31.整式的乘除单元测验

合集下载

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。

北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案

北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案

第一章《整式的乘除》单元测试卷(最新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)0等于()A.1B.0C.-2D.122.(跨学科融合)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.000 05米.其中,0.000 05用科学记数法表示为()A.5×10-5B.5×10-4C.0.5×10-4D.50×10-33.下列各式计算正确的是()A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2bD.2ab·ab=2ab24.若24×22=2m,则m的值为()A.8B.6C.5D.25.计算(8a2b3-2a3b2+ab)÷ab的结果是()A.8ab2-2a2b+1B.8ab2-2a2bC.8a2b2-2a2b+1D.8a2b-2a2b+16.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-67.若(a+2b)2=(a-2b)2+A,则A等于()A.-8abB.8abC.8b2D.4ab8.下面四个整式中,不能表示图中阴影部分面积的是()A.(m+5)(m+3)-3mB.m(m+5)+15C.m2+5(m+3)D.m2+8m第8题图第10题图9.已知M=79a-1,N=a2-119a(a≠1),则M,N的大小关系为()A.M=NB.M<NC.M>ND.不能确定10.(创新题)如图,两个正方形的边长分别为a,b,若a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共5小题,每小题3分,共15分)11.比较大小:2-2π0.(选填“>”“<”或“=”)12.计算:2a2(3a2-5b)=.13.若x2-(m+1)x+1是完全平方式,则m的值为.14.若a+3b-2=0,则3a·27b=.15.(数学文化)我国宋朝数学家杨辉在其著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律:杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.例如:(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,中间项系数2等于上方数字1加1,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,中间项系数3等于上方数字1加2,系数分别为1,3,3,1,系数和为8;……则(a+b)4的展开式中系数和为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:2-1+(π-3.14)0+(-2)-(-1)2 023.。

(完整版)整式的乘除(单元测试卷及答案)

(完整版)整式的乘除(单元测试卷及答案)

整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. B. C. D. 954a a a =+33333a a a a =⋅⋅954632a a a =⨯()743aa=- ( ) =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2 A. B. 1 C. 0 D. 19971- 3.设,则A=( )()()A b a b a +-=+223535 A. 30 B. 60 C. 15 D. 12ab ab ab ab 4.已知则( ) ,3,5=-=+xy y x =+22y x A. 25. B C 19 D 、25-19- 5.已知则( ),5,3==bax x =-ba x 23 A 、B 、C 、D 、522527109536. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 810.已知(m 为任意实数),则P 、Q 的大小关系为( )m m Q m P 158,11572-=-=A 、B 、C 、D 、不能确定Q P >Q P =Q P <二、填空题(共6小题,每小题4分,共24分)11.设是一个完全平方式,则=_______。

