2020年浙江高考数学一轮复习课堂测试: 圆锥曲线的综合问题

合集下载

【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案

【2020届】高考数学圆锥曲线专题复习:圆锥曲线综合题答案

即 (x1, y1 2) (x2 , y2 2), x1 x2 ,
于是 x1 x2

x22 , x1

x2

(1


)
x2
,
(
x1 1

x2
)2

x1 x2
,……………⑤
( 4k )2
3
1 k2
1 k2
将③④代入⑤得 2
2

(1 )2

16
整理得
3(1 )2 , 1 1
则 16k 2m2 4 2k 2 1 2m2 4 0 ,即 m2 4k 2 2 0
又 x1

x2


4km 2k 2 1

x1 x2

2m 2 2k 2
4 1
9分
∴ y1 y2 kx1 mkx2 m k 2 x1x2 kmx1 x2 m2
…………11 分
(2 x1, y1) 3(2 x2 , y2 )
∴ 2yx1133y(22 x2 )

y1

y2

3 y2

y2

2 y2


12t 3t2 1

y2

6t 3t2 1

y1 y2

(3y2 ) y2

3 y22

9 3t2 1

y22

y2
1
消去 y得(1 k 2 )x 2 4kx 3 0,由 0得k 2 3 .
2
2
设 M (x1, y1 ), N (x2 , y2 ) ,则

2020年浙江高考数学一轮复习: 圆锥曲线的综合问题

2020年浙江高考数学一轮复习: 圆锥曲线的综合问题

返回
当 k≠0 时,方程①的 Δ=-16(2k2+k-1)=-16(2k-1)
(k+1),

设直线 l 与 x 轴的交点为(x0,0),则
由 y-1=k(x+2),令 y=0,得 x0=-2kk+1.

(ⅰ)若Δx0<<00,, 由②③解得 k<-1 或 k>12.
所以当 k<-1 或 k>12时,直线 l 与曲线 C1 没有公共点,与曲线
(2)当|MN|=274时,求直线 l 的斜率.
返回
解:椭圆右焦点(1,0),
当 l 斜率不存在时,|MN|=3,不合题意;
当 l 斜率 k 存在时,
设直线 l 的方程为 y=k(x-1),M(x1,y1),N(x2,y2),
由x42+y32=1, y=kx-1,
得(3+4k2)x2-8k2x+4(k2-3)=0,Δ=144(k2+1)>0 成立,
所以 S△EPM=12|PE|·|EM|=9k146+28k2+k2k+39=9k126+2k8+2+1kk92.设 t=k+1k,
则 S△EPM=9t12+626t 4=9t1+626t4≤287,当且仅当 t=k+1k=83时取等号,
所以 k-1k=±23 7,则直线 AB:y=k22-k 1x=12k-1kx,
所以 yAyB=4kb=-32,即 b=-8k,
返回
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ, 则Δ>0⇔直线与圆锥曲线C 相交 ; Δ=0⇔直线与圆锥曲线C 相切 ; Δ<0⇔直线与圆锥曲线C 相离 .
(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥 曲线C相交,且只有一个交点,此时, 若C为双曲线,则直线l与双曲线的渐近线的位置关系是 平行 ; 若C为抛物线,则直线l与抛物线的对称轴的位置关系是 平行或重合 .

