回溯算法解决0-1背包问题(DOC)

合集下载

动态规划与回溯法解决0-1背包问题

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。

原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。

但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。

过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。

判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。

分支限界法结局0~1背包问题

分支限界法结局0~1背包问题

Bound( i ) cleft = c – cw; b = cp; while( i <= n && w[i] <= cleft ){ cleft -= w[i]; b += p[i]; i++; } if( i<=n) b += p[i]/w[i] * cleft; return b; }

此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结 点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为 止。
与回溯法区别
求解目标不同: 一般而言,回溯法的求解目标是找出解空间树中满 足的约束条件的所有解,而分支限界法的求解目标 则是尽快的找出满足约束条件的一个解。

搜索方法不同 回溯法使用深度优先方法搜索,而分支限界一般用宽 度优先或最佳优先方法来搜索;

按照队列先进先出(FIFO)原则选取下一个节点为扩展节点;
数据结构:队列
(2)优先队列式分支限界法

按照优先队列中规定的优先级选取优先级最高的节点成为当前 扩展节点。 数据结构:堆 最大优先队列:使用最大堆,体现最大效益优先

最小优先队列:使用最小堆,体现最小费用优先
【0-1背包问题】
物品数量n=3,重量w=(20,15,15),价值v=(40,25,25) 背包容量c=30,试装入价值和最大的物品? 解空间:{(0,0,0),(0,0,1),…,(1,1,1)}
分支限界法解决0/1背包问题
分支限界法思想概述 与回溯法区别 求解步骤 常见的两种分支限界法 0-1背包问题
分支限界法的基本思想
分支限界法基本思想

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜 索问题的解空间树。

回溯法解决0-1背包问题

回溯法解决0-1背包问题

回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。

第i件物品的价值是v[i],重量是w[i]。

求解将哪些物品装⼊背包可使价值总和最⼤。

所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。

回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。

在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。

对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。

为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。

#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。

【优质】背包问题实验报告-范文word版 (13页)

【优质】背包问题实验报告-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==背包问题实验报告篇一:背包问题实验报告课程名称:任课教师:班级:201X姓名:实验报告算法设计与分析实验名称:解0-1背包问题王锦彪专业:计算机应用技术学号:11201X 严焱心完成日期: 201X年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。

二、实验内容及要求:1.要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2.要求显示结果。

三、实验环境和工具:操作系统:Windows7 开发工具:Eclipse3.7.1 jdk6 开发语言:Java四、实验问题描述:0/1背包问题:现有n种物品,对1<=i<=n,第i种物品的重量为正整数Wi,价值为正整数Vi,背包能承受的最大载重量为正整数C,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过C且总价值尽量大。

动态规划算法描述:根据问题描述,可以将其转化为如下的约束条件和目标函数:nmax?vixi?n??wixi?C?i?1?x?{0,1}(1?i?n)?i寻找一个满足约束条件,并使目标函数式达到最大的解向量nX?(x1,x2,x3,......,xn)wixi,使得?i?1?C,而且?vixii?1n达到最大。

0-1背包问题具有最优子结构性质。

假设(x1,x2,x3,......,xn)是所给的问题的一个最优解,则(x2,x3,......,xn)是下面问题的一个最优解:?n??wixi?C?w1x1max?i?2?x?{0,1}(2?i?n)?i如果不是的话,设(y?vixi。

i?2nn2,y3,......,yn)是这个问题的一个最优解,则?viyi??vixi,且w1x1 i?2i?2n??wiyii?2?C。

回朔法实验报告

回朔法实验报告

一、实验目的1. 理解回溯法的基本原理和适用场景。

2. 掌握回溯法在解决实际问题中的应用。

3. 通过实验,提高编程能力和算法设计能力。

二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。

它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。

回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。

三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。

1. 实验环境:Windows操作系统,Python 3.7以上版本。

2. 实验工具:Python编程语言。

3. 实验步骤:(1)定义背包容量和物品重量、价值列表。

(2)定义回溯法函数,用于遍历所有可能的解。

(3)在回溯法函数中,判断当前解是否满足背包容量约束。

(4)若满足约束,则计算当前解的价值,并更新最大价值。

(5)若不满足约束,则回溯至前一步,尝试下一个解。

(6)输出最优解及其价值。

四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。

2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。

(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。

(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。

五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。

在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。

在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。

0_1背包问题的多种解法

0_1背包问题的多种解法

页脚内容1一、 问题描述0/1背包问题:现有n 种物品,对1<=i<=n ,已知第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数W ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过W 且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)二、 算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:于是,问题就归结为寻找一个满足约束条件(1),并使目标函数式(2)达到最大的解向量),......,,,(321n x x x x X =。

首先说明一下0-1背包问题拥有最优解。

假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤ni i i ini i i x v n i x x w W x w 2211max )2}(1,0{。

如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i ni ii ii xv y v 22,且∑=≤+n i i i W y w x w 211。

因此,∑∑∑====+>+ni i i n i n i i i i i x v x v x v y v x v 1221111,这说明),........,,,(321n y y y x 是所给的0-1背包问题比),........,,,(321n x x x x 更优的解,从而与假设矛盾。