第一章 整式的乘除 单元测试

第一章 整式的乘除 单元测试

第一章整式的乘除单元测试(基础过关)一、单选题1.下列计算正确的是()A.2a+3b=5ab B.x8÷x2=x6C.(ab3)2=ab6D.(x+2)2=x2+4【答案】B【分析】由相关运算法则计算判断即可.【解析】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.2.下列计算正确的是( )A.(﹣p2q)3=﹣p5q3B.12a2b3c÷6ab2=2abC.(x2﹣4x)÷x=x﹣4D.(a+3b)2=a2+9b2【答案】C根据积的乘方运算,整式除法运算以及完全平方公式分别求解验证即可.【解析】解:A、原式=﹣p6q3,原计算错误,不符合题意;B、原式=2abc,原计算错误,不符合题意;C、原式=x﹣4,原计算正确,符合题意;D、原式=a2+6ab+9b2,原计算错误,不符合题意;故选:C.【点睛】本题考查积的乘方运算,整式的除法运算以及完全平方公式,熟记和熟练运用基本公式和法则是解题关键.3.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为( )A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米【答案】B【分析】直接利用整式的除法运算法则计算得出答案.【解析】解:∵长方形空地的面积为(3ab+b)平方米,宽为b米,∴这块空地的长为:(3ab+b)÷b=(3a+1)米.【点睛】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.4.计算2202120192023-´的结果为()A .4B .3C .2D .1【答案】A【分析】根据2019=2021-2,2023=2021+2可把原式变形,然后根据平方差公式进行计算即可.【解析】解:2202120192023-´=()()220212*********-´+-=22202120214-+=4;故选A .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab =4a 2b +2ab 3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )A .(2a +b 2)B .(a +2b )C .(3ab +2b 2)D .(2ab +b 2)【答案】A【分析】根据多项式除单项式的运算法则计算即可.【解析】∵(4a 2b +2ab 3)÷2ab =2a +b 2,∴被墨汁遮住的一项是2a +b 2.故选:A .【点睛】本题考查了多项式除以单项式,一般地,多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.6.已知2m +3n =4,则48m n ´的值为()A .8B .12C .16D .20【答案】C【分析】根据()()2323234822222m n m n m n m n +´=´=´=进行求解即可.【解析】解:∵234m n +=,∴()()23232344822222216m n m n m n m n +´=´=´===,故选C .【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,熟知相关计算法则是解题的关键.7.若2223a b -=,12a b +=,则-a b 的值为( )A .12-B .43C .32D .2【答案】B【分析】根据平方差公式计算即可得到答案【解析】解:∵()()22a b a b a b +-=-,∴()1223a b ´-=,∴()43a b -=.故选B .【点睛】此题考查平方差公式,熟记公式并熟练应用是解题的关键.8.如图所示,有三种卡片,其中边长为a 的正方形卡片有1张,长为a 、宽为b 的矩形卡片有4张,边长为b 的正方形卡片有4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为( )A .2+a bB .22a b +C .2a b +D .a b+【答案】A 【分析】可根据拼前与拼后面积不变,求出正方形的边长.【解析】解:设拼成后大正方形的边长为x,则a2+4ab+4b2=x2,则(a+2b)2=x2,∴x=a+2b,故选A.【点睛】本题考查了完全平方公式的几何背景以及整式的混合运算,解题的关键是依据面积相等列方程.9.从边长为a的正方形中剪掉一个边长为b的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是( )A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.b(a-b)=ab-b2D.a2-b2=(a+b)(a-b)【答案】D【分析】观察图1与图2,根据两图形阴影部分面积相等,即可写出一个正确的等式.【解析】解:根据图形得:图1中阴影部分面积=a2-b2,图2中阴影部分面积=(a+b)(a-b),∴a2-b2=(a+b)(a-b),故选D.【点睛】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.10.我国宋代数学家杨辉发现了()nn=,1,2,3,…)展开式系数的规律:a b+(0以上系数三角表称为“杨辉三角”,根据上述规律,()8+展开式的系数和是()a bA.64B.128C.256D.612【答案】C【分析】由“杨辉三角”的规律可知,(a+b)8所有项的系数和为28,即可得出答案.【解析】解:由“杨辉三角”的规律可知,()0+展开式中所有项的系数和为1,a b()1+展开式中所有项的系数和为2,a b()2+展开式中所有项的系数和为4,a b()3a b +展开式中所有项的系数和为8,……()n a b +展开式中所有项的系数和为2n ,()8a b +展开式中所有项的系数和为82256=.故选:C .【点睛】本题考查了“杨辉三角”展开式中所有项的系数和的求法,解题关键是通过观察得出系数和的规律.二、填空题11.计算22-的结果是______.【答案】14【分析】根据负整数指数幂的运算法则计算即可.【解析】解:2211224-==,故答案为:14.【点睛】本题考查了负整数指数幂,熟知运算法则是解题的关键.12.计算:(xy )2=_____.(﹣m 2)3=_____.2a •(﹣3b )=_____.(a 6﹣2a 3)÷a 3=_____.【答案】x2y2﹣m6-6ab a3﹣2a3【分析】根据单项式的乘法,积的乘方、幂的乘方的性质,多项式除以单项式分别计算求解即可.【解析】解:(xy)2=x2y2;(﹣m2)3=﹣m6;2a•(﹣3b)=-6ab;(a6﹣2a3)÷a3=a6÷a3﹣2a3÷a3= a3﹣2.故答案为:x2y2;﹣m6;-6ab;a3﹣2.【点睛】本题考查了单项式的乘法,积的乘方、幂的乘方,多项式除以单项式,熟练掌握运算法则和性质是解题的关键.13.用科学记数法表示0.00000012为________.【答案】71.210-´【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解析】解:0.00000012=1.2×10-7.故答案为:1.2×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.若式子x2+16x+k是一个完全平方式,则k=______.【答案】64【分析】根据完全平方公式解答即可.【解析】解:∵(x+8)2=x2+16x+64=x2+16x+k,∴k=64.故填64.【点睛】本题主要考查了完全平方公式,掌握完全平方公式的结构特点成为解答本题的关键.15.(8x2+4x)(-8x2+4x)=_______.【答案】16x2 - 64x4x4+16x2【分析】利用平方差公式进行计算.【解析】解:原式=(4x)2-(8x2)2=16x2 - 64x4,故答案为:16x2 - 64x4.