2020版高考数学新设计一轮复习浙江专版讲义:第八章第九节圆锥曲线的综合问题含答案

2020版高考数学新设计一轮复习浙江专版讲义:第八章第九节圆锥曲线的综合问题含答案

第九节圆锥曲线的综合问题1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 = 1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2. [小题体验]1.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解析:选A 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.2.顶点在坐标原点,焦点在x 轴上的抛物线截得直线y =2x +1所得的弦AB 的长为15,则该抛物线的标准方程为____________.解析:设抛物线的方程为y 2=mx (m ≠0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧y 2=mx ,y =2x +1可得4x 2+(4-m )x +1=0.所以x 1+x 2=-4-m 4,x 1x 2=14.所以|AB |=(1+22)[(x 1+x 2)2-4x 1x 2] =5⎣⎡⎦⎤⎝⎛⎭⎫1-m 42-1=15, 解得m =12或m =-4.所以抛物线的标准方程为y 2=12x 或y 2=-4x . 答案:y 2=12x 或y 2=-4x1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点. [小题纠偏]1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.考点一 直线与圆锥曲线的位置关系(重点保分型考点——师生共研)[典例引领]在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C . (1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.解:(1)设点M (x ,y ),依题意|MF |=|x |+1, ∴(x -1)2+y 2=|x |+1,化简得y 2=2(|x |+x ),故轨迹C 的方程为y 2=⎩⎪⎨⎪⎧4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x (x ≥0),C 2:y =0(x <0). 依题意,可设直线l 的方程为y -1=k (x +2).联立⎩⎪⎨⎪⎧y -1=k (x +2),y 2=4x 消去x ,可得ky 2-4y +4(2k +1)=0.①当k =0时,此时y =1.把y =1代入轨迹C 的方程,得x =14.故此时直线l :y =1与轨迹C 恰好有一个公共点⎝⎛⎭⎫14,1.当k ≠0时,方程①的Δ=-16(2k 2+k -1)=-16(2k -1)(k +1),② 设直线l 与x 轴的交点为(x 0,0),则 由y -1=k (x +2),令y =0,得x 0=-2k +1k.③ (ⅰ)若⎩⎪⎨⎪⎧ Δ<0,x 0<0,由②③解得k <-1或k >12.所以当k <-1或k >12时,直线l 与曲线C 1没有公共点,与曲线C 2有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.(ⅱ)若⎩⎪⎨⎪⎧Δ=0,x 0≥0,即⎩⎪⎨⎪⎧2k 2+k -1=0,2k +1k<0,解集为∅.综上可知,当k <-1或k >12或k =0时,直线l 与轨迹C 恰好有一个公共点.故实数k 的取值范围为(-∞,-1)∪{0}∪⎝⎛⎭⎫12,+∞.[由题悟法]1.直线与圆锥曲线位置关系的判定方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 2.判定直线与圆锥曲线位置关系的注意点(1)联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零的情况.(2)判断直线与圆锥曲线位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根.[即时应用]1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为( )A .1B .1或3C .0D .1或0解析:选D 由⎩⎪⎨⎪⎧y =kx +2,y 2=8x ,得k 2x 2+(4k -8)x +4=0,若k =0,则y =2,符合题意.若k ≠0,则Δ=0,即64-64k =0,解得k =1,所以直线y =kx +2与抛物线y 2=8x 有且只有一个公共点时,k =0或1.2.已知双曲线x 2a 2-y 2b 2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)解析:选C 因为双曲线的一条渐近线方程为y =ba x ,则由题意得b a >2,所以e =ca=1+⎝⎛⎭⎫b a 2>1+4= 5.考点二 弦长问题(重点保分型考点——师生共研)[典例引领](2018·浙江六校联考)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)和圆C 2:x 2+y 2=b 2,已知圆C 2将椭圆C 1的长轴三等分,且圆C 2的面积为π.椭圆C 1的下顶点为E ,过坐标原点O 且与坐标轴不重合的任意直线l 与圆C 2相交于点A ,B ,直线EA ,EB 与椭圆C 1的另一个交点分别是点P ,M .(1)求椭圆C 1的方程;(2)求△EPM 面积最大时直线l 的方程. 解:(1)由题意得:b =1,则a =3b , 所以椭圆C 1的方程为:x 29+y 2=1.(2)由题意得:直线PE ,ME 的斜率存在且不为0,PE ⊥EM , 不妨设直线PE 的斜率为k (k >0),则PE :y =kx -1,由⎩⎪⎨⎪⎧y =kx -1,x 29+y 2=1得⎩⎪⎨⎪⎧x =18k9k 2+1,y =9k 2-19k 2+1或⎩⎪⎨⎪⎧x =0,y =-1. 所以P ⎝ ⎛⎭⎪⎫18k 9k 2+1,9k 2-19k 2+1,同理得M ⎝ ⎛⎭⎪⎫-18k k 2+9,9-k 2k 2+9,则k PM =k 2-110k,由⎩⎪⎨⎪⎧y =kx -1,x 2+y 2=1,得A ⎝ ⎛⎭⎪⎫2k 1+k 2,k 2-11+k 2,所以k AB=k 2-12k , 所以S △EPM =12|PE |·|EM |=162(k +k 3)9k 4+82k 2+9=162⎝⎛⎭⎫k +1k 9k 2+82+9k2.设t =k +1k ,则S △EPM =162t 9t 2+64=1629t +64t ≤278,当且仅当t =k +1k =83时取等号,所以k -1k =±237,则直线AB :y =k 2-12k x =12⎝⎛⎭⎫k -1k x ,所以所求直线l 方程为:y =±73x .[由题悟法]弦长的3种常用计算方法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题.(2)点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(3)弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的.[提醒] 直线与圆锥曲线的对称轴平行或垂直的特殊情况.[即时应用](2018·温州二模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为4,离心率为12,过右焦点的直线l 与椭圆相交于M ,N 两点,点P 的坐标为(4,3),记直线PM ,PN 的斜率分别为k 1,k 2.(1)求椭圆C 的方程; (2)当|MN |=247时,求直线l 的斜率. 解:(1)∵2a =4,∴a =2, 又e =c a =12,∴c =1,∴b 2=3.∴椭圆C 的方程为x 24+y 23=1.(2)椭圆右焦点(1,0),当l 斜率不存在时,|MN |=3,不合题意; 当l 斜率k 存在时,设直线l 的方程为y =k (x -1),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),得(3+4k 2)x 2-8k 2x +4(k 2-3)=0,Δ=144(k 2+1)>0成立,∴x 1+x 2=8k23+4k 2,x 1x 2=4(k 2-3)3+4k 2, ∴|MN |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝⎛⎭⎫8k 23+4k 22-4×4(k 2-3)3+4k 2=247,解得k =±1.故直线l 的斜率为±1.考点三 定点、定值问题(重点保分型考点——师生共研)[典例引领]已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.解:(1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0), 所以p2=1,即p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时, 设A ⎝⎛⎭⎫t 24,t ,B ⎝⎛⎭⎫t24,-t . 因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8. ②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立方程组⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,消去x 得ky 2-4y +4b =0.由根与系数的关系得y A y B =4bk , 因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y B x B=-12,即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0, 解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk =-32,即b =-8k , 所以y =kx -8k ,即y =k (x -8). 综合①②可知,直线AB 过定点(8,0).[由题悟法]1.圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关. 2.定值问题常见的2种求法(1)从特殊入手,求出定值,再证明这个值与变量无关. (2)引进变量法:其解题流程为[即时应用]1.(2018·宁波模拟)如图,中心在坐标原点,焦点分别在x 轴和y 轴上的椭圆T 1,T 2都过点M (0,-2),且椭圆T 1与T 2的离心率均为22. (1)求椭圆T 1与椭圆T 2的标准方程;(2)过点M 引两条斜率分别为k ,k ′的直线分别交T 1,T 2于点P ,Q ,当k ′=4k 时,问直线P Q 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.解:(1)设椭圆T 1,T 2的方程分别为x 2a 2+y 2b 2=1(a >b >0),y 2a ′2+x 2b ′2=1(a ′>b ′>0),由题意得b =2,e =c a =22,又a 2=b 2+c 2,解得a =2.同理可得a ′=2,b ′=1,所以椭圆T 1和椭圆T 2的方程分别为x 24+y 22=1,y 22+x 2=1.(2)直线MP 的方程为y =kx -2,联立⎩⎪⎨⎪⎧x 24+y 22=1,y =kx -2消去y 得(2k 2+1)x 2-42kx =0,则点P 的横坐标为42k 2k 2+1,所以点P 的坐标为⎝ ⎛⎭⎪⎫42k 2k 2+1,22k 2-22k 2+1.同理可得点Q 的坐标为⎝ ⎛⎭⎪⎫22k ′k ′2+2,2k ′2-22k ′2+2.又k ′=4k ,则点Q 的坐标为⎝ ⎛⎭⎪⎫42k 8k 2+1,82k 2-28k 2+1,所以k P Q =82k 2-28k 2+1-22k 2-22k 2+142k 8k 2+1-42k2k 2+1=-12k ,则直线P Q 的方程为y -22k 2-22k 2+1=-12k ⎝ ⎛⎭⎪⎫x -42k 2k 2+1, 化简得y -2=-12kx ,故直线P Q 过定点(0,2). 2.(2018·嘉兴模拟)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同两点P ,Q (均异于点A ),证明:直线AP 与A Q 的斜率之和为定值.