定律

基尔霍夫定律基尔霍夫定律指的是两条定律,第一条是电流定律,第二条是电压定律。
下面,我们分别讲。
基尔霍夫电流定律基尔霍夫电流定律,英文是Kirchhoff's Current Law,简写为KCL。
基尔霍夫电流定律指出:流入电路中某节点的电流之和等于流出电流之和(Total current entering a junction is equal to total current leaving it)。
用数学符号表达就是:基尔霍夫电流定律其中,Σ符号是求和符号,表示对一系列的数求和,就是把它们一个一个加起来。
举个例子,对于下面这个节点,有两个流入电流,三个流出电流对于上面节点,流入电流之和等于流出电流之和:为了方便记忆,我们将KCL总结为:基尔霍夫电流定律也被称为基尔霍夫第一定律(Kirchhoff's First Law)、节点法则(Kirchhoff's Junction Rule),点法则,因为它是研究电路中某个节点的电流的。
我们可以用张艺谋的电影一个都不能少来助记这条定律。
基尔霍夫电压定律基尔霍夫电压定律,英文是Kirchhoff's Voltage Law,简写为KVL。
基尔霍夫电压定律指出:闭合回路中电压升之和等于电压降之和(In any closed loop network,the total EMF is equal to the sum of Potential Difference drops.)。
如果我们规定电压升为正,电压降为负,基尔霍夫电压定律也可以表达为:闭合电路中电压的代数和为零(Algebraic sum of voltages around a loop equals to zero.)。
用数学符号表达就是:为了方便记忆,我们可以将KVL总结为:基尔霍夫电压定律也被称为基尔霍夫第二定律(Kirchhoff's First Law)、回路法则(Kirchhoff's Loop Rule),网格法则。
基尔霍夫定律讲解

第二讲基尔霍夫定律及支路电流法1.基尔霍夫电流定律2.基尔霍夫电压定律3.支路电流法一、基尔霍夫定律几个基本概念:结点:三个或三个以上电路元件的连接点。
回路:任意路径闭合的电路。
网孔:未被其他支路分割的单孔回路。
n个结点,独立结点数n-1个;b条支路,n个结点,独立回路数b-(n-1)个。
如图所示电路,该电路有几个节点?几条支路?几个回路?1、基尔霍夫电流定律(KCL )任一瞬间流入某个节点的电流之和等于流出该节点的电流之和。
其表示式为iI I=åå也可写成ii 0()0I II I -=+-=åååå0I =å也可表述成,任一瞬间流入某个结点的电流代数和为0。
若流入结点的电流为正,那么流出结点的电流就取负。
例如,图示复杂电路各支路电流关系可写成:123I I I +=或1230I I I +-=基尔霍夫定律不仅适用于电路中的任一结点,也可推广至任一封闭面。
结点a :结点b :ca a abI I I +=ab bc bI I I =+结点c :bc ca cI I I =+3个方程式相加,得a b cI I I =+流入此虚线所示封闭面的电流代数和恒等于零,即流进封闭面的电流等于流出封闭面的电流。
例1求下图所示电路中未知电流。
已知,,。
125mA I =316mA I =412mA I =解:该电路有4个结点、6条支路。
根据基尔霍夫电流定律结点a :132I I I =+21325169mAI I I =-=-=结点c :346I I I =+63416124mAI I I =-=-=结点d :451I I I +=514251213mAI I I =-=-=例2图1.21所示为一晶体管电路。