【点睛】本题考查平方差公式,掌握平方差公式(a +b )(a -b )=a 2-b 2的结构是解题关键.16.(23)(23)a b c a b c -++-=______.【答案】2224129a b bc c -+-【分析】根据整式的乘法运算法则,平方差公式以及完全平方公式计算求解即可.【解析】解:(23)(23)a b c a b c -++-,[(23)][(23)]a b c a b c =--+-,22(23)a b c =--,()2224129a b bc c =--+,2224129a b bc c =-+-.故答案为:2224129a b bc c -+-.【点睛】此题考查了整式的乘法运算和平方差公式,解题的关键是熟练掌握整式的乘法运算法则,平方差公式和完全平方公式.17.若x m -与23x +的乘积中不含一次项,则m 的值为____________.【答案】32【分析】先计算()()()2232323x m x x m x m -+=+--,再由乘积中不含x 的一次项,可得320m -=从而可得答案.【解析】解:∵()()()222322332323x m x x mx x m x m x m -+=-+-=+--且2x m +与2x +的乘积中不含x 的一次项,∴320m -= ∴32m = 故答案为:32.【点睛】本题考查的是多项式的乘法运算,多项式中不含某项,掌握以上知识是解题的关键.18.对a ,b ,c ,d 定义一种新运算:a c ad bcb d =-,如232413514=´-´=,计算2x y x x y=+_________.【答案】22x xy+【分析】根据新定义规则把行列式化为常规乘法,利用多项式乘法法则展开,合并同类项即可.【解析】解:()2222222xy x x y xy x xy xy x xy x x y=+-=+-=++.故答案为:22x xy +.【点睛】本题考查新定义,整式的乘法混合运算,掌握新定义规则,整式的乘法混合运算法则是解题关键.19.1921年伟大的中国共产党成立,2021年中国共产党迎来了百年华诞,若()()19212021520a a ++=,则()()2219212021a a +++的值为 _____.【答案】11040【分析】利用完全平方公式列出关系式,把各自的值代入计算即可求出所求.【解析】解:∵()()19212021520a a ++=,()()2021192120211921100a a a a +-+=+--=,∴()()()()()()2222021192119212021219212021a a a a a a +-++++++éëû=-ù,∴()()2210000192120211040a a +-=++,则()()221921202111040a a =+++.故答案为:11040.【点睛】本题考查完全平方公式的变形运用,理解并熟练运用完全平方公式,运用整体思想是解题关键.20.已知23,32a b ==,则1111a b +=++_______.【答案】1.【分析】利用幂的乘方与同底数幂相乘,得到2a +1=2a ×2=6,3b +1=3b ×3=6,进而得到111111116666a b a b +++++×==,求出答案即可.【解析】解:∵2a +1=2a ×2=3×2=6,3b +1=3b ×3=2×3=6,∴11111(2)62a a a +++==,11111(3)63b b b +++==,∴11111111666236a b a b +++++×==´=,∴11111a b +=++.故答案为:1.【点睛】本题考查幂的乘方与同底数幂相乘,掌握幂的乘方与同底数幂相乘的运算法则是解题关键.三、解答题21.计算:(1)()()22012011 3.142p -æö-+---ç÷èø(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸(3)()()222226633m n m n m m --¸-【答案】(1)4;(2)7312x y -;(3)2221-++n n 【分析】(1)利用-1的偶次幂的法则、负指数幂法则、零指数幂法则即可得到答案;(2)根据乘方法则再利用单项式乘除单项式法则即可得到答案;(3)根据多项式除以单项式法则计算即可得到答案;【解析】解:(1)()()22012011 3.142p -æö-+---ç÷èø1414=+-=;(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸629324(2)(8)2x y xy x y x =×-+-¸7373(8)(4)x y x y -+-=7312x y =-;(3)()()222226633m n m n m m --¸-=()()222221(3)3n n m m -++-¸-2221n n =-++;【点睛】本题考查了整式的混合运算,知识点有:-1的偶次幂的法则、负指数幂法则、零指数幂法则、单项式乘除单项式、多项式除以单项式,熟练掌握公式及法则是做题的关键.22.先化简,再求值.()()()()25222232m n n m n m n n n m éùæö--+++-¸ç÷êúèøëû,其中2m =,1n =-.【答案】−2n−m ;0【分析】先根据整式的混合运算的法则化简,再把2m =,1n =-代入即可【解析】解:()()()()25222232m n n m n m n n m m éùæö--+++-¸ç÷êúèøëû()22222442543m mn n mn n n m m éù=-+--+-¸ëû()26332mn m m n méù=--¸=--ëû当2m =,1n =-时,原式=2-2=0【点睛】本题考查了整式的化简求值,熟练掌握相关的法则是解题的关键23.①先化简,再求值:(4x +3)(x -2)-2(x -1)(2x -3),x =-2;②若(x 2+px +q )(x 2-3x +2)的结果中不含x 3和x 2项,求p 和q 的值.【答案】①512x -,22-;②p =3,q =7.【分析】①先去括号再合并同类项,将x=-2代入化简后的结果计算;②先按照多项式乘以多项式将括号打开,再根据不含项的系数为0得到方程,解方程即可得到答案.【解析】①(4x +3)(x -2)-2(x -1)(2x -3),=2248362(2323)x x x x x x -+----+ ,=224564106x x x x ---+-,=512x -∵x =-2,∴原式=-10-12=-22;②(x 2+px +q )(x 2-3x +2),=432322323232x x x px px px qx qx q -++-++-+,=432(3)(23)(2)2x p x p q x p q x q +-+-++-+,∵结果中不含x 3和x 2项,∴30-=p ,230p q -+=,∴p=3,∴q=7.【点睛】此题考查整式的混合运算,整式的不含某项的化简求值,将整式正确化简计算是解题的关键.24.若m n a a =(0a >且1a ¹,m 、n 是正整数),则m n =.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若228x ´=,求x 的值;(2)若()2893x =,求x 的值.【答案】(1)2;(2)2【分析】(1)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案;(2)根据a m =a n (a >0且a≠1,m 、n 是正整数),则m=n ,对方程变形可得答案.【解析】解:(1)原方程等价于2x+1=23,∴x+1=3,解得x=2;(2)原方程等价于34x =38,∴4x=8,解得x=2.【点睛】此题考查了同底数幂乘法与幂的乘方,利用相关运算法则化成底数相同的幂是解题关键.25.如图1,在一个边长为a 的正方形木板上锯掉一个边长为b 的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积图1得: ; 图2得 ;(2)由图1与图2 面积关系,可以得到一个等式: ;(3)利用(2)中的等式,已知2216a b -=,且a+b=8,则a-b= .