解:(1)由题意知c a =22,b =1,由a 2=b 2+c 2,得a =2, 所以椭圆E 的方程为x 22+y 2=1.(2)证明:设直线P Q 的方程为y =k (x -1)+1(k ≠2), 代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由题意知Δ>0,设P (x 1,y 1),Q (x 2,y 2),且x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 所以直线AP 与A Q 的斜率之和 k AP +k A Q =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1) =2.故直线AP 与A Q 的斜率之和为定值2.考点四 最值、范围问题(重点保分型考点——师生共研)[典例引领](2018·浙江原创猜题卷)设抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 交抛物线C 于P ,Q 两点,且|P Q |=8,线段P Q 的中点到y 轴的距离为3.(1)求抛物线C 的方程;(2)若点A (x 1,y 1),B (x 2,y 2)是抛物线C 上相异的两点,满足x 1+x 2=2,且AB 的中垂线交x 轴于点M ,求△AMB 的面积的最大值及此时直线AB 的方程.解:(1)设P (x P ,y P ),Q (x Q ,y Q ), 则P Q 的中点坐标为⎝⎛⎭⎫x P +x Q 2,y P +y Q 2. 由题意知x P +x Q 2=3,∴x P +x Q =6,又|P Q |=x P +x Q +p =8,∴p =2, 故抛物线C 的方程为y 2=4x .(2)当AB 垂直于x 轴时,显然不符合题意, 所以可设直线AB 的方程为y =kx +b (k ≠0),由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x 消去y 并整理,得k 2x 2+(2kb -4)x +b 2=0, Δ=16(1-kb )>0, ∴由x 1+x 2=4-2kb k2=2,得b =2k -k , ∴直线AB 的方程为y =k (x -1)+2k .∵AB 中点的横坐标为1,∴AB 中点的坐标为⎝⎛⎭⎫1,2k . 可知AB 的中垂线的方程为y =-1k x +3k , ∴M 点的坐标为(3,0).∵直线AB 的方程为k 2x -ky +2-k 2=0, ∴M 到直线AB 的距离d =|3k 2+2-k 2|k 4+k 2=2k 2+1|k |.由⎩⎪⎨⎪⎧k 2x -ky +2-k 2=0,y 2=4x ,得k 24y 2-ky +2-k 2=0,Δ=k 2(k 2-1)>0,∴y 1+y 2=4k ,y 1y 2=8-4k 2k 2,∴|AB |=1+1k 2|y 1-y 2|=4k 2+1k 2-1k 2. 设△AMB 的面积为S , 则S =12|AB |·d =4⎝⎛⎭⎫1+1k 2 1-1k2, 设1-1k2=t ,则0<t <1, ∴S =4t (2-t 2)=-4t 3+8t ,S ′=-12t 2+8, 由S ′=0,得t =63(负值舍去), 即当k =±3时,S max =1669, 此时直线AB 的方程为3x ±3y -1=0.[由题悟法]解决圆锥曲线中的取值范围问题的5种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.[即时应用]1.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离, 由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,所以可设直线AF 的方程为x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝⎛⎭⎫1t 2,-2t . 又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t,从而得直线FN 的方程为y =-t 2-12t (x -1).又直线BN 的方程为y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t . 设M (m,0),由A ,M ,N 三点共线得2tt 2-m =2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=21-1t 2,得m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2018·温州期末)已知椭圆的焦点坐标为F 1(-1,0),F 2(1,0),过F 2垂直于长轴的直线交椭圆于P ,Q 两点,且|P Q |=3,(1)求椭圆的方程;(2)如图,过F 2的直线l 与椭圆交于不同的两点M ,N ,则△F 1MN 的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由焦点坐标可得c =1, 由|P Q |=3,可得2b 2a=3,解得a =2,b =3,故椭圆的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),△F 1MN 的内切圆的半径为R ,则△F 1MN 的周长为4a =8,S △F 1MN =12(|MN |+|F 1M |+|F 1N |)R =4R ,因此S △F 1MN 最大,R 就最大,S △F 1MN =12|F 1F 2|(y 1-y 2)=y 1-y 2.由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1得(3m 2+4)y 2+6my -9=0, 解得y 1=-3m +6m 2+13m 2+4,y 2=-3m -6m 2+13m 2+4,则S △F 1MN =y 1-y 2=12m 2+13m 2+4.令t =m 2+1,则t ≥1, 所以S △F 1MN =12t 3t 2+1=123t +1t ,令f (t )=3t +1t ,则f ′(t )=3-1t2,当t ≥1时, f (t )在[1,+∞)上单调递增,有f (t )≥f (1)=4,S △F 1MN ≤ 124=3, 即当t =1,m =0时,取等号, 又S △F 1MN =4R ,所以R max =34,故所求内切圆面积的最大值为916π.所以直线l 的方程为x =1时,△F 1MN 的内切圆面积取得最大值916π.一保高考,全练题型做到高考达标1.(2019·台州模拟)已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是( )A.⎣⎡⎦⎤-33,33 B .[-3,3] C.⎝⎛⎭⎫-33,33 D .(-3,3)解析:选A 易知该双曲线的渐近线方程为y =±33x ,当过右焦点的两条直线分别与两条渐近线平行,即两条直线的斜率分别为33和-33时,这两条直线与双曲线右支分别只有一个交点,所以此直线的斜率的取值范围是⎣⎡⎦⎤-33,33. 2.(2018·宁波调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为( )A .3B .2C .-2D .-3解析:选D 由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =2x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =p2,y =p ,所以A ⎝⎛⎭⎫p 2,p ,则直线AB 的方程为y -p =6⎝⎛⎭⎫x -p2,即y =6x -2p ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =6x -2p ,y 2=2px ,解得⎩⎨⎧x =2p9,y =-2p3或⎩⎪⎨⎪⎧x =p 2,y =p ,所以B ⎝⎛⎭⎫2p 9,-2p3,所以直线OB 的斜率k OB =-2p32p 9=-3.3.(2018·杭州二模)倾斜角为π4的直线经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B两点,且AF =2FB ,则该椭圆的离心率为( )A.32 B.23 C.22D.33解析:选B 由题可知,直线的方程为y =x -c ,与椭圆方程联立得⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x -c ,∴(a 2+b 2)y 2+2b 2cy -b 4=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=-2b 2c a 2+b 2,y 1y 2=-b4a 2+b 2,又AF =2FB ,∴(c -x 1,-y 1)=2(x 2-c ,y 2),∴-y 1=2y 2,即⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b 2,-2y 22=-b4a 2+b2,∴12=4c 2a 2+b 2,∴e =23,故选B. 4.(2018·温州十校联考)已知点P 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)右支上一点,F 1是双曲线的左焦点,且双曲线的一条渐近线恰是线段PF 1的中垂线,则该双曲线的离心率是( )A. 2B. 3 C .2D. 5解析:选D 设直线PF 1:y =a b (x +c ),则与渐近线y =-b a x 的交点为M ⎝⎛⎭⎫-a 2c ,ab c .因为M 是PF 1的中点,利用中点坐标公式,得P ⎝⎛⎭⎫-2a 2c +c ,2ab c ,因为点P 在双曲线上,所以满足(b 2-a 2)2a 2c 2-4a 2b 2c 2b 2=1,整理得c 4=5a 2c 2,解得e = 5.5.(2019·丽水五校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过点F 且倾斜角为60°的直线交C 于A ,B 两点,AM ⊥l ,BN ⊥l ,M ,N 为垂足,点Q 为MN 的中点,|Q F |=2,则p =________.解析:如图,由抛物线的几何性质可得,以AB 为直径的圆与准线相切,且切点为Q ,△MFN 是以∠MFN 为直角的直角三角形,∴|MN |=2|Q F |=4,过B 作BD ⊥AM ,垂足为D ,∴|AB |=|BD |sin 60°=432=833.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =3⎝⎛⎭⎫x -p 2,得12x 2-20px +3p 2=0,∴x 1+x 2=53p ,∴|AB |=x 1+x 2+p =53p +p =83p =833,∴p = 3.答案: 36.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析:设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎨⎧x 21-y 213=1,x 22-y223=1,两式相减,得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1, ∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝⎛⎭⎫-m 4,3m 4, 代入抛物线方程得916m 2=18×⎝⎛⎭⎫-m 4, 解得m =0或-8,经检验都符合. 答案:0或-87.(2019·湖州六校联考)设抛物线C :y 2=4x 的焦点为F ,过点P (-1,0)作直线l 与抛物线C 交于A ,B 两点,若S △ABF =2,且|AF |<|BF |,则|AF ||BF |=________. 解析:设直线l 的方程为x =my -1,将直线方程代入抛物线C :y 2=4x 的方程,得y 2-4my +4=0,Δ=16(m 2-1)>0.设A (x 1,y 1),B (x 2,y 2),|y 1|<|y 2|,所以y 1+y 2=4m ,y 1·y 2=4,又S △ABF =2,所以121+m 2·|y 2-y 1|·2m 2+1=|y 2-y 1|=2,因此y 21+y 22=10,所以y 21+y 22y 1·y 2=104=52,从而⎪⎪⎪⎪y 1y 2=12,即|AF ||BF |=|x 1+1||x 2+1|=|my 1-1+1||my 2-1+1|=⎪⎪⎪⎪y 1y 2=12. 答案:128.(2019·衢州模拟)已知椭圆C :x 22+y 2=1,若一组斜率为14的平行直线被椭圆C 所截线段的中点均在直线l 上,则l 的斜率为________.