利用导数研究函数单调性问题举隅

合集下载

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。

用导数解决含参数的函数的单调性

用导数解决含参数的函数的单调性

用导数解决含参数的函数的单调性单调性是数学中一个重要的概念,用于描述函数在特定区间内的增减性质。

在解决含参数的函数的单调性时,我们可以利用导数的概念和性质进行分析和推导。

本文将介绍如何使用导数解决含参数的函数的单调性,并给出相应的示例。

首先,我们来回顾一下导数的定义。

对于函数$f(x)$在点$x=a$处可导,其导数$f'(a)$表示函数曲线在该点处的斜率,可以通过以下公式计算:$$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$其中,$h$为一个无限趋近于0的值。

导数可以帮助我们研究函数的变化趋势、最值以及单调性等性质。

接下来,我们将探讨含参数的函数的单调性。

含参数的函数形式可以表示为$f(x;a)$,其中$a$为参数。

我们的目标是找到使函数单调的参数范围。

解决这个问题的关键是求导。

首先,我们需要计算函数的一阶导数$f'(x;a)$和二阶导数$f''(x;a)$。

一阶导数反映了函数的变化趋势,二阶导数揭示了函数的曲率性质。

接下来,我们需要找出函数的临界点和在其定义域内的驻点。

临界点是导数为0或不存在的点,驻点是导数在该点处为0的点。

当我们求出一阶导数$f'(x;a)$后,我们可以通过求解方程$f'(x;a)=0$来计算临界点和驻点。

这些点将给出函数的极值或拐点。

通过对导数方程进行求解,我们可以找到参数$a$满足$f'(x;a)=0$,从而得到临界点和驻点。

接下来,我们需要进行符号分析,确定函数的区间性质。

具体来说,当一阶导数$f'(x;a)$在一些区间内大于0时,函数$f(x;a)$是递增的;当一阶导数在一些区间内小于0时,函数是递减的;当一阶导数的正负性在一些点发生改变时,该点可能是函数的拐点。

当我们确定函数的单调性时,还应该考虑到函数的定义域。

特别是当参数$a$对函数的定义域有影响时,我们需要对不同的参数范围进行分析,以确定函数的单调性。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