【答案】(1)22a b -,()()a b a b +-;(2)()()22a b a b a b -=+-;(3)2.【分析】(1)图1用大正方形的面积减去小正方形的面积表示阴影部分的面积;图2根据梯形的面积公式表示阴影部分的面积;(2)根据阴影部分的面积相等,可直接得出等式;(3)利用(2)中的等式,代入数据求解即可【解析】解:(1)图1得:22a b -;图2得:()()()()222b a a b a b a b +×-=+-;故答案为:22a b -,()()a b a b +-;(2)由图1与图2阴影部分的面积相等可得:()()22a b a b a b -=+-;故答案为:()()22a b a b a b -=+-;(3)∵2216a b -=,8a b +=,()()22a b a b a b -=+-,∴()168a b =-,∴2a b -=,故答案为:2.【点睛】本题考查了平方差公式的几何意义,正确的表示出阴影部分的面积是解题关键.26.如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分如图剪开,拼成图②的长方形(1)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示)(2)请应用这个公式完成下列各题①计算:(2)a b c +- (2)a b c -+②计算:222222221009998974321-+-+¼¼+-+-【答案】(1)22()()a b a b a b -=-+;(2)①22242a b bc c -+-;②5050.【分析】(1)分别由图①、②求出阴影部分的面积,即可得出结论;(2)①利用添括号法则将b-c 看成一个整体,然后利用平方差公式和完全平方公式计算即可;②利用平方差公式计算即可.【解析】解:(1)由图①可知:阴影部分的面积为22a b -;由图②可知:阴影部分的面积为()()a b a b -+∴22()()a b a b a b -=-+故答案为:22()()a b a b a b -=-+;(2)①(2)(2)a b c a b c +--+22(2)()a b c =--22242a b bc c =-+-;②原式(10099)(10099)(9897)(9897)(21)(21)=+-++-+¼¼++-1009998974321=++++¼¼++++5050=.【点睛】此题考查的是平方差公式的几何意义和平方差公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.27.如图,将边长为x 的正方形分割成两个正方形和两个长方形.两个正方形的面积分别为y 和25,仔细观察图形.(1)用x 的代数式表示y(2)若(1)得到的算式中,x 、y 表示任何非负数,求满足下列条件的x 、y 的值:①用x 、y 、5、6组成4个连续的整数;②当x 为何值时,y 有最小值?【答案】(1)()()255y x x =-³;(2)①3x =,4y =或7x =,4y =.②当5x =时,y 最小值是0【分析】(1)根据图形中的面积关系,即可得到答案;(2)①对“6”分3类讨论:“当6为最大的数”或“当6为较大的数”或“当6为较小的数”分别求出满足条件的x ,y 的值,即可.②根据()250y x =-³,即可求出y 的最小值和对应的x 的值.【解析】(1)()()255y x x =-³(2)①当6为最大的数时,3x =,4y =,符合21025y x x =-+;当6为较大的数时,7x =,4y =,21025y x x =-+;当6为较小的数时,8x =,7y =,不符合21025y x x =-+;3x \=,4y =或7x =,4y =.②()2210255y x x x =-+=-Q ,\当5x =时,y 最小值是0.【点睛】本题主要考查根据图形列等式,用代数式表示图形各个相关的量,是解题的关键.28.探索题:()()2111x x x -+=-;()()23111x x x x -++=-;()()324111x x x x x -+++=-;()()4325111x x x x x x -++++=-…根据前面的规律,回答下列问题:(1)()()4123211n n x x x x x x x ---+++++++=L ______.(2)当3x =时,()()20192018201732313333331-+++++++=L ______.(3)求:202020192018322222221+++++++L 的值(请写出解题过程).【答案】(1)11x x +-;(2)202031-;(3)见解析,202121-.【分析】(1)根据所给的四个等式归纳规律解答即可;(2)把x=3,n=20119代入(1)中的等式求值即可;(3)根据(1)中得到的规律,在所求的代数式前添加(2-1),然后再计算即可.【解析】解:(1)由所给的四个等式,可归纳出:()()12321111n n n n x x x x x x x x --+-+++++++=-L ;故答案为:11x x +-;(2)当3x =时,()()20152018201732202031333333131-+++++++=-L ;故答案为:202031-;(3)当2x =时,()()20202019201832202121222222121-+++++++=-L ,∴202020192018322021222222121+++++++=-L .【点睛】本题考查了平方差公式,乘方的末位数字的规律,根据所给等式归纳出规律是解答本题的关键.29.(探究)如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图① 图② ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母a 、b 表示);(应用)请应用这个公式完成下列各题:①已知2m ﹣n =3,2m +n =4,则4m 2﹣n 2的值为 ;②计算:(x ﹣3)(x +3)(x 2+9).(拓展)计算()()()()()248322121212121+++++L 的结果为 .【答案】探究:(1)22a b -,()()a b a b +-;(2)22()()a b a b a b +-=-;应用:①12;②481x -;拓展:6421-.【分析】探究:(1)图①阴影部分的面积等于两个正方形的面积差,图②阴影部分的面积等于一个大长方形的面积;(2)根据图①与图②的面积相等即可得;应用:①根据上述得到的乘法公式(平方差公式)即可得;②利用两次平方差公式即可得;拓展:将原式改写成()()()()()()24832212121221211+++-++L ,再多次利用平方差公式即可得.【解析】探究:(1)图①阴影部分的面积为两个正方形的面积差,即22a b -,图②的阴影部分为长为()a b +,宽为()-a b 的矩形,则其面积为()()a b a b +-,故答案为:22a b -,()()a b a b +-;(2)由图①与图②的面积相等可得到乘法公式:22()()a b a b a b +-=-,故答案为:22()()a b a b a b +-=-;应用:①22()(422342)1m n m n m n -+=´=-=,故答案为:12;②原式22(9)(9)x x =-+,222()9x =-,481x =-;拓展:原式()()()()()()24832212121212211+++=-++L ,()()()()()2248322121212121++=-++L ,()()()()4348221212121=++-+L ,()()()8328212121=-++L ,()()32322121=-+,6421=-.【点睛】本题考查了平方差公式与几何图形、以及应用,熟练掌握平方差公式是解题关键.。