解析:设弦的中点坐标为M (x ,y ),设直线y =14x +m 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,由⎩⎨⎧y =14x +m ,x22+y 2=1消去y ,得9x 2+8mx +16m 2-16=0,Δ=64m 2-4×9×(16m 2-16)>0,解得-324<m <324,x 1+x 2=-8m 9,x 1x 2=16m 2-169,∵M (x ,y )为弦AB 的中点,∴x 1+x 2=2x ,解得x =-4m 9, ∵m ∈⎝⎛⎭⎫-324,324,∴x ∈⎝⎛⎭⎫-23,23,由⎩⎨⎧y =14x +m ,x =-4m9消去m ,得y =-2x ,则直线l 的方程为y =-2x ,x ∈⎝⎛⎭⎫-23,23, ∴直线l 的斜率为-2. 答案:-29.(2018·东阳适应)已知椭圆x 2a 2+y 2=1(a >1).(1)若A (0,1)到焦点的距离为3,求椭圆的离心率.(2)Rt △ABC 以A (0,1)为直角顶点,边AB ,AC 与椭圆交于两点B ,C .若△ABC 面积的最大值为278,求a 的值.解:(1)由题可得a =3,所以c =2,所以e =c a =63.(2)不妨设AB 斜率k >0,则AB :y =kx +1, AC :y =-1k x +1, 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0, 解得x B =-2a 2k 1+a 2k 2,同理x C =2a 2k k 2+a 2,S =12|AB ||AC |=2a 4·k (1+k 2)a 2k 4+a 4k 2+k 2+a 2=2a 4·k +1ka 2k 2+a 2k 2+a 4+1=2a 4·k +1ka 2⎝⎛⎭⎫k +1k 2+(a 2-1)2, 设t =k +1k ,则t ≥2, S =2a 4·ta 2t 2+(a 2-1)2=2a 4a 2t +(a 2-1)2t≤a 3a 2-1,当且仅当t =a 2-1a ≥2,即a ≥1+2时取等号,由a 3a 2-1=278,解得a =3,a =3+29716(舍),若a <1+2,显然无解.∴a =3.10.(2019·嘉兴模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,F 1,F 2分别为椭圆C 的左、右焦点,过F 2的直线l 与C 相交于A ,B 两点,△F 1AB 的周长为4 3.(1)求椭圆C 的方程;(2)若椭圆C 上存在点P ,使四边形OAPB 为平行四边形,求此时直线l 的方程. 解:(1)∵椭圆的离心率为33,∴c a =33,∴a =3c , 又△F 1AB 的周长为43,∴4a =43, 解得a =3,∴c =1,b =2, ∴椭圆C 的标准方程为x 23+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),∵当直线l 的斜率不存在时,这样的直线不满足题意, ∴设直线l 的斜率为k ,则直线l 的方程为y =k (x -1), 将直线l 的方程代入椭圆方程, 整理得(2+3k 2)x 2-6k 2x +3k 2-6=0, ∴x 1+x 2=6k 22+3k 2,故y 1+y 2=k (x 1+x 2)-2k =6k 32+3k 2-2k =-4k 2+3k 2. ∵四边形OAPB 为平行四边形,∴OP =OA +OB , 从而x 0=x 1+x 2=6k 22+3k 2,y 0=y 1+y 2=-4k 2+3k 2, 又P (x 0,y 0)在椭圆上,∴⎝⎛⎭⎫6k 22+3k 223+⎝ ⎛⎭⎪⎫-4k 2+3k 222=1,化简得3k 4-4k 2-4=0,解得k =±2, 故所求直线l 的方程为y =±2(x -1). 二上台阶,自主选做志在冲刺名校1.(2018·湖州质检)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),不经过原点O 的直线l :y =kx +m (k >0)与椭圆E 相交于不同的两点A ,B ,直线OA ,AB ,OB 的斜率依次构成等比数列.(1)求a ,b ,k 的关系式;(2)若离心率e =12且|AB |=7⎪⎪⎪⎪m +1m ,当m 为何值时,椭圆的焦距取得最小值? 解:(1)设A (x 1,y 1),B (x 2,y 2), 由题意得k 2=k OA ·k OB =y 1y 2x 1x 2. 联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx +m 消去y ,整理得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0,故Δ=(2a 2km )2-4(b 2+a 2k 2)(a 2m 2-a 2b 2)>0,即b 2-m 2+a 2k 2>0,且x 1+x 2=-2a 2kmb 2+a 2k 2,x 1·x 2=a 2m 2-a 2b 2b 2+a 2k 2,所以k 2=y 1y 2x 1x 2=k 2x 1x 2+km (x 1+x 2)+m2x 1x 2,即km (x 1+x 2)+m 2=0,-2a 2k 2m 2b 2+a 2k2+m 2=0. 又直线不经过原点,所以m ≠0,所以b 2=a 2k 2,即b =ak . (2)因为e =12,则a =2c ,b =3c ,k =32,所以x 1+x 2=-2a 2km b 2+a 2k 2=-23m 3,x 1·x 2=a 2m 2-a 2b 2b 2+a 2k 2=23m 2-2c 2, 所以|AB |=1+k 2|x 1-x 2|=72(x 1+x 2)2-4x 1·x 2=72·⎝⎛⎭⎫-23m 32-4⎝⎛⎭⎫23m 2-2c 2=72·-4m 23+8c 2=7⎪⎪⎪⎪m +1m , 化简得2c 2=4m 23+1m 2+2≥433+2(Δ>0恒成立),当且仅当4m 23=1m 2,即m =±4122时,焦距最小.综上,当m =±4122时,椭圆的焦距取得最小值.2.(2018·学军适考)已知抛物线C :x 2=4y ,过点P (0,m )(m >0)的动直线l 与C 相交于A ,B 两点,抛物线C 在点A 和点B 处的切线相交于点Q ,直线A Q ,B Q 与x 轴分别相交于点E ,F .(1)写出抛物线C 的焦点坐标和准线方程; (2)求证:点Q 在直线y =-m 上;(3)判断是否存在点P ,使得四边形PE Q F 为矩形?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)焦点坐标为(0,1),准线方程为y =-1. (2)证明:由题意知直线l 的斜率存在, 故设l 的方程为y =kx +m .由方程组⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,由题意,得Δ=16k 2+16m >0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4m ,所以抛物线在点A 处的切线方程为y -14x 21=12x 1(x -x 1),化简,得y =12x 1x -14x 21,①同理,抛物线在点B 处的切线方程为y =12x 2x -14x 22.②联立方程①②,得12x 1x -14x 21=12x 2x -14x 22,即12(x 1-x 2)x =14(x 1-x 2)(x 1+x 2),因为x 1≠x 2,所以x =12(x 1+x 2), 代入①,得y =14x 1x 2=-m ,所以点Q ⎝⎛⎭⎫x 1+x 22,-m ,即Q (2k ,-m ). 所以点Q 在直线y =-m 上.(3)假设存在点P ,使得四边形PE Q F 为矩形, 由四边形PE Q F 为矩形,得E Q ⊥F Q ,即A Q ⊥B Q , 所以k A Q ·k B Q =-1,即12x 1·12x 2=-1.由(2),得14x 1x 2=14(-4m )=-1,解得m =1.所以P (0,1).以下只要验证此时的四边形PE Q F 为平行四边形即可. 在①中,令y =0,得E ⎝⎛⎭⎫12x 1,0. 同理得F ⎝⎛⎭⎫12x 2,0. 所以直线EP 的斜率为k EP =1-00-12x 1=-2x 1,直线F Q 的斜率k F Q =0-(-1)12x 2-x 1+x 22=-2x 1, 所以k EP =k F Q ,即EP ∥F Q . 同理PF ∥E Q .所以四边形PE Q F 为平行四边形.综上所述,存在点P (0,1),使得四边形PE Q F 为矩形.命题点一 椭圆1.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12C.13D.14解析:选D 如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1.由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1,故|AB |=a +1+1=a +2,tan∠PAB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.2.(2018·浙江高考)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP ―→=2PB ―→,则当m =________时,点B 橫坐标的绝对值最大.解析:设A (x 1,y 1),B (x 2,y 2),由AP ―→=2PB ―→,得⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2(y 2-1),即x 1=-2x 2,y 1=3-2y 2. 因为点A ,B 在椭圆上,所以⎩⎨⎧4x 224+(3-2y 2)2=m ,x224+y 22=m ,解得y 2=14m +34,所以x 22=m -(3-2y 2)2=-14m 2+52m -94=-14(m -5)2+4≤4, 所以当m =5时,点B 横坐标的绝对值最大. 答案:53.(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 解:(1)由已知得F (1,0),l 的方程为x =1. 则点A 的坐标为⎝⎛⎭⎫1,22或⎝⎛⎭⎫1,-22. 又M (2,0),所以直线AM 的方程为y =-22x +2或y =22x -2, 即x +2y -2=0或x -2y -2=0.(2)证明:当l 与x 轴重合时,∠OMA =∠OMB =0°. 当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为 y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和为 k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=kx 1-k ,y 2=kx 2-k , 得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1,得(2k 2+1)x 2-4k 2x +2k 2-2=0, 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0.从而k MA +k MB =0, 故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB .综上,∠OMA =∠OMB 成立.4.(2018·天津高考)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(b,0),且|FB |·|AB |=6 2.(1)求椭圆的方程.(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q ,若|A Q ||P Q |=524sin∠AO Q (O 为原点),求k 的值.解:(1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .①由已知可得|FB |=a ,|AB |=2b , 又|FB |·|AB |=62,可得ab =6.② 联立①②解得a =3,b =2. 所以椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故|P Q |sin ∠AO Q =y 1-y 2.又因为|A Q |=y 2sin ∠OAB ,而∠OAB =π4,所以|A Q |=2y 2. 由|A Q ||P Q |=524sin ∠AO Q ,可得5y 1=9y 2.由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y 24=1消去x ,可得y 1=6k9k 2+4 . 