利用导函数解决函数单调性问题

利用导函数解决函数单调性问题

利用导函数解决函数单调性问题函数在数学中是一个非常重要的概念,在数学中广泛应用。

在学习函数的过程中,其中一个特性就是函数的单调性。

函数的单调性是指函数在定义域上的变化趋势。

利用函数的导数可以帮助我们解决函数的单调性问题,本文将从导数的概念入手,依次介绍如何通过导数判断函数的单调性。

一、导数的概念首先,我们需要了解导数的概念。

在数学中,导数是函数在某一点的变化率。

可以理解为函数图像在某一点的切线斜率。

常见的记作方式为f'(x),表示函数f(x)在x处的导数。

二、导数与函数单调性的关系导数与函数的单调性之间有着密不可分的联系。

一般来说,在函数的单调性问题中,我们需要判断函数的导数是否大于等于0或小于等于0,从而来判断函数的单调性。

1.导数大于0的函数如果一个函数在其定义域内的任意一点处的导数大于0,则说明该函数在该点左侧是单调递增的,在该点右侧是单调递减的。

换言之,如果一个函数在每个点的导数都大于0,则该函数是单调递增的。

2.导数小于0的函数如果一个函数在其定义域内的任意一点处的导数小于0,则说明该函数在该点左侧是单调递减的,在该点右侧是单调递增的。

换言之,如果一个函数在每个点的导数都小于0,则该函数是单调递减的。

3.导数等于0的函数如果一个函数在其定义域内的任意一点处的导数等于0,则需要进一步分析该点的特性。

如果该点左侧的导数小于0,右侧的导数大于0,则该函数在该点达到局部最小值;反之,如果该点左侧的导数大于0,右侧的导数小于0,则该函数在该点达到局部最大值。

如果该点左右两侧的导数符号相同,则该点为函数的拐点。

三、使用导数解决函数单调性问题的例题下面我们通过一个例题来演示如何利用导数解决函数单调性问题。

例题:已知函数f(x) = 2x^3 - 12x + 5,求函数f(x)的单调区间。

解题思路:1.首先求函数f(x)的一阶导数:f '(x) = 6x^2 - 12 。

2.分析一阶导数的符号:当6x^2 - 12 > 0时,即x^2 > 2,x > sqrt(2)或x < -sqrt(2)时,f(x)单调递增。

高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析

高一数学利用导数研究函数的单调性试题答案及解析1.若函数在区间内是增函数,则实数的取值范围是()A.B.C.D.【答案】B【解析】∵f(x)=x3+ax-2,∴f′(x)=3x2+a,∵函数f(x)=x3+ax-2在区间[1,+∞)内是增函数,∴f′(1)=3+a≥0,∴a≥-3.故选B..【考点】利用导数研究函数的单调性..2.函数y=f(x)在定义域(-,3)内的图像如图所示.记y=f(x)的导函数为y=f¢(x),则不等式f¢(x)≤0的解集为()A.[-,1]∪[2,3)B.[-1,]∪[,]C.[-,]∪[1,2)D.(-,-]∪[,]∪[,3)【答案】A【解析】由图象可知,即求函数的单调减区间,从而有解集为[−,1]∪[2,3),故选A..【考点】利用导数研究函数的单调性..3.若曲线f(x)=ax3+ln x存在垂直于y轴的切线,则实数a的取值范围是__________.【答案】a<0【解析】∵f′(x)=3ax2+(x>0)∵曲线f(x)=ax3+lnx存在垂直于y轴的切线,∴f′(x)=3ax2+=0有正解即a=有正解,∵<0∴a<0,故答案为(-∞,0).【考点】利用导函数研究曲线上的切线.4.设,.(1)令,讨论在内的单调性并求极值;(2)求证:当时,恒有.【答案】(1) 在内是减函数,在内是增函数, 在处取得极小值;(2)详见解析.【解析】(1)先根据求导法求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间及极值即可.(2)欲证x>ln2x-2a ln x+1,即证x-1-ln2x+2alnx>0,也就是要证f(x)>f(1),根据第一问的单调性即可证得.试题解析:解(1)解:根据求导法则有,故, 3分于是,列表如下:2递减极小值递增故知在内是减函数,在内是增函数,所以,在处取得极小值. 6(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调增加.所以当时,,即.故当时,恒有. .12【考点】1.利用导数研究函数的单调性;2.函数恒成立问题;3.利用导数研究函数的极值.5.函数的单调增区间是.【答案】【解析】求函数的单调区间,必须先求函数的定义域,,此函数可以看作是增函数和二次函数复合而成,利用复合函数的单调性,知所求增区间为.【考点】复合函数的单调性.6.设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。