已知,,求。
B 40μA I =C 2mA I =E I解:晶体管VT 可假想为一闭合节点,则根据KCL 有E B C 0.04m A 2m A 2.04m AI I I =+=+=求图所示电路中的未知电流。
基尔霍夫定律的思考

基尔霍夫定律的思考
基尔霍夫定律是电学中的一个基本定理,可以用于解决电路中的电流和电压问题。
这个定律实际上包括两个定理,即基尔霍夫第一定理和基尔霍夫第二定理。
基尔霍夫第一定理指出,在任何一个电路中,所有流入某一节点的电流等于所有流出该节点的电流之和。
这个定理可以用于计算电路中的电流分布情况,例如在一个分流电路中,可以利用这个定理计算出各分支电路中的电流大小。
基尔霍夫第二定理则是指出,在任何一个闭合电路中,所有电动势之和等于所有电势降之和。
这个定理可以用于计算电路中的电压分布情况,例如在一个并联电路中,可以利用这个定理计算出各分支电路中的电势差大小。
基尔霍夫定律的思考不仅仅是要理解其原理和应用,更重要的是要意识到电路中的各个元件之间是相互关联的,它们的电流和电压是相互影响的。
因此,在解决电路问题时,需要综合考虑各个元件之间的关系,采用相应的方法和技巧,才能得到正确的结果。
另外,基尔霍夫定律虽然是电学中的基本定理之一,但它并不是万能的。
在一些特殊的电路中,例如非线性电路和交流电路等,可能需要采用其他方法和定理来解决问题。
因此,在学习电学知识时,需要不断拓展思维,加强实践,才能更好地理解和应用基尔霍夫定律。
- 1 -。
基尔霍夫定律通俗理解

基尔霍夫定律通俗理解
基尔霍夫定律,也叫做基尔霍夫电流定律和基尔霍夫电压定律,是电学中的两个基本定律,用于描述电路中的电流和电压分配。
基尔霍夫电流定律表示,在一个节点(连接两个或多个电路元件的交点)处,流入节点的电流等于流出节点的电流的总和。
简单来说,就是电流在一个节点处不会有损失,进去的电流等于出去的电流。
基尔霍夫电压定律表示,在一个闭合回路中,沿着回路的各个元件上的电压之和等于电源提供的电压之和。
这意味着电压在电路中会按照电阻、电源和其他元件的关系进行分配,总的电压和各个电压之间存在一定的关系。
通过基尔霍夫定律,我们可以推导出电路中的电流和电压分布情况,理解各个元件之间的相互作用。
它可以帮助我们解决电路中的各种问题,例如计算电阻和电源之间的电流关系、计算电路中某个元件上的电压、确定电路中的未知电流或电压等。
总的来说,基尔霍夫定律是电路分析中非常重要的基本原理,它们使我们能够理解电流和电压在电路中的分配情况,为电路设计、故障排除等提供了便利。
浅谈基尔霍夫定律

OCCUPATION662010 6基尔霍夫定律包括了基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律又称基尔霍夫电流定律,它表示任何瞬时流入电路任一节点的电流的代数和等于零。
基尔霍夫第二定律又称基尔霍夫电压定律,它表示任何瞬时,沿电路的任一回路,各支路电压的代数和等于零。
霍夫第一定律,即基尔霍夫电流定律(KCL),任一集总参数电路中的任一节点,在任一瞬间流出该节点的所有电流的代数和恒为零。
就参考方向而言,流出节点的电流在式中取正号,流入节点的电流取负号。
基尔霍夫电流定律是电荷守恒定律在电路中的体现。
基尔霍夫第二定律,即基尔霍夫电压定律(KVL)任一集总参数电路中的任一回路,在任一瞬间沿此回路的各段电压的代数和恒为零,即电压的参考方向与回路的绕行方向相同时,该电压在式中取正号,否则取负号。
基尔霍夫电压定律是能量守恒定律在电路中的体现。