易知直线AB 的方程为x +y -2=0,由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0消去x ,可得y 2=2kk +1.由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方, 整理得56k 2-50k +11=0,解得k =12或k =1128.所以k 的值为12或1128.5.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP ―→+FA ―→+FB ―→=0.证明:|FA ―→|,|FP ―→|,|FB ―→|成等差数列,并求该数列的公差.解:(1)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .①由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1, y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎫1,-32,|FP ―→|=32,于是|FA ―→|=(x 1-1)2+y 21= (x 1-1)2+3⎝⎛⎭⎫1-x 214 =2-x 12.同理|FB ―→|=2-x 22.所以|FA ―→|+|FB ―→|=4-12(x 1+x 2)=3.故2|FP ―→|=|FA ―→|+|FB ―→|,即|FA ―→|,|FP ―→|,|FB ―→|成等差数列. 设该数列的公差为d , 则2|d |=|FB ―→|-|FA ―→|=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2.②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.命题点二 双曲线1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22xD .y =±32x解析:选A ∵e =ca =a 2+b 2a =3, ∴a 2+b 2=3a 2,∴b =2a . ∴渐近线方程为y =±2x .2.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5 B .2 C. 3D. 2解析:选C 法一:不妨设一条渐近线的方程为y =ba x , 则F 2到y =ba x 的距离d =|bc |a 2+b 2=b . 在Rt △F 2PO 中,|F 2O |=c , 所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中, 根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac =-cos ∠POF 2=-ac ,即3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3.法二:如图,过点F1向OP 的反向延长线作垂线,垂足为P ′,连接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且△PP ′F 2是直角三角形.因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a .又|PF 1|=6a =|F 2P ′|,|PP ′|=2a ,所以|F 2P |=2a =b ,所以c =a 2+b 2=3a ,所以e =ca= 3.3.(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 24-y 212=1 B.x 212-y 24=1C.x 23-y 29=1 D.x 29-y 23=1解析:选C 法一:如图,不妨设A 在B 的上方,则A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b 2a . 又双曲线的一条渐近线为bx -ay =0, 则d 1+d 2=bc -b 2+bc +b 2a 2+b 2=2bcc=2b =6,所以b =3.又由e =ca =2,知a 2+b 2=4a 2,所以a = 3.所以双曲线的方程为x 23-y 29=1.法二:由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b 2=1(a>0,b >0)的离心率为2,所以ca =2,所以a 2+b 2a 2=4,所以a 2+9a2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1.4.(2018·全国卷Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A.32 B .3 C .2 3D .4±13x .设两解析:选B 法一:由已知得双曲线的两条渐近线方程为y =条渐近线的夹角为2α,则有tan α=13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |= 3.在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3.法二:因为双曲线x 23-y 2=1的渐近线方程为y =±33x ,所以∠MON =60°.不妨设过点F 的直线与直线y =33x 交于点M ,由△OMN 为直角三角形,不妨设∠OMN =90°,则∠MFO =60°,又直线MN 过点F (2,0),所以直线MN 的方程为y =-3(x -2),由⎩⎪⎨⎪⎧y =-3(x -2),y =33x ,得⎩⎨⎧x =32,y =32,所以M ⎝⎛⎭⎫32,32,所以|OM |= ⎝⎛⎭⎫322+⎝⎛⎭⎫322=3, 所以|MN |=3|OM |=3.5.(2018·江苏高考)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (c,0)到一条渐近线的距离为32c ,则其离心率的值为________. 解析:∵双曲线的渐近线方程为bx ±ay =0, ∴焦点F (c,0)到渐近线的距离d =|bc ±0|b 2+a 2=b , ∴b =32c ,∴a =c 2-b 2=12c , ∴e =ca =2. 答案:26.(2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为________.解析:法一:如图,∵双曲线N 的渐近线方程为y =±nm x ,∴nm =tan 60°=3, ∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2.由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b2=1,得x 2=a 2b 23a 2+b 2.设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a 2-⎝⎛⎭⎫b 2a 22=0,解得b 2a2=23-3.∴椭圆M 的离心率e 2=1-b 2a2=4-23=3-1. 法二:∵双曲线N 的渐近线方程为y =±nm x , ∴nm =tan 60°= 3. 又c 1=m 2+n 2=2m , ∴双曲线N 的离心率为c 1m=2.如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点,设正六边形边长为1,则|FC |=2c 2=2,即c 2=1.又E 为椭圆M 上一点, 则|EF |+|EC |=2a , 即1+3=2a ,a =1+32. ∴椭圆M 的离心率为c 2a =21+3=3-1.答案:3-1 2 命题点三 抛物线1.(2017·全国卷Ⅰ)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10解析:选A 抛物线C :y 2=4x 的焦点为F (1,0), 由题意可知l 1,l 2的斜率存在且不为0. 不妨设直线l 1的斜率为k ,则l 1:y =k (x -1),l 2:y =-1k(x -1),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1)消去y ,得k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线的定义可知,|AB |=x 1+x 2+2=2+4k 2+2=4+4k 2.同理得|DE |=4+4k 2,∴|AB |+|DE |=4+4k 2+4+4k 2=8+4⎝⎛⎭⎫1k 2+k 2≥8+8=16,当且仅当1k 2=k 2,即k =±1时取等号, 故|AB |+|DE |的最小值为16.2.(2018·全国卷Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM ―→·FN ―→=( )A .5B .6C .7D .8解析:选D 由题意知直线MN 的方程为y =23(x +2),联立⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设M (1,2),N (4,4). ∵抛物线焦点为F (1,0), ∴FM ―→=(0,2),FN ―→=(3,4). ∴FM ―→·FN ―→=0×3+2×4=8.3.(2018·全国卷Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.解析:法一:设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2), ∴k =y 1-y 2x 1-x 2=4y 1+y 2.设AB 中点为M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足分别为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴, ∴y 1+y 2=2,∴k =2.法二:由题意知,抛物线的焦点坐标为F (1,0), 设直线方程为y =k (x -1), 直线方程与y 2=4x 联立,消去y , 得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1x 2=1,x 1+x 2=2k 2+4k2.由M (-1,1),得AM ―→=(-1-x 1,1-y 1), BM ―→=(-1-x 2,1-y 2).由∠AMB =90°,得AM ―→·BM ―→=0, ∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0.又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1],y 1+y 2=k (x 1+x 2-2), ∴1+2k 2+4k 2+1+k 2⎝⎛⎭⎫1-2k 2+4k 2+1-k⎝⎛⎭⎫2k 2+4k 2-2+1=0, 整理得4k 2-4k +1=0,解得k =2.答案:24.(2018·浙江高考)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△PAB 面积的取值范围.解:(1)证明:设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2. 因为PA ,PB 的中点在抛物线上, 所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 因此PM 垂直于y 轴.(2)由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0).因此△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32. 因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△PAB 面积的取值范围是⎣⎡⎦⎤62,15104. 命题点四 圆锥曲线中的综合问题1.(2018·江苏高考)如图,在平面直角坐标系xOy 中,椭圆C 过点⎝⎛⎭⎫3,12,焦点为F 1(-3,0), F 2(3,0),圆O 的直径为F 1F 2. (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为267,求直线l 的方程. 解:(1)因为椭圆C 的焦点为F 1(-3,0),F 2(3,0), 可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).又点⎝⎛⎭⎫3,12在椭圆C 上,。