整式的乘除测试题(3套)及答案

整式的乘除测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322ba 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

整式的乘除单元测试(一)(北师版)(含答案) (1)

整式的乘除单元测试(一)(北师版)(含答案) (1)

学生做题前请先回答以下问题问题1:同底数幂相乘,_________,_________.即_____________.同底数幂相除,_________,_________.即_____________.问题2:幂的乘方,___________,___________.即_____________.积的乘方等于___________.即_____________.规定:_______(___________).______(_________________________).问题3:根据幂的定义:,推导下列公式:①;②;③;④.问题4:单项式×单项式:_____乘以_____,______乘以_____.单项式÷单项式:_____除以_____,_____除以_____.问题5:单项式×多项式:根据________________,转化为_________.多项式×多项式:根据________________,转化为_________.问题6:多项式÷单项式:借用____________,转化为_________.整式的乘除单元测试(一)(北师版)一、单选题(共12道,每道8分)1.下列计算正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:幂的乘方2.计算的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:同底数幂的乘法3.若,,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:幂的运算4.已知,则的值为( )A.-1B.2C.0D.1答案:D解题思路:试题难度:三颗星知识点:幂的乘方5.若,,则P,Q的大小关系为( )A. B.&#61472;&#61472;C. D.无法判断答案:B解题思路:试题难度:三颗星知识点:幂的比较大小6.计算的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:幂的运算7.计算的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:单项式乘多项式8.计算的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:零次幂9.计算的结果为( )A.2B.C. D.答案:C解题思路:试题难度:三颗星知识点:零次幂10.计算的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:整式混合运算11.计算的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:整式的混合运算12.如果的展开式中不含的二次项,那么的值为( )A.0B.C.2D.答案:B解题思路:试题难度:三颗星知识点:整式的乘法。

整式的乘除(单元测试卷及答案)

整式的乘除(单元测试卷及答案)