穷举法:用穷举法解决0-1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。

回溯法核⼼:能进则进,进不了则换,换不了则退。

(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。

解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。

将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。

若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。

在层数达到物品的个数时,停⽌继续扩展,开始回溯。

注:如何回溯呢?怎样得到的,怎样恢复。

放⼊背包中的重量取出,加在bagV上的价值减去。

约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。

核⼼结构:递归思路进⾏解决。

层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。

# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。

01背包问题c语言代码回溯法

01背包问题c语言代码回溯法

以下是使用C语言实现01背包问题的回溯法代码:```c#include <stdio.h>#include <stdlib.h>// 初始化背包struct knapsack {int maxWeight; // 背包最大承重int *items; // 物品数组int n; // 物品数量};// 定义物品重量、价值和数量int weights[] = {2, 2, 6, 5, 4};int values[] = {6, 3, 5, 4, 6};int quantities[] = {3, 2, 2, 1, 1};// 初始化背包最大承重和当前承重int maxWeight = 10;int currentWeight = 0;// 初始化最大价值为0int maxValue = 0;// 遍历物品数组void traverseItems(struct knapsack *knapsack, int index) { // 对于每个物品,遍历其数量for (int i = 0; i < knapsack->quantities[index]; i++) {// 如果当前物品可以放入背包装且当前承重不超过背包最大承重,计算放入该物品后的总价值,并更新最大价值if (currentWeight + weights[index] <= knapsack->maxWeight) {int currentValue = values[index] * knapsack->quantities[index];if (currentValue > maxValue) {maxValue = currentValue;}}// 回溯,将当前物品从背包装中移除,递归地尝试下一个物品knapsack->quantities[index]--;if (index < knapsack->n - 1) {traverseItems(knapsack, index + 1);}knapsack->quantities[index]++; // 恢复物品数量,以便下次遍历尝试放入其他物品}}// 主函数int main() {// 初始化背包装和物品数组struct knapsack knapsack = {maxWeight, weights, 5};knapsack.items = (int *)malloc(sizeof(int) * knapsack.n);for (int i = 0; i < knapsack.n; i++) {knapsack.items[i] = values[i] * quantities[i]; // 根据价值和数量计算物品价值,并存储在物品数组中}knapsack.n = quantities[4]; // 由于最后一个物品的数量为1,因此只需遍历前n-1个物品即可得到所有可能的结果// 使用回溯法求解01背包问题,返回最大价值traverseItems(&knapsack, 0);printf("The maximum value is %d.\n", maxValue);free(knapsack.items); // 释放内存空间return 0;}```希望以上信息能帮助到你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《算法分析与设计》实验报告
2015-2016年第2学期
实验班级:
学生姓名:
学号:
指导老师:
信息工程学院
实验项目名称:回溯算法解决0-1背包问题
实验日期:2016年5 月18 日
一、实验类型:□√验证性□设计性
二、实验目的
掌握0—1背包问题的回溯算法
三、实验内容及要求
给定n种物品和一背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
四、实验步骤
#include<iostream>
using namespace std;
class Knap
{ friend int Knapsack(int p[],int w[],int c,int n );
public:
void print()
{
for(int m=1;m<=n;m++)
{ cout<<bestx[m]<<" ";
}
cout<<endl;
};
private:
int Bound(int i);
void Backtrack(int i);
int c;//背包容量
int n; //物品数
int *w;//物品重量数组
int *p;//物品价值数组
int cw;//当前重量
int cp;//当前价值
int bestp;//当前最优值
int *bestx;//当前最优解
int *x;//当前解
};
int Knap::Bound(int i)
{
//计算上界
int cleft=c-cw;//剩余容量
int b=cp;
//以物品单位重量价值递减序装入物品while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//装满背包
if(i<=n)
b+=p[i]/w[i]*cleft;
return b;
}
void Knap::Backtrack(int i)
{
if(i>n)
{
if(bestp<cp)
{ for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子树
{ x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
{ x[i]=0;
Backtrack(i+1);
}
}
class Object
{
friend int Knapsack(int p[],int w[],int c,int n); public:
int operator<=(Object a)const
{ return (d>=a.d);
}
private:
int ID;
float d;
};
int Knapsack(int p[],int w[],int c,int n)
{ //为Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n]; for(i=1;i<=n;i++)
{ Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)
return P;//装入所有物品//依物品单位重量排序
float f;
for( i=0;i<n;i++)
for(int j=i;j<n;j++)
{
if(Q[i].d<Q[j].d)
{
f=Q[i].d;
Q[i].d=Q[j].d;
Q[j].d=f;
}
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{ K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;K.cw=0;
K.c=c;K.n=n;
K.bestp=0;//回溯搜索
K.Backtrack(1);K.print();
delete [] Q;delete [] K.w;
delete [] K.p;
return K.bestp;
}
void main()
{
int *p;int *w; int c=0;int n=0;int i=0; cout<<"请输入背包个数:"<<endl; cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;w[0]=0;
cout<<"请输入各背包的价值:"<<endl; for(i=1;i<=n;i++)
cin>>p[i];
cout<<"请输入各背包的重量:"<<endl; for(i=1;i<=n;i++)
cin>>w[i];
cout<<"请输入背包容量:"<<endl; cin>>c;
cout<<Knapsack(p,w,c,n)<<endl;
}
五、实验结果
1、实验图形
2、结果分析
输入背包个数为4个,背包价值分别为30 25 26 15,背包重量分别为4 2 3 1,背包的容量分别为1 2 3 4,则得出的背包算法为0 0 0 1,最优值为15。

3、实验总结
本次的实验过程中,遇到了一些小问题。

最终通过百度的方式解决了,同时也让自己了解到所谓回溯法就是指为了避免生成不可能产生最优解的问题
状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产
生所需解的活结点,以此来减少问题的计算量,这种具有限界函数的深度优先
生成法就称为回溯法。

总之通过本次的算法设计的实验,我加深了对算法的设计与分析基础知识的了解,让自己对算法的掌握更加牢固,也让自己能够熟练的利用C++语言来
实现算法,同时实践动手能力也得到了一定的提高,做实验确实是一件让人快
速提高动手能力的事情。

相信自己以后的实验会做得越来越顺利。

相关文档
最新文档