浙江专用2020版高考数学一轮复习课时跟踪检测五十圆锥曲线的综合问题含解析20190614389

浙江专用2020版高考数学一轮复习课时跟踪检测五十圆锥曲线的综合问题含解析20190614389

课时跟踪检测(五十)圆锥曲线的综合问题一保高考,全练题型做到高考达标1.(2019·台州模拟)已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是()A.-33,33B.[-3,3]-33,D.(-3,3)解析:选A 易知该双曲线的渐近线方程为y =±33x ,当过右焦点的两条直线分别与两条渐近线平行,即两条直线的斜率分别为33和-33时,这两条直线与双曲线右支分别只有一个交点,所以此直线的斜率的取值范围是-33,33.2.(2018·宁波调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为()A.3B.2C.-2D.-3解析:选D由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px 联立得=2x ,2=2px ,解得=0,=0或=p2,=p ,所以则直线AB的方程为y -p =即y =6x -2p ,与抛物线方程y 2=2px =6x -2p ,2=2px ,=2p9,=-2p 3或=p 2,=p ,所以OB 的斜率k OB =-2p32p 93.(2018·杭州二模)倾斜角为π4的直线经过椭圆x 2a 2+y2b2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF =2FB,则该椭圆的离心率为()A.32B.23C.22D.33解析:选B 由题可知,直线的方程为y =x -c ,与椭圆方程联立得x 2a 2+y 2b 2=1,y =x -c ,∴(a 2+b 2)y 2+2b 2cy -b 4=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 2ca 2+b2,y 1y 2=-b4a 2+b2,又AF=2FB ,∴(c -x 1,-y 1)=2(x 2-c ,y 2),∴-y 1=2y 2,即-y 2=-2b 2c a 2+b 2,-2y 22=-b 4a 2+b2,∴12=4c 2a 2+b2,∴e =23,故选B.4.(2018·温州十校联考)已知点P 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)右支上一点,F 1是双曲线的左焦点,且双曲线的一条渐近线恰是线段PF 1的中垂线,则该双曲线的离心率是()A.2 B.3C.2D.5解析:选D 设直线PF 1:y =a b (x +c ),则与渐近线y =-bax 的交点为M-a 2c ,ab c .因为M 是PF 1的中点,利用中点坐标公式,得P-2a 2c +c ,2abc ,因为点P 在双曲线上,所以满足b 2-a 22a 2c 2-4a 2b 2c 2b2=1,整理得c 4=5a 2c 2,解得e = 5.5.(2019·丽水五校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过点F 且倾斜角为60°的直线交C 于A ,B 两点,AM ⊥l ,BN ⊥l ,M ,N 为垂足,点Q 为MN 的中点,|Q F |=2,则p =________.解析:如图,由抛物线的几何性质可得,以AB 为直径的圆与准线相切,且切点为Q,△MFN 是以∠MFN 为直角的直角三角形,∴|MN |=2|Q F |=4,过B 作BD ⊥AM ,垂足为D ,∴|AB |=|BD |sin 60°=432=833.设A (x 1,y 1),B (x 2,y 22=2px ,得12x 2-20px +3p 2=0,∴x 1+x 2=53p ,∴|AB |=x 1+x 2+p =53p +p =83p =833,∴p = 3.答案:36.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析:设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),21-y 213=1,22-y 223=1,两式相减,得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1,∴y 0=-3x 0.又∵y 0=x 0+m ,∴-m4代入抛物线方程得916m 2解得m =0或-8,经检验都符合.答案:0或-87.(2019·湖州六校联考)设抛物线C :y 2=4x 的焦点为F ,过点P (-1,0)作直线l 与抛物线C 交于A ,B 两点,若S △ABF =2,且|AF |<|BF |,则|AF ||BF |=________.解析:设直线l 的方程为x =my -1,将直线方程代入抛物线C :y 2=4x 的方程,得y2-4my +4=0,Δ=16(m 2-1)>0.设A (x 1,y 1),B (x 2,y 2),|y 1|<|y 2|,所以y 1+y 2=4m ,y 1·y 2=4,又S △ABF =2,所以121+m 2·|y 2-y 1|·2m 2+1=|y 2-y 1|=2,因此y 21+y 22=10,所以y 21+y 22y 1·y 2=104=52,从而|y 1y 2|=12,即|AF ||BF |=|x 1+1||x 2+1|=|my 1-1+1||my 2-1+1|=|y 1y 2|=12.答案:128.(2019·衢州模拟)已知椭圆C :x 22+y 2=1,若一组斜率为14的平行直线被椭圆C 所截线段的中点均在直线l 上,则l 的斜率为________.解析:设弦的中点坐标为M (x ,y ),设直线y =14x +m 与椭圆相交于A (x 1,y 1),B (x 2,y 2=14x +m ,y 2=1消去y ,得9x 2+8mx +16m 2-16=0,Δ=64m 2-4×9×(16m 2-16)>0,解得-324<m <324,x 1+x 2=-8m 9,x 1x 2=16m 2-169,∵M (x ,y )为弦AB 的中点,∴x 1+x 2=2x ,解得x =-4m9,∵m -324,x -23,=14x +m ,=-4m 9消去m ,得y =-2x ,则直线l 的方程为y =-2x ,x -23,∴直线l 的斜率为-2.答案:-29.(2018·东阳适应)已知椭圆x 2a2+y 2=1(a >1).(1)若A (0,1)到焦点的距离为3,求椭圆的离心率.(2)Rt△ABC 以A (0,1)为直角顶点,边AB ,AC 与椭圆交于两点B ,C .若△ABC 面积的最大值为278,求a 的值.解:(1)由题可得a =3,所以c =2,所以e =c a =63.(2)不妨设AB 斜率k >0,则AB :y =kx +1,AC :y =-1kx +1,kx+1,y2=1得(1+a2k2)x2+2a2kx=0,解得xB=-2a2k1+a2k2,同理xC=2a2kk2+a2,S=12|AB||AC|=2a4·k1+k2a2k4+a4k2+k2+a2=2a4·k+1ka2k2+a2k2+a4+1=2a4·k+1ka+a2-12,设t=k+1k,则t≥2,S=2a4·ta2t2+a2-12=2a4a2t+a2-12t≤a3a2-1,当且仅当t=a2-1a≥2,即a≥1+2时取等号,由a3a2-1=278,解得a=3,a=3+29716(舍),若a<1+2,显然无解.∴a=3.10.(2019·嘉兴模拟)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为33,F1,F2分别为椭圆C的左、右焦点,过F2的直线l与C相交于A,B两点,△F1AB的周长为4 3.(1)求椭圆C的方程;(2)若椭圆C上存在点P,使四边形OAPB为平行四边形,求此时直线l的方程.解:(1)∵椭圆的离心率为33,∴ca=33,∴a=3c,又△F1AB的周长为43,∴4a=43,解得a=3,∴c=1,b=2,∴椭圆C的标准方程为x23+y22=1.(2)设点A(x1,y1),B(x2,y2),P(x,y),∵当直线l的斜率不存在时,这样的直线不满足题意,∴设直线l的斜率为k,则直线l的方程为y=k(x-1),将直线l的方程代入椭圆方程,整理得(2+3k2)x2-6k2x+3k2-6=0,∴x 1+x 2=6k22+3k2,故y 1+y 2=k (x 1+x 2)-2k =6k 32+3k 2-2k =-4k2+3k 2.∵四边形OAPB 为平行四边形,∴OP =OA +OB ,从而x 0=x 1+x 2=6k 22+3k 2,y 0=y 1+y 2=-4k2+3k2,又P (x 0,y 032化简得3k 4-4k 2-4=0,解得k =±2,故所求直线l 的方程为y =±2(x -1).二上台阶,自主选做志在冲刺名校1.(2018·湖州质检)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),不经过原点O 的直线l :y =kx+m (k >0)与椭圆E 相交于不同的两点A ,B ,直线OA ,AB ,OB 的斜率依次构成等比数列.(1)求a ,b ,k 的关系式;(2)若离心率e =12且|AB |=7|m +1m |,当m 为何值时,椭圆的焦距取得最小值?解:(1)设A (x 1,y 1),B (x 2,y 2),由题意得k 2=k OA ·k OB =y 1y 2x 1x 2.+y 2b 2=1,kx +m消去y ,整理得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0,故Δ=(2a 2km )2-4(b 2+a 2k 2)(a 2m 2-a 2b 2)>0,即b 2-m 2+a 2k 2>0,且x 1+x 2=-2a 2km b 2+a 2k 2,x 1·x 2=a 2m 2-a 2b2b 2+a 2k2,所以k 2=y 1y 2x 1x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2,即km (x 1+x 2)+m 2=0,-2a 2k 2m 2b 2+a 2k2+m 2=0.又直线不经过原点,所以m ≠0,所以b 2=a 2k 2,即b =ak .(2)因为e =12,则a =2c ,b =3c ,k =32,所以x 1+x 2=-2a 2km b 2+a 2k 2=-23m 3,x 1·x 2=a 2m 2-a 2b 2b 2+a 2k 2=23m 2-2c 2,所以|AB |=1+k 2|x 1-x 2|=72x 1+x 22-4x 1·x 2=72·=72·-4m 23+8c 2=7|m +1m |,化简得2c 2=4m 23+1m 2+2≥433+2(Δ>0恒成立),当且仅当4m 23=1m 2,即m =±4122时,焦距最小.综上,当m =±4122时,椭圆的焦距取得最小值.2.(2018·学军适考)已知抛物线C :x 2=4y ,过点P (0,m )(m >0)的动直线l 与C 相交于A ,B 两点,抛物线C 在点A 和点B 处的切线相交于点Q,直线A Q,B Q 与x 轴分别相交于点E ,F .(1)写出抛物线C 的焦点坐标和准线方程;(2)求证:点Q 在直线y =-m 上;(3)判断是否存在点P ,使得四边形PE Q F 为矩形?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)焦点坐标为(0,1),准线方程为y =-1.(2)证明:由题意知直线l 的斜率存在,故设l 的方程为y =kx +m .=kx +m ,2=4y ,得x 2-4kx -4m =0,由题意,得Δ=16k 2+16m >0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4m ,所以抛物线在点A 处的切线方程为y -14x 21=12x 1(x -x 1),化简,得y =12x 1x -14x 21,①同理,抛物线在点B 处的切线方程为y =12x 2x -14x 22.②联立方程①②,得12x 1x -14x 21=12x 2x -14x 22,即12(x 1-x 2)x =14(x 1-x 2)(x 1+x 2),因为x 1≠x 2,所以x =12(x 1+x 2),代入①,得y =14x 1x 2=-m ,所以点Q(2k ,-m ).所以点Q 在直线y =-m 上.(3)假设存在点P ,使得四边形PE Q F 为矩形,由四边形PE Q F 为矩形,得E Q⊥F Q,即A Q⊥B Q,所以k A Q ·k B Q =-1,即12x 1·12x 2=-1.由(2),得14x 1x 2=14(-4m )=-1,解得m =1.所以P (0,1).以下只要验证此时的四边形PE Q F 为平行四边形即可.在①中,令y =0,得1同理得2所以直线EP 的斜率为k EP =1-00-12x 1=-2x 1,直线F Q 的斜率k F Q =0--112x 2-x 1+x 22=-2x 1,所以k EP =k F Q ,即EP ∥F Q.同理PF ∥E Q.所以四边形PE Q F 为平行四边形.综上所述,存在点P (0,1),使得四边形PE Q F 为矩形.。