整式的乘除单元测试卷 【1 】一.选择题(共10小题,每小题3分,共30分) 1.下列运算准确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D.19-,5,3==b a x x 则=-b a x 23( )A.2527 B.109 C.53D.52 6. .如图,甲.乙.丙.丁四位同窗给出了四 种暗示该长方形面积的多项式: ①(2a +b )(m +n );②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b );④2am +2an +bm +bn , 你以为个中准确的有A.①② B.③④ C.①②③D.①②③④()7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A. –3B.3C.0D.18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( ) A.84 B.78 C.12 D.69.盘算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的成果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8m m Q m P 158,11572-=-=(m 为随意率性实数),则P .Q 的大小关系为( ) A.Q P > B.Q P = C.Q P < D.不克不及肯定二.填空题(共6小题,每小题4分,共24分)12142++mx x 是一个完整平方法,则m =_______.51=+x x ,那么221xx +=_______. nm a b a()()()()41812523=-+--+x x x x 的解是_______.14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______.a=5,2b =10,2c =50,那么a .b .c 之间知足的等量关系是___________.622=-n m ,且3=-n m ,则=+n m .三.解答题(共8题,共66分) 17盘算:(本题9分) (1)()()02201214.3211π--⎪⎭⎫ ⎝⎛-+--(2)()()()()233232222x y x xy y x ÷-+-⋅(3)()()222223366m m n m n m -÷--18.(本题9分)(1)先化简,再求值:()()()()221112++++-+--a b a b a b a ,个中21=a ,2-=b .19.(本题8分)如图所示,长方形ABCD 是“阳光小区”内一块旷地,已知AB=2a,BC=3b,且E 为AB 边的中点,CF=BC,现打算在暗影部分栽种一片草坪,求这片草坪的面积.20.(本题8分)若(x 2+mx-8) (x 2-3x+n)的睁开式中不含x 2和x 3项,求m 和n 的值21.(本题8分)若a =2005,b =2006,c =2007,求ac bc ab c b a ---++222的值.22.(本题8分).解释代数式[]y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关.23.(本题8分)如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形 地块,•筹划部分筹划将暗影部分进行绿化,中央将建筑一座雕像,则绿化的面 积是若干平方米?•并求出当a=3,b=2时的绿化面积.D24.(本题8分)某城市为了勉励居平易近勤俭用水,对自来水用户按如下尺度收费:若每月每户用水不超出a 吨,每吨m 元;若超出a 吨,则超出的部分以每吨2m 元盘算.•现有一居平易近本月用水x 吨,则应交水脚若干元?参考答案一.选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CBBCADACDC11. 44± 12. 23 13. 1411-=x 14. -3 15. a+b=c 16. 2 三.解答题17盘算:(本题9分)4141)1(=-+=解原式3522642)2(4)2(y x x xy y x -=÷-⋅=解原式 122)3(2++-=n n 解原式13841,2,21244)1()1(44)1.(182222222=++=-==+-=++++-+-=原式时当解原式b a b ab a a b a b ab a(2)由31=-x 得13+=x化简原式=444122+--++x x x=122+-x xE BADCF =1)13(2)13(2++-+ =12321323+--++ =3(3)原式=a a 62+, 当12-=a 时,原式=324-.abb a ab ab S 2221621619=⨯-⨯-=阴影解⎩⎨⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17308303,8)24()83()3(8248332032234223234n m m n m x x n x mn x m n x m x nx x mnx mx mx nx x x 项和不含解原式[]()3411212007,2006,2005,)()()(212122=++====-+-+-=原式时当解原式c b a c a c b b a无关代数式的值与解原式y x y y x y y y x y xy x ∴=+-=+-÷+-+-=)2()2(222222mamx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;,24时如果元应交水费时解如果63,2,335)()3)(2(.2322===+=+-++=原式时当解绿化b a aba b a b a b a S。