一、基尔霍夫第一定律基尔霍夫第一定律,汇于节点的各支路电流的代数和等于零,用公式表示为:∑I =0,又被称作基尔霍夫电流定律(KCL)。
基尔霍夫第一定律的理论基础是稳恒电流下的电荷守恒定律。
应用时,若规定流出节点的电流为正,则流向节点的电流为负。
由此列出的方程叫做节点电流方程。
假设A节点连接着4条支路,那么就可以把这四条支路的电流设出来,I 1、I 2、I 3、I 4。
设流入为正,流出为负,那么总有:I 1+I 2+I 3+I 4=0。
对于一个有n 个节点的电路,可以列出n-1个独立的方程,组成基尔霍夫第一方程组。
基尔霍夫电流定律是电荷守恒法则运用于集总电路的结果。
电荷守恒的意思是:电荷既不能创生也不能消灭。
对于集总电路中的任一节点,在某一时刻,流进该节点的电流代数和为∑i (t ),即:d q/dt =Zi k (t )(其中q为节点处的电荷)。
节点只是理想导体的汇合点,不可能积累电荷,电荷既不能创生,也不能消灭,因而节点处的dq/dt必须为零,即得:∑i (t )=0(式中i (t )为流出或流人节点的第K条支路的电流,K 为节点处的支路数)。
基尔霍夫定律的意义

基尔霍夫定律的意义基尔霍夫定律是由德国物理学家基尔霍夫在19世纪提出的,它包括电流定律和电压定律两个方面。
电流定律指出,在电路中,流入某节点的电流等于流出该节点的电流之和;而电压定律则表明,在闭合回路中,各个电压源和电阻所产生的电势差之和等于零。
基尔霍夫定律的意义在于,它提供了一种系统化的方法来分析复杂的电路问题。
无论电路中有多少个分支和元件,只要我们掌握了基尔霍夫定律,就能够将电路简化为简单的等效电路,从而更容易找到解决问题的方法。
我们来看电流定律的应用。
电流定律告诉我们,电流在电路中的分布是有规律的,即流入节点的电流等于流出节点的电流之和。
根据这个定律,我们可以很方便地计算电路中各个分支中的电流。
例如,当我们需要计算某个电阻中的电流时,只需要将该节点流入的电流与流出的电流相加,就可以得到该电阻中的电流大小。
而电压定律则为我们提供了计算电路中各个分支中电压的方法。
根据电压定律,我们可以通过沿着闭合回路的方向进行电势差的相加来计算回路中的电压。
这对于分析电路中各个电压源和电阻之间的关系非常有帮助。
例如,当我们需要计算某个电阻两端的电压时,只需要沿着闭合回路的方向依次相加各个电压源产生的电势差,然后减去电阻两端的电势差,即可得到该电阻两端的电压大小。
基尔霍夫定律的应用不仅限于简单电路的分析,它同样适用于复杂电路的求解。
当电路变得复杂时,我们可以通过将电路划分为若干个简单的小回路来简化问题,然后运用基尔霍夫定律逐步解决。
这种步骤化的分析方法使得我们可以对电路进行逐步求解,从而更好地理解电路中各个元件之间的关系。
除了电路分析,基尔霍夫定律还在电路设计和故障排除中发挥着重要作用。
在电路设计中,我们可以根据基尔霍夫定律来选择电阻和电压源的数值,以满足设计要求。
而在故障排除中,我们可以利用基尔霍夫定律来定位电路中的故障点,从而更好地修复电路。
基尔霍夫定律在电路分析中具有重要的意义。
它为我们提供了一种系统化的方法来解决电路中的问题,无论是简单电路还是复杂电路,都可以通过应用基尔霍夫定律来进行分析和求解。
基尔霍夫电流定律(基尔霍夫第一定律)讲解

基尔霍夫电流定律(基尔霍夫第一定律)讲解
无论是我们电工的施工中还是在电机工程学中,分析与计算电路的基本定律除了大家在初中时就耳熟能详的欧姆定律外,还有就是由德国物理学家:古斯塔夫·基尔霍夫提出的被后人称作的基尔霍夫定律,其包括基尔霍夫电流定律和基尔霍夫电压定律,它们是分析和计算复杂电路的基本依据。
那么什么是基尔霍夫电流定律?