高考数学一轮复习专题训练—圆锥曲线的定值问题

高考数学一轮复习专题训练—圆锥曲线的定值问题

圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

2020届浙江一轮复习通用版9.10圆锥曲线的综合问题作业

2020届浙江一轮复习通用版9.10圆锥曲线的综合问题作业

[基础达标]1.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2在x 轴上,离心率为12,在其上有一动点A ,A 到点F 1距离的最小值是1.过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示.(1)求椭圆E 的方程;(2)判断▱ABCD 能否为菱形,并说明理由.解:(1)依题,令椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),c 2=a 2-b 2(c >0),所以离心率e =c a =12,即a =2c .令点A 的坐标为(x 0,y 0),所以x 20a 2+y 20b 2=1,焦点F 1(-c ,0),即|AF 1|=(x 0+c )2+y 20=x 20+2cx 0+c 2+b 2-b 2x 20a2 =c 2a 2x 20+2cx 0+a 2=|c a x 0+a |, 因为x 0∈[-a ,a ],所以当x 0=-a 时,|AF 1|min =a -c , 由题a -c =1,结合上述可知a =2,c =1,所以b 2=3, 于是椭圆E 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),直线AB 不能平行于x 轴,所以令直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1,得(3m 2+4)y 2-6my -9=0,所以y 1+y 2=6m3m 2+4,y 1·y 2=-93m 2+4.连接OA 、OB ,若▱ABCD 是菱形,则OA ⊥OB ,即OA →·OB →=0,于是有x 1·x 2+y 1·y 2=0,又x 1·x 2=(my 1-1)(my 2-1)=m 2y 1·y 2-m (y 1+y 2)+1,所以有(m 2+1)y 1·y 2-m (y 1+y 2)+1=0,得到-12m 2-53m 2+4=0,可见m 没有实数解,故▱ABCD 不能是菱形.2.(2019·金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值. 解:(1)设直线AB 的方程: y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4.(2)设直线AB 的方程为y =kx +m ,则|m -2|1+k 2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m , 所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m=()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减, 当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增, f (m )min =f (1)=4,所以|AB |min =2.3.(2019·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A 、B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23,由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条;当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎨⎧x 214+y 21=1x 224+y 22=1,整理得:y 1-y 2x 1-x 2=-14×x 1+x 2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1, 则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得:x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得:y 20<59, 由:r 2=(x 0-1)2+y 20=19+y 20, 所以19<r 2<23,解得:13<r <63.所以半径r 的取值范围为(13,63) .4.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b mx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0.①将线段AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.② 由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 5.(2019·湘中名校联考) 如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32.(1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2.所以a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)设点P 的坐标为(x P ,y P ), 因为直线l 过点B ,所以x =1是方程(*)的一个根.由根与系数的关系,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,所以点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0)得点Q 的坐标为(-k -1,-k 2-2k ).所以AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).因为AP ⊥AQ ,所以AP →·AQ →=0, 即-2k 2k 2+4[k -4(k +2)]=0. 因为k ≠0,所以k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意.故直线l 的方程为y =-83(x -1).6.(2019·学军中学高三模拟)已知椭圆x 2a 2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线P A 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解:(1)当P 点在x 轴上时,P (2,0),P A :y =±22(x -2),⎩⎨⎧y =±22(x -2)x2a 2+y 2=1⇒(1a 2+12)x2-2x +1=0,Δ=0⇒a 2=2,椭圆方程为x 22+y 2=1. (2)设切线为y =kx +m ,设P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m x 2+2y 2-2=0⇒(1+2k 2)x 2+4kmx +2m 2-2=0⇒Δ=0⇒m 2=2k 2+1, 且x 1=-2km1+2k 2,y 1=m 1+2k 2,y 0=2k +m ,则|PO |=y 20+4, PO 直线为y =y 02x ⇒A 到直线PO 距离d =|y 0x 1-2y 1|y 20+4,则S △POA =12|P A |·d =12|y 0x 1-2y 1|=12|(2k +m )-2km 1+2k 2-2m1+2k 2| =|1+2k 2+km 1+2k2m |=|k +m |=|k +1+2k 2|,所以(S -k )2=1+2k 2⇒k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0⇒S ≥22,此时k =±22,所以△POA 面积的最小值为22.[能力提升]1.(2019·浙江高考冲刺卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),点F ,B 分别是椭圆的右焦点与上顶点,O 为坐标原点,记△OBF 的周长与面积分别为C 和S .(1)求CS的最小值;(2)如图,过点F 的直线l 交椭圆于P ,Q 两点,过点F 作l 的垂线,交直线x =3b 于点R ,当C S取最小值时,求|FR ||PQ |的最小值.解:(1)△OBF 的周长C =b 2+c 2+b +c .△OBF 的面积S =12bc .CS=b 2+c 2+b +c12bc =2b 2+c 2+b +c bc ≥2·2bc +2bcbc=2+22,当且仅当b =c 时,CS的最小值为2+2 2. (2)由(1)得当且仅当b =c 时,CS的最小值为2+2 2. 此时椭圆方程可化为x 22c 2+ y 2c2=1.依题意可得过点F 的直线l 的斜率不能为0,故设直线l 的方程为x =my +c .联立⎩⎪⎨⎪⎧x =my +cx 2+2y 2=2c 2,整理得:(2+m 2)y 2+2mcy -c 2=0.y 1+y 2=-2mc 2+m 2,y 1y 2=-c 22+m 2,|PQ |=1+m 2(y 1+y 2)2-4y 1y 2=1+m 2×8c 2(m 2+1)2+m 2=22c ×m 2+1m 2+2.当m =0时,PQ 垂直横轴,FR 与横轴重合,此时|PQ |=2c ,|FR |=3b -c =2c ,|FR ||PQ |=2c2c= 2.当m ≠0时,设直线FR :y =-m (x -c ),令x =3c 得R (3c ,-2mc ), |FR |=2c m 2+1, |FR ||PQ |=2c m 2+1×m 2+222c (m 2+1)=m 2+22m 2+1=22(m 2+1+1m 2+1)>22×2=2,综上所述:当且仅当m =0时,|FR ||PQ |取最小值为 2.2.(2019·杭州市第一次高考数学检测)设点A ,B 分别是x ,y 轴上的两个动点,AB =1.若AC →=λBA →(λ>0).(1)求点C 的轨迹Γ;(2)过点D 作轨迹Γ的两条切线,切点分别为P ,Q ,过点D 作直线m 交轨迹Γ于不同的两点E ,F ,交PQ 于点K ,问是否存在实数t ,使得1|DE |+1|DF |=t|DK |恒成立,并说明理由. 解:(1)设A (a ,0),B (0,c ),C (x ,y ),则BA →=(a ,-c ),AC →=(x -a ,y ).所以⎩⎪⎨⎪⎧x -a =λa y =-λc,消去a ,c ,得点C 的轨迹Γ为x 2(λ+1)2+y 2λ2=1.(2)设点E ,F ,K 的横坐标分别为x E ,x F ,x K , 设点D (s ,t ),则直线PQ 的方程为s (λ+1)2x +tλ2y =1.设直线m 的方程:y =kx +b ,所以t =ks +b . 计算得x K =1-t λ2bs (λ+1)2+tλ2k .将直线m 代入椭圆方程,得⎝ ⎛⎭⎪⎫k 2λ2+1(λ+1)2x 2+2kb λ2x +b 2λ2-1=0, 所以x E +x F =-2kbλ2(λ+1)2+k 2,x E x F =b 2-λ2λ2(λ+1)2+k 2,所以|DK ||DE |+|DK ||DF |=|x D -x K ||x D -x E |+|x D -x K ||x D -x F |=⎪⎪⎪⎪⎪⎪s -1-t λ2b s (λ+1)2+tλ2k ·|2x D -(x F +x E )||x 2D -x D (x F +x E )+x F x E| =2.验证当m 的斜率不存在时成立.故存在实数t =2,使得1|DE |+1|DF |=t|DK |恒成立.。