利用导数研究函数的单调性的题型分析

利用导数研究函数的单调性的题型分析

利用导数研究函数的单调性题型分析题型一:利用导数求函数的单调区间 例:求下列函数的单调区间. (1)y = 2x 3— 3x 解:⑴由题意得y '=6x 2— 3. (2)f (x ) = 3x 2 - 2ln x . 2 或 x > 2 , 当x € (— 8,— )时,函数为增函数,当 x € ,+8 )时,函数也为增函数. 2 2 令 y '=6x 2— 3 >0 ,解得 x v — 令 y '=6x 2— 3 v 0 , 解得二v x v2当x € (— -, 2)时,函数为减函数. 2 2 故函数的递増区间为(一8,--^)和(-^ ,+8 ),递减区间为(一-^,-^).⑵函数的定义域为(0,+8 ), 2 3x 2— 1 f '(x ) = 6x —-= 2 • x3x 2 — 1 “ 3• ------ >0.且 x >0,可解得 x >—; x 3 3x 2— 1 - 3 • v 0,由 x > 0 得,0 v x v , x 3 •••f(x )的增区间为(十,+8 ),减区间为(0, 十). 3 3 令 f '(x ) > 0,即令 f '(x )v 0,即规律总结: 1•在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义 域内讨论,定义域为实数集 R 可以省略不写. 2 .当求得的单调区间不止一个时, 单调区间要用“,”或“和”字等隔开,不要用符号“U 连接,如(1)题中的增区间. 变式训练:求下列函数的单调区间: (1)求函数f (x ) = 2x 3— 9x 2 + 12x — 3的单调区间; ⑵求函数y = x 3 — 2x 2 + x 的单调区间. 【解】(1)此函数的定义域为 R, f '(x ) = 6x 2— 18x + 12 = 6(x — 1)(x — 2). 令 6(x — 1)(x — 2) v 0,解得 1 v x v 2 , 所以函数f (x )的单调递减区间是(1,2).1或x v 一.3因此y= x3—2x2+ x的单调递增区间为1 (1, ), (—m,?)•令 6(x— 1)(x — 2) >0,解得x>2 或x v 1 ,所以函数f(x)的单调递增区间是(2 ,+^ ),(—汽1). ⑵此函数的定义域为R.y '=3x2— 4x+ 1,令 3x2— 4x + 1 >0 ,解得x >11再令 3x2— 4x + 1 v 0,解得一v x v 1.31因此y= x3— 2x2+ x的单调递减区间为(才,1).bx例:讨论函数f(x)= 2 ---- (— 1 v x v 1 , b丸)的单调性.x2— 1【思路探究】(1)函数的定义域是怎样的?函数是奇函数还是偶函数?(2)若先讨论x € (0,1) 上的单调性,能否判断f '(X)在(0,1)上的正负?b的取值对其有影响吗?解:因f(x)的定义域为(一1,1);函数f(x)是奇函数,.••只需讨论函数在 (0,1)上的单调性.“ b(x21)•f (x)= 2 2~(x 1)t」2 2 2(x21)当 0 v x v 1 时,x2+ 1 > 0, (x2— 1)2> 0,••• T 20(x 1)•••当b > 0 时,f'(x) v 0. •••函数f(x)在 (0,1)上是减函数;当b v 0时,f'(x)>0 ,•函数f(x)在(0,1)上是增函数;又函数f(x)是奇函数,而奇函数的图象关于原点对称,从而可知: 当b > 0时,f(x)在(—1,1)上是减函数;当b v 0时,f(x)在(—1,1)上是增函数.规律方法:1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式f '(x)>0(f'(x)v 0)在给定区间上恒成立.一般步骤为:①求导数f(X);②判断f'(x)的符号;③给出单调性结论.2 .导数的正负决定了函数的增减,当导函数中含有参数时,应注意对参数进行分类讨论.变式训练:b求函数y = x+一(b工0)的单调区间.xb b x2—b【解】函数y = x +一(b工0)的定义域为{x|x^0}, y' = — _= 厂x x2 x2①当b v 0时,在函数定义域内y ' >恒成立,所以函数的单调递增区间为(一3 0)和(0, );②当b > 0时,令y,解得x>r b或x v—- b,所以函数的单调递增区间为(一® —-,:b) 和(” ,:b ,+^ );令y 'V,解得—” b v x v ; b且x丸, 所以函数的单调递减区间为(一, 0)和(0 , 'b).题型二:利用函数单调性求参数1 1例: (2013 •郑州模拟函数f(x)= ax+ x ln x,且图象在点(一,f(-))处的切线斜率为1(e为自e ef (x) x然对数的底数).