七年级下册《第1章 整式的乘除》单元卷2023

七年级下册《第1章 整式的乘除》单元卷2023

七年级下册第1章《整式的乘除》单元复习题(A 卷)一、选择题(每小题3分,共30分) 1.下列各式中,正确的是( )A .a 5÷a 5=0B .(2a )-1=12aC .(x 3)4÷(-x 2)3=-x 2D .(x 2-y 2)2=x 4-y 42.计算(−513)2008×(−235)2007所得结果为( )A .1B .-1C .−58D .20083.计算(x -y )3•(y -x )=( )A .(x -y )4B .(y -x )4C .-(x -y )4D .(x +y )4 4.下列算式能用平方差公式计算的是( )A .(2a +b )(2b -a )B .(12x +1)(− 12x −1) C .(3x -y )(-3x +y ) D .(-m -n )(-m +n )5.若4a 2-2ka +9是一个完全平方式,则k =( )A .12B .±12C .6D .±6 6.若(-2x +a )(x -1)中不含x 的一次项,则( ) A .a =1 B .a =-1 C .a =-2D .a =27.已知x a =3,x b =5,则x 2a -b =( )A .35B .65C .95D .18.(-x -y )2等于( )A .-x 2-2xy +y 2B .x 2-2xy +y 2C .x 2+2xy +y 2D .x 2-2xy -y 29.下列计算:①(2x +y )2=4x 2+y 2;②(3b -a )2=9b 2-a 2;③(-3b -a )(a -3b )=a 2-9b 2;④(-x -y )2=x 2-2xy +y 2;⑤(x -12)2=x 2-x +14.错误的有( )A .1个B .2个C .3个D .4个 10.下列计算:①x 5+x 5=x 10;②(3pq )2=6p 2q 2;③(2a -b )2=4a 2-b 2;④y 7y =y 8;⑤b 6÷b 3=b 2;⑥-(p 2q )2=-p 4q 2;正确正确的是( ) A .①② B .②③⑤ C .③④ D .④⑥ 二、填空题:(每小题3分,共30分)11.(1)计算:(-x )3•x 2=________; (2)计算:(-3a 3)2÷a 2=________.12.将0.00204用科学记数法表示为________. 13.若3x -2y -3=0,则8x ÷4y =________.14.①(4×109)÷(-2×103)=________. ②8(a −b )6÷43(a −b )4=________.15.若4x 2+kx +25=(2x -5)2,那么k =________. 16.若x -y =2,xy =48,则x 2+y 2=______.17.(________)2=4a 2-12ab +_____; 18.若10m =5,10n =3,则102m +3n=________. 19.若(x +5)(x -4)=ax 2-bx -c ,则a =________、b =________、c =________. 20.如图是一个简单的运算程序,当输入的m 值为-1时,输的结果:________.三、计算:(共25分)21.(19)−1+(−2)3+|−3|−(1−π)0+(-0.1)-1.22.简便方法运算(1)20142-2013×2015. (2)(2a +b )·(2a -b )(3)(a +2b +3c )(a +2b -3c ) (4)(3x +2)(3x -2)-5x (x -1)-(2x -1)2.四、先化简,再求值:23.(1)(x +2y )2-(x +y )(x -y ),其中x =-2,y =12(2)[(xy +2)(xy -2)-2(x 2y 2-2)]÷(xy ),其中x =10,y =-12524.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和宽(x >y ),则下列关系式中不正确的是( ) A .x +y =12 B .x -y =2 C .xy =35 D .x 2+y 2=14425.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a +b ),宽为(a +b )的长方形,则需要A 类卡片________张,B 类卡片________张,C 类卡片________张.26.计算:3(22+1)(24+1)(28+1)…(232+1)+127.看图解答(1)通过观察比较左、右两图的阴影部分面积,可以得到乘法公式为________________. (2)运用你所得到的公式,计算下题:①10.3×9.7 ②(2m +n -p )(2m -n +p )七年级下册第1章《整式的乘除》单元复习题(B 卷)一、选择题:1.下列运算正确的是( )A .a 4+a 5=a 9B .a 3•a 3•a 3=3a 3C .2a 4•3a 5=6a 9D .(-a 3)4=a 7 2.(-513)1997×(-235)1997=( )A .-1B .1C .0D .1007 3.用科学记数法表示0.0000907,得( ) A .9.07×10-4 B .9.07×10-5 C .9.07×10-6 D .9.07×10-7 4.若xy =12,(x -3y )2=25,则(x +3y )2的值为( ) A .196B .169C .156D .144 5.下列各式可以写成完全平方式的多项式有( )A .x 2+xy +y 2B .x 2-xy +14y 2C .x 2+2xy +4y 2D .14x 4−x +16.已知x a =3,x b =5,则x 3a -2b 等于( )A .1725B .910C .35D .17.已知a =255,b =344,c =433,则a 、b 、c 的大小关系是( ) A .b >c >a B .a >b >c C .c >a >bD .a <b <c 8.(a -b +c )(-a +b -c )等于( )A .-(a -b +c )2B .c 2-(a -b )2C .(a -b )2-c 2D .c 2-a +b 2 9.