高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(五十) 圆锥曲线的综合问题一保高考,全练题型做到高考达标1.(2019·台州模拟)已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线的斜率的取值范围是( )A.⎣⎡⎦⎤-33,33 B .[-3,3] C.⎝⎛⎭⎫-33,33 D .(-3,3)解析:选A 易知该双曲线的渐近线方程为y =±33x ,当过右焦点的两条直线分别与两条渐近线平行,即两条直线的斜率分别为33和-33时,这两条直线与双曲线右支分别只有一个交点,所以此直线的斜率的取值范围是⎣⎡⎦⎤-33,33. 2.(2018·宁波调研)已知不过原点O 的直线交抛物线y 2=2px 于A ,B 两点,若OA ,AB 的斜率分别为k OA =2,k AB =6,则OB 的斜率为( )A .3B .2C .-2D .-3解析:选D 由题意可知,直线OA 的方程为y =2x ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧ y =2x ,y 2=2px ,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =p2,y =p ,所以A ⎝⎛⎭⎫p 2,p ,则直线AB 的方程为y -p =6⎝⎛⎭⎫x -p 2,即y =6x -2p ,与抛物线方程y 2=2px 联立得⎩⎪⎨⎪⎧y =6x -2p ,y 2=2px ,解得⎩⎨⎧x =2p 9,y =-2p 3或⎩⎪⎨⎪⎧x =p 2,y =p ,所以B ⎝⎛⎭⎫2p 9,-2p3,所以直线OB 的斜率k OB =-2p32p9=-3. 3.(2018·杭州二模)倾斜角为π4的直线经过椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,与椭圆交于A ,B 两点,且AF =2FB ,则该椭圆的离心率为( )A.32 B.23 C.22D.33解析:选B 由题可知,直线的方程为y =x -c ,与椭圆方程联立得⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =x -c ,∴(a 2+b 2)y 2+2b 2cy -b 4=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=-2b 2c a 2+b 2,y 1y 2=-b4a 2+b 2,又AF=2FB ,∴(c -x 1,-y 1)=2(x 2-c ,y 2),∴-y 1=2y 2,即⎩⎪⎨⎪⎧-y 2=-2b 2c a 2+b 2,-2y 22=-b4a 2+b2,∴12=4c 2a 2+b 2,∴e =23,故选B. 4.(2018·温州十校联考)已知点P 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)右支上一点,F 1是双曲线的左焦点,且双曲线的一条渐近线恰是线段PF 1的中垂线,则该双曲线的离心率是( )A. 2B. 3 C .2D. 5解析:选D 设直线PF 1:y =a b (x +c ),则与渐近线y =-b a x 的交点为M ⎝⎛⎭⎫-a 2c ,ab c .因为M 是PF 1的中点,利用中点坐标公式,得P ⎝⎛⎭⎫-2a 2c +c ,2abc ,因为点P 在双曲线上,所以满足(b 2-a 2)2a 2c 2-4a 2b 2c 2b2=1,整理得c 4=5a 2c 2,解得e = 5. 5.(2019·丽水五校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过点F 且倾斜角为60°的直线交C 于A ,B 两点,AM ⊥l ,BN ⊥l ,M ,N 为垂足,点Q 为MN 的中点,|Q F |=2,则p =________.解析:如图,由抛物线的几何性质可得,以AB 为直径的圆与准线相切,且切点为Q ,△MFN 是以∠MFN 为直角的直角三角形,∴|MN |=2|Q F |=4,过B 作BD ⊥AM ,垂足为D ,∴|AB |=|BD |sin 60°=432=833.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,y =3⎝⎛⎭⎫x -p 2,得12x 2-20px +3p 2=0,∴x 1+x 2=53p ,∴|AB |=x 1+x 2+p =53p +p =83p =833,∴p = 3.答案: 36.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.解析:设M (x 1,y 1),N (x 2,y 2),MN 的中点P (x 0,y 0),则⎩⎨⎧x 21-y 213=1,x 22-y223=1,两式相减,得(x 2-x 1)(x 2+x 1)=13(y 2-y 1)(y 2+y 1),显然x 1≠x 2.∴y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=3,即k MN ·y 0x 0=3,∵M ,N 关于直线y =x +m 对称,∴k MN =-1, ∴y 0=-3x 0.又∵y 0=x 0+m ,∴P ⎝⎛⎭⎫-m 4,3m 4, 代入抛物线方程得916m 2=18×⎝⎛⎭⎫-m 4, 解得m =0或-8,经检验都符合. 答案:0或-87.(2019·湖州六校联考)设抛物线C :y 2=4x 的焦点为F ,过点P (-1,0)作直线l 与抛物线C 交于A ,B 两点,若S △ABF =2,且|AF |<|BF |,则|AF ||BF |=________. 解析:设直线l 的方程为x =my -1,将直线方程代入抛物线C :y 2=4x 的方程,得y 2-4my +4=0,Δ=16(m 2-1)>0.设A (x 1,y 1),B (x 2,y 2),|y 1|<|y 2|,所以y 1+y 2=4m ,y 1·y 2=4,又S △ABF =2,所以121+m 2·|y 2-y 1|·2m 2+1=|y 2-y 1|=2,因此y 21+y 22=10,所以y 21+y 22y 1·y 2=104=52,从而⎪⎪⎪⎪y 1y 2=12,即|AF ||BF |=|x 1+1||x 2+1|=|my 1-1+1||my 2-1+1|=⎪⎪⎪⎪y 1y 2=12. 答案:128.(2019·衢州模拟)已知椭圆C :x 22+y 2=1,若一组斜率为14的平行直线被椭圆C 所截线段的中点均在直线l 上,则l 的斜率为________.解析:设弦的中点坐标为M (x ,y ),设直线y =14x +m 与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,由⎩⎨⎧y =14x +m ,x22+y 2=1消去y ,得9x 2+8mx +16m 2-16=0,Δ=64m 2-4×9×(16m 2-16)>0,解得-324<m <324,x 1+x 2=-8m 9,x 1x 2=16m 2-169,∵M (x ,y )为弦AB 的中点,∴x 1+x 2=2x ,解得x =-4m9,∵m ∈⎝⎛⎭⎫-324,324,∴x ∈⎝⎛⎫-23,23, 由⎩⎨⎧y =14x +m ,x =-4m9消去m ,得y =-2x ,则直线l 的方程为y =-2x ,x ∈⎝⎛⎭⎫-23,23, ∴直线l 的斜率为-2. 答案:-29.(2018·东阳适应)已知椭圆x 2a 2+y 2=1(a >1).(1)若A (0,1)到焦点的距离为3,求椭圆的离心率.(2)Rt △ABC 以A (0,1)为直角顶点,边AB ,AC 与椭圆交于两点B ,C .若△ABC 面积的最大值为278,求a 的值.解:(1)由题可得a =3,所以c =2,所以e =c a =63.(2)不妨设AB 斜率k >0,则AB :y =kx +1, AC :y =-1k x +1, 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1得(1+a 2k 2)x 2+2a 2kx =0, 解得x B =-2a 2k 1+a 2k 2,同理x C =2a 2k k 2+a 2,S =12|AB ||AC |=2a 4·k (1+k 2)a 2k 4+a 4k 2+k 2+a 2=2a 4·k +1ka 2k 2+a 2k2+a 4+1=2a 4·k +1ka 2⎝⎛⎭⎫k +1k 2+(a 2-1)2,设t =k +1k ,则t ≥2,S =2a 4·ta 2t 2+(a 2-1)2=2a 4a 2t +(a 2-1)2t≤a 3a 2-1,当且仅当t =a 2-1a ≥2,即a ≥1+2时取等号,由a 3a 2-1=278,解得a =3,a =3+29716(舍),若a <1+2,显然无解.∴a =3.10.(2019·嘉兴模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,F 1,F 2分别为椭圆C 的左、右焦点,过F 2的直线l 与C 相交于A ,B 两点,△F 1AB 的周长为4 3.(1)求椭圆C 的方程;(2)若椭圆C 上存在点P ,使四边形OAPB 为平行四边形,求此时直线l 的方程. 解:(1)∵椭圆的离心率为33,∴c a =33,∴a =3c ,又△F 1AB 的周长为43,∴4a =43, 解得a =3,∴c =1,b =2, ∴椭圆C 的标准方程为x 23+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),∵当直线l 的斜率不存在时,这样的直线不满足题意, ∴设直线l 的斜率为k ,则直线l 的方程为y =k (x -1), 将直线l 的方程代入椭圆方程, 整理得(2+3k 2)x 2-6k 2x +3k 2-6=0, ∴x 1+x 2=6k 22+3k 2,故y 1+y 2=k (x 1+x 2)-2k =6k 32+3k 2-2k =-4k 2+3k 2. ∵四边形OAPB 为平行四边形,∴OP =OA +OB , 从而x 0=x 1+x 2=6k 22+3k 2,y 0=y 1+y 2=-4k 2+3k 2,又P (x 0,y 0)在椭圆上,∴⎝⎛⎭⎫6k 22+3k 223+⎝ ⎛⎭⎪⎫-4k 2+3k 222=1,化简得3k 4-4k 2-4=0,解得k =±2, 故所求直线l 的方程为y =±2(x -1). 二上台阶,自主选做志在冲刺名校1.(2018·湖州质检)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),不经过原点O 的直线l :y =kx+m (k >0)与椭圆E 相交于不同的两点A ,B ,直线OA ,AB ,OB 的斜率依次构成等比数列.(1)求a ,b ,k 的关系式;(2)若离心率e =12且|AB |=7⎪⎪⎪⎪m +1m ,当m 为何值时,椭圆的焦距取得最小值? 解:(1)设A (x 1,y 1),B (x 2,y 2), 由题意得k 2=k OA ·k OB =y 1y 2x 1x 2. 联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =kx +m 消去y ,整理得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0,故Δ=(2a 2km )2-4(b 2+a 2k 2)(a 2m 2-a 2b 2)>0, 即b 2-m 2+a 2k 2>0,且x 1+x 2=-2a 2km b 2+a 2k 2,x 1·x 2=a 2m 2-a 2b 2b 2+a 2k 2,所以k 2=y 1y 2x 1x 2=k 2x 1x 2+km (x 1+x 2)+m2x 1x 2,即km (x 1+x 2)+m 2=0,-2a 2k 2m 2b 2+a 2k2+m 2=0. 又直线不经过原点,所以m ≠0,所以b 2=a 2k 2,即b =ak . (2)因为e =12,则a =2c ,b =3c ,k =32,所以x 1+x 2=-2a 2km b 2+a 2k 2=-23m 3,x 1·x 2=a 2m 2-a 2b 2b 2+a 2k 2=23m 2-2c 2, 所以|AB |=1+k 2|x 1-x 2|=72(x 1+x 2)2-4x 1·x 2=72·⎝⎛⎭⎫-23m 32-4⎝⎛⎭⎫23m 2-2c 2=72·-4m 23+8c 2=7⎪⎪⎪⎪m +1m , 化简得2c 2=4m 23+1m 2+2≥433+2(Δ>0恒成立),当且仅当4m 23=1m 2,即m =±4122时,焦距最小.综上,当m =±4122时,椭圆的焦距取得最小值.2.(2018·学军适考)已知抛物线C :x 2=4y ,过点P (0,m )(m >0)的动直线l 与C 相交于A ,B 两点,抛物线C 在点A 和点B 处的切线相交于点Q ,直线A Q ,B Q 与x 轴分别相交于点E ,F .(1)写出抛物线C 的焦点坐标和准线方程; (2)求证:点Q 在直线y =-m 上;(3)判断是否存在点P ,使得四边形PE Q F 为矩形?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)焦点坐标为(0,1),准线方程为y =-1. (2)证明:由题意知直线l 的斜率存在, 故设l 的方程为y =kx +m .由方程组⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0,由题意,得Δ=16k 2+16m >0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4m , 所以抛物线在点A 处的切线方程为y -14x 21=12x 1(x -x 1), 化简,得y =12x 1x -14x 21,① 同理,抛物线在点B 处的切线方程为y =12x 2x -14x 22.②联立方程①②,得12x 1x -14x 21=12x 2x -14x 22, 即12(x 1-x 2)x =14(x 1-x 2)(x 1+x 2),因为x 1≠x 2,所以x =12(x 1+x 2), 代入①,得y =14x 1x 2=-m ,所以点Q ⎝⎛⎭⎫x 1+x 22,-m ,即Q (2k ,-m ).所以点Q 在直线y =-m 上.(3)假设存在点P ,使得四边形PE Q F 为矩形, 由四边形PE Q F 为矩形,得E Q ⊥F Q ,即A Q ⊥B Q , 所以k A Q ·k B Q =-1,即12x 1·12x 2=-1.由(2),得14x 1x 2=14(-4m )=-1,解得m =1.所以P (0,1).以下只要验证此时的四边形PE Q F 为平行四边形即可. 在①中,令y =0,得E ⎝⎛⎭⎫12x 1,0. 同理得F ⎝⎛⎭⎫12x 2,0.所以直线EP 的斜率为k EP =1-00-12x 1=-2x 1,直线F Q 的斜率k F Q =0-(-1)12x 2-x 1+x 22=-2x 1, 所以k EP =k F Q ,即EP ∥F Q . 同理PF ∥E Q .所以四边形PE Q F 为平行四边形.综上所述,存在点P (0,1),使得四边形PE Q F 为矩形.。

相关文档
最新文档