(1)求实数a的值;(2)设g(x) ,研究函数g(x)的单调性x 11解:(1)f(x) = ax+ x ln x, f'x(= a + 1 + In x,依题意f'(-) = a= 1,所以a = 1. ef (x) x x ln x x— 1 — In x⑵因为g(x) =莒,所以g 'X-;—1 设 0(x)= x — 1 — In x,贝U『x( = 1 —一.x1当x>1时,『x(= 1 —_>0 , 0(x)是增函数,x对?x>1 , 0(x)> 0(1) = 0,即当x>1 时,g '刈>0 ,故g(x)在(1 ,+^ )上为增函数;1当0< x<1时,『刈=1—一<0 , 0(x)是减函数,x对?x€ (0,1) , 0(x)> 0(1) = 0,即当 0<x<1 时,g 'x(>0 ,故g(x)在(0,1)上为增函数.方法规律:1 •导数法求函数单调区间的一般步骤(1)确定函数f(x)的定义域;(2)求导数f 'x(; (3)在函数f(x)的定义域内解不等式f 'x(>0和f '刈<0 ; (4)根据⑶的结果确定函数f(x)的单调区间.2 .导数法证明函数f(x)在(a, b)内的单调性的步骤:(1)求f' x( ; (2)确认f'x)在(a, b)内的符号;(3)作出结论:f 'x(>0时为增函数;f'刈<0时为减函数.3 .导数法求参数的取值范围:已知函数的单调性,求参数的取值范围,应用条件f'x) > 0(或f '刈< 0) x€ (a, b),转化为不等式恒成立求解.训练:解:函数 f (x)的定义域为(0, ), f '(x) 2x -(2x) 1 (2x 1)(2x 1) 2x 2x 2x由f'(x) 0 得x1,由 f'(x),要使函数在定义域内的一个子区间k 1,k 1内不是单调函数,则有0 k 1k 1,解得1 k -,即k的取值范围2 3是[叱).22.(2013 数且a丰f(x)= (x + a)2—7b ln x + 1,其中a, b 是常)上单调递增,求a的取值范围;1.若函数f x x Inx 1在其定义域内的一个子区间k 1,k 1内不是单调函数,2则实数k的取值范围__________________ .•湖北省八校高三第二次联考)已知函数0.(1) bir 1 时,f(x)在区间(1 ,+^4⑵当b = -a2时,讨论f(x)的单调性.7【解】 (1)b三 1 ,「.f(x) = (x + a)2— 7ln x + 1 ,.f(x) = 2x + 2a—x7•••当x>1时,f(x)是增函数,••• f 'x( = 2x + 2a —一》0在x>1时恒成立.x7即a>——x在x>1时恒成立.2x7 7 5 5•.•当x>1 时,y = —x 是减函数,.••当x>1 时,y = —x< — ,「.a h.2x 2x 2 25故a的取值范围是[2宀).4(2) b' = ;a2,.・.f(x)= (x + a)2— 4a2ln x+ 1, x € (0 ,+^ ).2x2+ 2ax— 4a2 2 (x—a)( x+ 2a)•f(x)= = .x x当a>0时,f'刈>0,得x> a或x< — 2a,故f(x)的减区间为(0, a),增区间为(a,+^ );当a<0时,f' x)>0,得x> — 2a或x< a,故f(x)的减区间为(0,— 2a),增区间为(一2a,a3.设函数f(x) = ax—一一 2ln x.x(1) 若f'(2) = 0,求f(x)的单调区间;(2) 若f(x)在定义域上是增函数,求实数a的取值范围.a 2解:⑴W)的定义域为(0,+^),律)=o,且f'(x)= a+X2-;,a 4•••a+4 -仁0=5.3分4 4 2 2f心5+门—厂尹—5x+2),1由f'(x) > 0 结合x > 0 ,得 0 v x v 或x > 2 ,1 1•••f(x)的递增区间为(0, 2]和[2宀),递减区间为(2,2).6分⑵若f(x)在定义域上是增函数,则f '(x)>0对x>0恒成立,8分a 2 ax2— 2x+ a•f(x) = a + 二— = 2 ,•需x>0 时ax2— 2x+ a» 恒成立 10 分x2 xx22x化为a对x>0恒成立,x2+ 12x 2••• 一 = <1,当且仅当x = 1时取等号.x2+1 1x + 一x•••a>1,即a€ [1 ,+s).12 分3x4•已知函数f(x)= — 2x2+ In x,其中a为常数.(1)若a = 1,求函数f(x)的单调区间;a若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.解:(1)若a= 1 时,f(x) = 3x — 2x2+ In x,定义域为(0,+^ ),1 — 4x2+ 3x + 1f' x( = 一一 4x + 3 =x x (4x 1)(x 1)x(x>0).当f 'x(>0 , x € (0,1)时,函数f(x) = 3x — 2x2+ In x 单调递增.当f '刈<0 , x € (1 ,+s )时,函数(x) = 3x —2x2+ In x 单调递减.