若4a 2-2ka +9是一个完全平方的展开形式,则k 的值为( ) A .6 B .±6 C .12D .±1210.若一个正方形的边长增加2cm ,则面积相应增加了32cm 2,那么这个正方形的边长为( ) A .6 cm B .5 cm C .8 cm D .7 cm 11.如果a ,b ,c 满足a 2+2b 2+2c 2-2ab -2bc -6c +9=0,则abc 等于( ) A .9 B .27 C .54 D .81二、填空题:13.(-ab 2)5•(-ab 2)2=________;,(-x -y )(x -y )=________;(-3x 2+2y 2)(________)=9x 4-4y 4. 14.若(x -2)(x 2+ax +b )的积中不含x 的二次项和一次项,则a +b =________.15.李明爬山时,第一阶段的平均速度是v ,所用时间为t 1;第二阶段的平均速度为23v ,所用时间是t 2;下山时,李明的平均速度保持为3v ,上山路程和下山路程相同.李明下山所用时间是________.16.如图为杨辉三角表,它可以帮助我们按规律写出(a +b )n (其中n 为正整数)展开式的系数,请仔细观察表中规律,填出(a +b )4的展开式中所缺的系数.(a +b )1=a +b ;(a +b )2=a 2+2ab +b 2;(a +b )3=a 3+3a 2b +3ab 2+b 3;(a +b )4=a 4+__a 3b +___a 2b 2+___ab 3+b 4.17.已知:多项式ax 5+bx 3+cx +9,x =3时,它的值为81,则x =-3时,它的值为:________. 三、解答题(共2小题,满分46分)19.计算:(1)(-1)2014×(-2)2+(-12)-3-(4-π)0 (2)(x -y )2(y -x )5+(x -y )3(y -x )4(3)-12x 3y 4÷(-3x 2y 3)•(13xy ) (4)(5a 2b -3ab -1)(-3a 2)(5)(2n +3m -2)(2n -3m +2) (6)(54x 2y -108xy 2-36xy )÷(18xy )(7)(2x +1)(x -3)-(x -2)2(8)972+20162-2015×2017(用公式算)20.(6分)先化简,再求值:(3x +2)(3x -2)-5x (x -1)-(2x -1)2,其中x =-13.21.观察下列运算过程:S =1+3+32+33+…+32016+32017,①①×3,得3S =3+32+33+…+32017+32018,②②-①,得2S =32018-1,S =32018-12.22.美术课上,老师让同学们用彩色卡纸玩拼图的游戏,小芳同学拿着如图①所示的红色长方形卡纸,卡纸长为2a ,宽为2b ,她沿图中虚线平均分成四个小长方形,然后按照图②的方式拼成一个正方形,中间的空缺处(阴影部分)用黄色卡纸进行拼接.(1)需要黄色卡纸的边长为 ;(2)请用两种不同的方法列代数式表示黄色卡纸的面积:方法一 ; 方法二 ;(3)观察图②直接写出(a +b )2,(a ﹣b )2,ab 这三个代数式之间的等量关系式 ; (4)根据(3)中的等量关系解决下列问题:若a +b =6,ab =7,求(a ﹣b )2的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除试题
一、选择(每题2分,共24分)
1.下列计算正确的是().
A.2x2·3x3=6x3B.2x2+3x3=5x5
C.(-3x2)·(-3x2)=9x5D.5
4
x n·
2
5
x m=
1
2
x mn
2.一个多项式加上3y2-2y-5得到多项式5y3-4y-6,则原来的多项式为().A.5y3+3y2+2y-1 B.5y3-3y2-2y-6
C.5y3+3y2-2y-1 D.5y3-3y2-2y-1
3.下列运算正确的是().
A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a6-a2=a4
4.下列运算中正确的是().
A.1
2
a+
1
3
a=
1
5
a B.3a2+2a3=5a5C.3x2y+4yx2=7 D.-mn+mn=0
5.下列说法中正确的是().
A.-1
3
xy2是单项式B.xy2没有系数
C.x-1是单项式D.0不是单项式
二、填空(每题2分,共28分)
6.-xy2的系数是______,次数是_______.
7.•一件夹克标价为a•元,•现按标价的7•折出售,则实际售价用代数式表示为______.8.x_______=x n+1;(m+n)(______)=n2-m2;(a2)3·(a3)2=______.
9.月球距离地球约为3.84×105千米,一架飞机速度为8×102千米/时,•若坐飞机飞行这
么远的距离需_________.
10.a2+b2+________=(a+b)2a2+b2+_______=(a-b)2
(a-b)2+______=(a+b)2
11.若x2-3x+a是完全平方式,则a=_______.
12.多项式5x2-7x-3是____次_______项式.
三、计算(每题3分,共24分)
13.(2x2y-3xy2)-(6x2y-3xy2)14.(-
3
2
ax4y3)÷(-
6
5
ax2y2)·8a2y 15.(45a3-
1
6
a2b+3a)÷(-
1
3
a)16.(
2
3
x2y-6xy)·(
1
2
xy)
17.(x-2)(x+2)-(x+1)(x-3)18.(1-3y)(1+3y)(1+9y2)
19.(ab+1)2-(ab-1)2
四、运用乘法公式简便计算(每题2分,共4分)20.(998)221.197×203
五、先化简,再求值(每题4分,共8分)
22.(x+4)(x-2)(x-4),其中x=-1.
23.[(xy+2)(xy-2)-2x2y2+4],其中x=10,y=-1
25

六、解答题(每题4分,共12分)(适合六班做)
24.已知2x+5y=3,求4x·32y的值.
25.已知a2+2a+b2-4b+5=0,求a,b的值.。

相关文档
最新文档