基尔霍夫电流定律
基尔霍夫电流定律又被称为基尔霍夫第一定律(简称KCL)。
它是应用于电路中的节点,所谓节点指的是电路中三个或两个以上的支路相连接的点。
基尔霍夫电流定律指出:对于电路中的任何一个节点而言,在任何一个时间,流进节点的电流等于流出节点的电流;也就是:节点电流之代数和恒等于0(恒的意思是指永远)。
用数学公式表示为:
上式表面:在电流的汇合点处,电流的代数和等于零,之所以等于零,是因为习惯上规定:流进节点的电流为正,流出节点的电流为负。
另外,基尔霍夫电流定律也被称为“节点电流定律”,因为他通常应用于节点处。
它可以推广到包围这几个节点的闭合面也是适用的。
下面笔者画一个图为大家简要讲解一下:
上图中的“节点”的三条线路应用基尔霍夫电流定律来说明,A 线路+B线路+C线路的电流恒等于0(永远等于0),图中+到﹣为电流流过的方向,也是电动势(电源)的正负极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈基尔霍夫定律
作者:夏继红
来源:《职业·中旬》2010年第06期
基尔霍夫定律包括了基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律又称基尔霍夫电流定律,它表示任何瞬时流入电路任一节点的电流的代数和等于零。
基尔霍夫第二定律
又称基尔霍夫电压定律,它表示任何瞬时,沿电路的任一回路,各支路电压的代数和等于零。
霍夫第一定律,即基尔霍夫电流定律(KCL),任一集总参数电路中的任一节点,在任一瞬间流出该节点的所有电流的代数和恒为零。
就参考方向而言,流出节点的电流在式中取正号,流入节点的电流取负号。
基尔霍夫电流定律是电荷守恒定律在电路中的体现。
基尔霍夫第二定律,即基尔霍夫电压定律(KVL)任一集总参数电路中的任一回路,在任一瞬间沿此回路的各段电压的代数和恒为零,即电压的参考方向与回路的绕行方向相同时,该电压在式中取正号,否则取负号。
基尔霍夫电压定律是能量守恒定律在电路中的体现。
一、基尔霍夫第一定律
基尔霍夫第一定律,汇于节点的各支路电流的代数和等于零,用公式表示为:∑I=0,又被称作基尔霍夫电流定律(KCL)。
基尔霍夫第一定律的理论基础是稳恒电流下的电荷守恒定律。
应用时,若规定流出节点的电流为正,则流向节点的电流为负。
由此列出的方程叫做节点电流方程。
假
设A节点连接着4条支路,那么就可以把这四条支路的电流设出来,I1、I2、I3、I4。
设流入为正,流出为负,那么总有:I1+I2+I3+I4=0。
对于一个有n个节点的电路,可以列出n-1个独立的方程,组成基尔霍夫第一方程组。
基尔霍夫电流定律是电荷守恒法则运用于集总电路的结果。
电荷守恒的意思是:电荷既不能创生也不能消灭。
对于集总电路中的任一节点,在某一时刻,流进该节点的电流代数和为∑i(t),即:dq/dt=Zi k(t)(其中q为节点处的电荷)。
节点只是理想导体的汇合点,不可能积累电荷,电荷既不能创生,也不能消灭,因而节点处的dq/dt必须为零,即得:∑i(t)=0(式中i(t)为流出或流人节点的第K条支路的电流,K为节点处的支路数)。
KCL定律指出,任一瞬间,流入一个电路节点的电流总和等于从该电路节点流出KCL的推广,KCL不仅对一个节点适用,它可推广到任意一部分电
路上。
假想将一部分电路用一闭合面围起来,由于流入每一元件的电流等于流出该元件的电流,因此,每一元件存贮的净电荷也为零,所以整个闭合面内存贮的总净电荷为零。
于是,得KCL的
另一种表述:流入或流出封闭面电流的代数和为零。