故函数f(x)的单调递增区间为(0,1),单调递减区间为(1 ,+^ ).3 1(2)f 'x( = -— 4x +一,若函数f(x)在区间[1,2]上为单调函数,即在[1,2]上,a x3 1 3 1f '刈= —4x + 一>0 或f' x) = —4x + 一< 0 ,a x a x即一一4x+—》0或一一4x+—W0在[1,2]上恒成立.即一》4x— -或—W4x.axax a x a x1 3 3令h(x)= 4x-一,因为函数h(x)在[1,2]上单调递增,所以一》h(2)或w h(1),x a a3 15 3 2即—》—或一w 3,解得a<0或0< aw—或a > 1.a 2 a 5题型三:利用导数解决不等式例:定义在R上的函数f(x)的导函数为f'(x),已知f(x 1)是偶函数且(x 1)f '(x) 0.若为x2,且为x2 2,则f (x1)与f(x2)的大小关系是A. f(xj f(X2)B.f(xJ f(X2)C. f(G f(X2)D.不确定解析:由(x 1)f '(x) 0可知,当x 1时,f '(x) 0函数递减.当x 1时,f '(x) 0函数递增•因为函数f(x 1)是偶函数,所以f (x 1) f (1 x), f (x) f (2 x),即函数的对称轴为x 1.所以若1 X1 x2 ,则f(X1) f(X2)•若X1 1 ,则必有X2 2,则X2 2 X1 1,此时由f(X2)f(2 X1),即f(X2)f (2 为)f(xj,综上f(x) f (X2),选 C.变式训练:1.函数f (x)在定义域R内可导,若f(1 x) f (1 x),且当x ( ,1)时,1(x 1) f (x) 0,设a f(0) , b f(—), c f (3),则(D)2A. a b cB. b c aC. c b aD. cab2•已知函数f(x)对定义域R内的任意x都有f (x) = f (4 x),且当x 2时其导函数f (X)满足xf (x) 2f (X),若2 a 4则a aA. f(2 ) f(3) f (log 2 a)B. f(3) f (log 2 a) f (2 )C. f (log 2a) f (3) f(2a)D. f (log2a) f(2a) f(3)解:由f (x) = f (4 x),可知函数关于x 2对称.由xf (x) 2 f (x),得(x 2) f (x) 0, 所以当x 2时,f(x) 0 ,函数递增,所以当x 2时,函数递减.当A、 f (0)<f (0.6)<f (-0.5)B、f (0)<f (-0.5)<f(0.6)C、f (0.6)<f (-0.5)<f(0)D、f(-0.5)vf (0)<f (0.6)解:因为函数f(x)=x2 cosx为偶函数,所以f( 0.5) f(0.5),f' (x)=2x sinx ‘丄或0 x -,即不等式的2 2 2 a 4,1 log2 a 2,222a24,即4 2a16.所以f (log2 a) f(4 log2a),所以2 4 log2a3 ,即24 log2 a 3 2a,所以f(4 log2a) f(3) f(2a),即f (log 2 a) f (3) f(2a),选 C.3.已知函数f(x)=x2-cosx,贝U f (0.6),f (0),f (-0.5)的大小关系是0 x时,f' (x)=2 x sin x 0 ,所以函数在0 x~递增,所以有f(0)vf (0.5)<f(0.6),即f (0)<f( 0.5)<f(0.6),选B4 . [2013 •太原模]已知函数f(x + 1)是偶函数,且x>1时,f'M)<0恒成立, 又f(4) = 0 ,则(x +3)f(x+ 4)<0 的解集为()A. ( — s,—2) U (4 ,+s B) (—6, -3) U (04)C. (—s,—6) U (4 ,+s D). ( — 6 , —3) (0 ,+s)解:函数f(x +1)是偶函数,其图象关于y轴对称,这个函数图象向右平移1个单位得函数y = f(x)的图象,可得函数y = f(x)的图象关于直线x = 1对称,x>1时,f'x()v0恒成立,说明函数在(1 ,+s )上单调递减,根据对称性可得函数在(—s, 1)上单调递增•根据f(4) = 0 可得当x>4时,f(x)<0,根据对称性可得当x< — 2时,f(x)<0,当一2<x<1或1< x<4时,x+ 3>0 , x + 3<0 , x + 3>0 ,f(x)>0.不等式(x+ 3)f(x + 4)<0等价于或当时,f (x + 4) <0 f (x+ 4) >0. f ( x+ 4) <0x> — 3, x+ 3<0 , x v — 3,解得x>0 ;当时,x+ 4>4 或x + 4< — 2 , f (x + 4) >0 — 2< x + 4<1 或 1< x + 4<4 ,解得—6<x< — 3.故不等式(x + 3) f(x+ 4)<0 的解集为(—6 , — 3) U (0 ,+s ).15.设f (x)是定义在 R上的奇函数,当x 0时,f '(x) 0 ,且f ( ?) 0 ,则不等式f (x) 0的解集为_____ .解:因为函数f (x)为奇函数。

高三数学利用导数研究函数的单调性试题答案及解析

高三数学利用导数研究函数的单调性试题答案及解析

高三数学利用导数研究函数的单调性试题答案及解析1.我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.【答案】(0,e)【解析】由题意知y′=x (-ln x+·)=x·(1-ln x),x>0,>0,x>0,令y′>0,则1-ln x>0,所以0<x<e.2.已知函数f(x)=(ax+1)e x.(1)求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.【答案】(1)见解析(2)当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.【解析】解:依题意,函数的定义域为R,f′(x)=(ax+1)′e x+(ax+1)(e x)′=e x(ax+a+1).(1)①当a=0时,f′(x)=e x>0,则f(x)的单调递增区间为(-∞,+∞);②当a>0时,由f′(x)>0,解得x>-,由f′(x)<0,解得x<-,则f(x)的单调递增区间为(-,+∞),f(x)的单调递减区间为(-∞,-);③当a<0时,由f′(x)>0,解得x<-,由f′(x)<0解得,x>-,则f(x)的单调递增区间为(-∞,-),f(x)的单调递减区间为(-,+∞).(2)①当时,)上是减函数,在(-,0)上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-)=-a·;②当时,即当0<a≤1时,f(x)在[-2,0]上是增函数,则函数f(x)在区间[-2,0]上的最小值为f(-2)=.综上,当a>1时,f(x)在区间[-2,0]上的最小值为-a·;当0<a≤1时,f(x)在区间[-2,0]上的最小值为.3.函数f(x)=x(x-m)2在x=1处取得极小值,则m=________.【答案】1【解析】f′(1)=0可得m=1或m=3.当m=3时,f′(x)=3(x-1)(x-3),1<x<3,f′(x)<0;x<1或x>3,f′(x)>0,此时x=1处取得极大值,不合题意,所以m=1.4.设,曲线在点处的切线与直线垂直.(1)求的值;(2)若对于任意的,恒成立,求的范围;(3)求证:【解析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为lnx≤m(x−),设g(x)=lnx−m(x−),即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,m=时,lnx<(x−)成立.不妨令x=,k∈N*,得出[ln(2k+1)−ln(2k−1)]<,k∈N*,再分别令k=1,2,,n.得到n个不等式,最后累加可得.(1) 2分由题设,∴,. 4分(2),,,即设,即.6分①若,,这与题设矛盾. 7分②若方程的判别式当,即时,.在上单调递减,,即不等式成立. 8分当时,方程,设两根为,当,单调递增,,与题设矛盾.综上所述, . 10分(3) 由(2)知,当时, 时,成立.不妨令所以,11分12分累加可得∴∴ ---------------14分【考点】1.利用导数研究曲线上某点切线方程;2.导数在最大值、最小值问题中的应用.5.已知函数.(1)当时,证明:当时,;(2)当时,证明:.【答案】(1)证明过程详见解析;(2)证明过程详见解析.【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将当时,转化为,对函数求导,利用单调递增,单调递减,来判断函数的单调性来决定函数最值,并求出最值为0,即得证;第二问,先将转化为且,利用导数分别判断函数的单调性求出函数最值,分别证明即可.(1)时,,令,,∴在上为增函数 3分,∴当时,,得证. 6分(2)令,,时,,时,即在上为减函数,在上为增函数 9分∴①令,,∴时,,时,即在上为减函数,在上为增函数∴②∴由①②得. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的最值.6.已知函数.(1)当a=l时,求的单调区间;(2)若函数在上是减函数,求实数a的取值范围;(3)令,是否存在实数a,当(e是自然对数的底数)时,函数g(x)最小值是3,若存在,求出a的值;若不存在,说明理由.【答案】(1)单调递减区间为,单调递增区间为;(2);(3)存在实数.【解析】(1)把代入函数解析式得,且定义域为,利用导数法可求出函数的单调区间,由,分别解不等式,,注意函数定义域,从而可求出函数的单调区间;(2)此问题利用导数法来解决,若函数在上是减函数,则其导函数在上恒成立,又因为,所以函数,必有,从而解得实数的取值范围;(3)利用导数求极值的方法来解决此问题,由题意得,则,令,解得,通过对是否在区间上进行分类讨论,可求得当时,有,满足条件,从而可求出实数的值.(1)当时,. 2分因为函数的定义域为,所以当时,,当时,.所以函数的单调递减区间为,单调递增区间为. 4分(2)在上恒成立.令,有, 6分得,. 8分(3)假设存在实数,使有最小值3,. 9分当时,在上单调递减,,(舍去); 10分②当时,在上单调递减,在上单调递增.,解得,满足条件; 12分③当时,在上单调递减,,(舍去). 13分综上,存在实数,使得当时,有最小值3. 14分【考点】1.导数性质;2.不等式求解;3.分类讨论.7.设函数f(x)=x-2msin x+(2m-1)sin xcos x(m为实数)在(0,π)上为增函数,则m的取值范围为()A.[0,]B.(0,)C.(0,]D.[0,)【答案】A【解析】∵f(x)在区间(0,π)上是增函数,∴f′(x)=1-2mcos x+2(m-)cos 2x=2[(2m-1)cos2x-mcos x+1-m]=2(cos x-1)[(2m-1)cos x+(m-1)]>0在(0,π)上恒成立,令cos x=t,则-1<t<1,即不等式(t-1)[(2m-1)t+(m-1)]>0在(-1,1)上恒成立,①若m>,则t<在(-1,1)上恒成立,则只需≥1,即<m≤,②当m=时,则0·t+-1<0,在(-1,1)上显然成立;③若m<,则t>在(-1,1)上恒成立,则只需≤-1,即0≤m<.综上所述,所求实数m的取值范围是[0,].8.已知e为自然对数的底数,设函数f(x)=xe x,则()A.1是f(x)的极小值点B.﹣1是f(x)的极小值点C.1是f(x)的极大值点D.﹣1是f(x)的极大值点【答案】B【解析】f(x)=xe x⇒f′(x)=e x(x+1),令f′(x)>0⇒x>﹣1,∴函数f(x)的单调递增区间是[﹣1,+∞);令f′(x)<0⇒x<﹣1,∴函数f(x)的单调递减区间是(﹣∞,﹣1),故﹣1是f(x)的极小值点.故选:B.9.若函数f(x)=x3-ax2+(a-1)x+1在区间(1,4)上是减函数,在区间(6,+∞)上是增函数,则实数a的取值范围是________.【答案】[5,7]【解析】f′(x)=x2-ax+(a-1),由题意,f′(x)≤0在(1,4)恒成立且f′(x)≥0在(6,+∞)恒成立,即a≥x+1在(1,4)上恒成立且a≤x+1在(6,+∞)上恒成立,所以5≤a≤7.10.已知函数f(x)=x2-mlnx+(m-1)x,当m≤0时,试讨论函数f(x)的单调性;【答案】当-1<m≤0时单调递增区间是和(1,+∞),单调递减区间是;当m≤-1时,单调递增区间是和,单调递减区间是【解析】函数的定义域为,f′(x)=x-+(m-1)=.①当-1<m≤0时,令f′(x)>0,得0<x<-m或x>1,令f′(x)<0,得-m<x<1,∴函数f(x)的单调递增区间是和(1,+∞),单调递减区间是;②当m≤-1时,同理可得,函数f(x)的单调递增区间是和,单调递减区间是.11.若函数f(x)=x2+ax+在上是增函数,则a的取值范围是________.【答案】a≥3【解析】f′(x)=2x+a-≥0在上恒成立,即a≥-2x在上恒成立.令g(x)=-2x,求导可得g(x)在上的最大值为3,所以a≥3.12.函数y=(3-x2)e x的单调递增区间是()A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)【答案】D【解析】y'=-2xe x+(3-x2)e x=e x(-x2-2x+3)>0x2+2x-3<0-3<x<1,∴函数y=(3-x2)e x的单调递增区间是(-3,1).13.若函数f(x)=x3-x2+ax+4恰在[-1,4]上单调递减,则实数a的值为________.【答案】-4【解析】∵f(x)=x3-x2+ax+4,∴f′(x)=x2-3x+a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a=-1×4=-4.14.函数f(x)=x2-ln x的单调递减区间为 ().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)【答案】B【解析】由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数的单调递减区间为(0,1].15.已知函数,(1)求函数的单调区间;(2)若方程有且只有一个解,求实数m的取值范围;(3)当且,时,若有,求证:.【答案】(1)的递增区间为,递减区间为和;(2);(3)详见解析.【解析】(1)对求导可得,令,或,由导数与单调性的关系可知,所以递增区间为,递减区间为;(2)若方程有解有解,则原问题转化为求f(x)的值域,而m只要在f(x)的值域内即可,由(1)知,,方程有且只有一个根,又的值域为,;(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即,同理,又,,且在上单调递减,,即.试题解析:(1),令,即,解得,令,即,解得,或,的递增区间为,递减区间为和. 4分(2)由(1)知,, 6分方程有且只有一个根,又的值域为,由图象知8分(3)由(1)和(2)及当,时,有,不妨设,则有,,又,即, 11分,又,,且在上单调递减,,即. 13分【考点】1.导数在函数单调性上的应用;2. 导数与函数最值.16.某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。