同时说明,不论电路中的元件如何,只要是集总电路,KCL就总是成立的,即KCL与电路元件的性质无关。
二、基尔霍夫第二定律
沿任意回路环绕一周回到出发点,电动势的代数和等于回路各支路电阻(包括电源的内阻在内)和支路电流的乘积(即电压的代数和),用公式表示为:∑E=∑RI,又被称作基尔霍夫电压定律(KVL)。
KVL定律指出,任一时刻,电路中任一回路内,各段电压的代数和等于零。
基尔霍夫第二定律的理论基础是稳恒电场条件下的电压环路定理,即:沿回路环绕一周回到出发点,电位降为零。
电流及电动势的符号规则是:人已选定一绕行方向,电流方向与绕行方向相同时电动势符号为正,反之为负。
由此列出的方程叫做回路电压方程。
例如,在一个简单的回路ABCD上,有一个电源E,内阻为r,分别有R1、R2、R3三个电阻。
选择绕行方向为顺时针,在这个简单的电路中只有一个回路,所以电流都是I。
那么有:rI+R1I+R2I+R3I=E。
其实,在更为一般的电路中,一个回路的各个边上的电流并不一定相等,但是仍然可以将各个边上的电流设出来(如果未知的话,可以计算出来的就不要设了,表示一下就可以),用同样的方法进行计算。
基尔霍夫电路定律的应用,当电路中各电动势及电阻给定时,可任意标定电流方向,根据基尔霍夫方程组,即可惟一地解出支路的电流值。
基尔霍夫定律是电路计算的理论基础,根据基尔霍夫定律可以导出其他一些有用的定理,如网孔电流定理、回路电流定理、节点电压定理等。
这些定理给电路计算带来了很大的方便,是电路分析和计算的有效工具。
基尔霍夫定律在稳恒条件下是严格成立的,在准稳恒条件下,即整个电路的尺度远远小于电路工作频率下的电磁波长时,基尔霍夫定律也符合得很好。
在交流电中,基尔霍夫定律和相量法、拉普拉斯变换(Laplace Transform)的结合使用,可以让交流电路如同稳恒电路一样大大简化,基尔霍夫电压定律是能量守恒法则运用于电路的结果。
能量守恒的意思是:若在某时间内的电路中某些元件得到的能量有所增加,则它的另一些元件的能量必须有所减少,一定保持能量的收支平衡。
这一情况对电压间的关系有很大的影响。
如知,沿这三个回路各支路的电压降的代数和为零。
同理,对任一集总电路,若元件有K个,得:对于任一集总电路中的任一回路,在任一时刻,沿着该回路的所有支路电压降的代数和为零,即:∑Uk=0,这就是KVL。
KCL是守恒律的体现,守恒量是电荷,电流是电荷的运动形成的,KCL正好体现了这一无法证明的守恒定律。
无论是抽象出来的电路节点甚至凭空想象的包围曲面,流入量等于流出量,这是一种平衡,而且是一种动态平衡(active balance),否则节点内或者曲面内有电荷源,而这是不可能的。
将电流看作矢量,将一个节点或者一个想象的曲面都看作是一个曲面S包围着节点(一个或者多个),这个是电流“矢量”关于这个曲面 S的通量,表示了穿入和穿出闭合曲面S 的代数和,如果为零,表示曲面内有通量源。
所以,基尔霍夫电流定律突出了一个连续性。
电流值之连续性,如同在小河中矗立一块巨石,石将水分为二股,而水过石后合二为一,水流和水量都不变,有着深刻的哲学思想。
除此之外,它也是集总元件的特性的体现。
KVL体现了以下特性;电压与路径无关;是集总元件的特性,两点无论从哪一条路径看进去或者从不同路径的计算,都是相同的电压量,也就是说两点之间的电压式单值量;对于一个回路,不妨将电压量也看作是矢量,为电压眼遮盖回路的环量,体现了旋度的含义,若旋度为0,为保守场,也就是体现了和路径无关的概念。
(作者单位:湖南化工职业技术学院、
湖南工业高级技工学校)。