利用导数研究函数的单调性-高中数学知识点讲解

利用导数研究函数的单调性-高中数学知识点讲解

利用导数研究函数的单调性1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0 在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0 的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0 在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0 的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0 的根;(4)用f′(x)=0 的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例 1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4 的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,1/ 3∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0 得x>﹣1,即f(x)>2x+4 的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例 2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为 45°,对于任意的t∈[1,2],函数푔(푥)=푥3+푥2[푓′(푥) +푚2]在区间(t,3)上总不是单调函数,求m 的取值范围;푙푛2(Ⅲ)求证:2×푙푛33×푙푛44×⋯×푙푛푛1푛(푛≥2,푛∈푁∗).<푛解:(Ⅰ)푓′(푥) =푎(1―푥)푥(푥>0)(2 分)当a>0 时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0 时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0 时,f(x)不是单调函数(4 分)(Ⅱ)푓′(2) =―푎2=1得a=﹣2,f(x)=﹣2lnx+2x﹣3 푚∴푔(푥)=푥3+(2―2푥,2+2)푥∴g'(x)=3x2+(m+4)x﹣2(6 分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣22/ 3∴{푔′(푡3))<0>0(8 分)由题意知:对于任意的 t ∈[1,2],g ′(t )<0 恒成立,푔′(1)<0所以有:{푔′(2)<0,∴― 푔′(3)>0 37 3 <푚< ― 9(10 分)(Ⅲ)令 a =﹣1 此时 f (x )=﹣lnx +x ﹣3,所以 f (1)=﹣2,由(Ⅰ)知 f (x )=﹣lnx +x ﹣3 在(1,+∞)上单调递增,∴当 x ∈(1,+∞)时 f (x )>f (1),即﹣lnx +x ﹣1>0,∴lnx <x ﹣1 对一切 x ∈(1,+∞)成立,(12 分)∵n ≥2,n ∈N *,则有 0<lnn <n ﹣1,푙푛푛 푛 ― 1∴0<<푛 푛푙푛2∴ 2 ⋅ 푙푛33 ⋅ 푙푛44 ⋅⋅ 푙푛푛 1 2 ⋅ < 푛2 3 ⋅ 3 4 ⋅⋅ 푛 ― 1 푛 = 1 푛(푛 ≥ 2,푛 ∈ 푁 ∗) 【解题方法点拨】若在某区间上有有限个点使 f ′(x )=0,在其余的点恒有 f ′(x )>0,则 f (x )仍为增函数(减函数的情形完 全类似).即在区间内 f ′(x )>0 是 f (x )在此区间上为增函数的充分条件,而不是必要条件.3/ 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学科教学
( 2 ) 若 , ( ) 在 I , 争] 上 单 调 递 减 , 则 / ( ) G o , 即 当
丁 1

单调问题 , 技高一筹 。
通过 以上例题 的解答与评析 可以看出 , 导数为研究 函数 的性 质特 别是函数 的单调性提供 了强 有力 的工具 , 利用导数研究 函数
当O < x < l 时f ( ) < 0

) 的单 调增 区间是 ( 1 , + ) , 单调减区间是 ( 0 , 1 )
若a > O , 由, , ( ) : o得 3 X 2 - a = O
= 上不具备单 调性 , 若利用单调性 的定义
例 5 ・ 设 ) = 上 在 [ } , 争 ] 上 是 单 调 函 数 , 求 实 数 。 的
取值 范围。
解 ( ) = — - a _ x_ + 4 x - _ a
( 1 )
) = ・ = s i n x + C O = 、 / s i n ( + 孚)

) ‘ + , ∈( 0 , + ) 的单调区间
解 ( ) : 2 x 一 2:
令 厂( ) = 0 , 得x = l
・ .
求 a的取值范 围。
解 , ( ) : 3 一 Ⅱ 若n ≤0 , 则- 厂 ( ) >0恒成 立 , I
x > 0 . 当x > l 时f ( ) > 0 ,

I n x -

4 - 1
> 0 , ( > 1 )
即l n x >
十1
, ( > 1 )
构造一个 函数 f ( x ) , 通过研究 ) 的单 调性确定该 函数在给
定 区间内的最值 , 即可得到不等式 ) ≥m( 或 ) ≤m) 从而证 明 不等式 。 例4 . 已知 函数 - 3 g 3 - 0  ̄ 若 ) 在[ 1 , + 。 。 ) 上 是单调 函数 ,
来解 , 需 找出恰 当的临界点 ( = 1 ) , 但 找这个临界点 大部 分学生还 是感到 比较 困难 , 如果利用导数 , 则迎刃而解 。
、 / 手
例 2 ・ g g  ̄R a [ ( 2 c 。 s 争, t a n ( 争 + 孚) ] , K 1 w i - s i n ( 争 + } ) , t a n ( 争 一 手) ] , 令 ) : ・ , 求 函 数 ) 的 最 值 , 最 小 正 周 期 , 并
写出/ ( ) 在[ O , 竹 ] 上的单调区间。
解: 由题 可 知
由 ) 在 [ 1 , + o 。 ] 上 是 单 调 函 数 , 得  ̄ / 争≤ 1 , 解 得。 ≤ 3
综上所述 , a的取值范围是( 一 o 。 , 3 )
本题利用导数与 函数 的单调性关系逆向求参数 , 解法巧妙。
学科教学
新课程学 习 N E W C O U R S E S ’ S T U D Y
利用导数研究函数单调性问题举 隅
谢 四喜 ( 甘肃武山县第四中学)

要: 数学是 高中阶段学科教学的一门基础科 学。通过高 中数学必修 I 的学 习, 学生 已经知道 了增 函数 、 减函数和单调 函数的意
义, 并且会 用增 函数 、 减 函数 的定义判断或证明函数在 给定 区间的单调性。随着学 习的深入, 在选修系列 1 - 1和选修系列 2 - 2中 , 通过 导数 的学习, 学生就会发现 , 用 导数判断或证 明函数在给定 区间的单调性要简捷很 多。 关键词 : 高中数 学; 导数; 函数单调 性 与 函数单调性相关 的问题包括解 或证不等式 ,求 函数 最值 , 比较大小 , 解方程等 , 这些都是近年来高考的热 点问题 。 函数的单调性 与其导数 的关系为 : 如果 函数 y - f ( ) 在某个 区间内可导 , 那么若 f ( ) > 0 , 则 ) 为增 函数 ; 若f ( ) < 0 , 则 ) 为减 函数 ; 若, ( ) = 0 , 则 ) 为 常



T - 2 c r
) m 旺 = 、 /
) 一 、 /
由, ( ) = c o 一 s i n x , 令f ( ) = 0 , 得 = ’ h - ( ∈[ O , 1 t ] ) 当 ∈[ 0 , , f] 时 ( ) > 0 , 则 ) 为增 函数 ;


( 1 ) 若, ( ) 在 1, ] 上单调递增 , 则, ( ) ≥0 , 即当 e
} ] 时 , 。 ≤ 4 x恒 成 立 。
+ 1 ( +1 )
当 ∈ [ 孚, 叮 r ] 时 ( ) < o , 则 ) 为减函数;
此题若 利用单调性 的定义求解 , 运 算量大 , 学 生 同样 感到 困 难。若 利用导数求解 , 则不费 吹灰之力 。 例3 . 证 明不等式 l n x >



㈤= } 一
) 在( 1 , + ) 上是增 函数 。
当x > l时 ( ) > O
又 . 1 ) = 0 , 有 ) 1 ) = 0
. .
数 。反之 , 若 ) 在某 个区 间内可导 , 那么若 ) 在此 区间是增 ( 减) 函数 , 一定有f ( ) ≥( ≤0 ) 。 下面通过典型例题谈谈导数在研究 函数单调性时的应用 。 例1 . 求 函数
十 l
令g ( ) = 粤 , 则 g ( ) =
> o
故 g ( ) 在 【 } , 争 】 上 单 调 递 增 。 所 以 , 。 ≤ g ( ) ( } ) = 6
, ( > 1 )
5 O 盔圈
新课 程 学 习 N E W C O U R S E S ’ S T U D Y
相关文档
最新文档