C语言版贪心算法背包问题

合集下载

贪心算法-01背包问题

贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。

物品i的重量是wi,其价值为vi,背包的容量为C。

问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。

2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。

若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。

显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。

3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。

由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。

此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。

C++贪心算法实现部分背包问题

C++贪心算法实现部分背包问题

C++贪⼼算法实现部分背包问题问题描述:在部分背包问题中,可以不必拿⾛整个⼀件物品,⽽是可以拿⾛该物品的任意部分。

以此求得在限定背包总重量,从给定的物品中进⾏选择的情况下的最佳(总价值最⾼)的选择⽅案。

细节须知:分别输出到同⽂件夹下两个⽂本⽂件中,名称分别是:“backpack-object.txt”和“backpack-weight.txt”。

算法原理:先求出所有物品的单位重量价值并进⾏由⼤到⼩的排序。

其次从排序处于⾸位的物品开始选择直到⽆法完整装⼊背包的物品,将其部分装⼊背包以填满背包的总重量,从⽽求得价值最⾼的选择⽅案。

1 #include <cstdio>2 #include <iostream>3 #include <ctime>4 #include <windows.h>5 #include <algorithm>6 #include <fstream>7using namespace std;8struct object9{10int no;11double weight;12double value;13double average;14};15bool cmp(const object &x, const object &y)16{17return x.average > y.average;//从⼩到⼤排<,若要从⼤到⼩排则>18}19void greedySelector(int m,int W,int solution[],struct object object[]){20int i = 0,V = 0,j = 0;21while(object[i].weight < W)22 {23 solution[i] = 1;24 W = W - object[i].weight;25 V = V + object[i].value;26 i++;27 }28 V = V + (W/object[i].weight)*object[i].value;29 solution[i] = 1;30 cout << "The corresponding value of the optimal option is:" << V << endl;31/*for( i = 0; i < m; i++)32 {33 if(solution[i] == 1)34 {35 cout << object[i].no << endl;36 }37 }*/38}39int main(void)40{41 LARGE_INTEGER nFreq;42 LARGE_INTEGER nBeginTime;43 LARGE_INTEGER nEndTime;44 ofstream fout1;45 ofstream fout2;46 srand((unsigned int)time(NULL));47int m,i,j,t;48double W;49double cost;50 cout << "Please enter the number of times you want to run the program:";51 cin >> t;52 fout1.open("backpack-object.txt",ios::app);53if(!fout1){54 cerr<<"Can not open file 'backpack-object.txt' "<<endl;55return -1;56 }57 fout1.setf(ios_base::fixed,ios_base::floatfield); //防⽌输出的数字使⽤科学计数法58 fout2.open("backpack-weight.txt",ios::app);59if(!fout2){60 cerr<<"Can not open file 'backpack-weight.txt' "<<endl;61return -1;62 }63 fout2.setf(ios_base::fixed,ios_base::floatfield); //防⽌输出的数字使⽤科学计数法64for (j = 0;j < t;j++)65 {66 cout << "——————————————————The "<< j + 1 << "th test —————————————————"<<endl;67 m = 1 + rand()%100000; //物品个数68 W = 10 + rand()%100000; //背包总重量69 fout1 << m << ",";70 fout2 << (int)W << ",";71int solution[m];72object object[m];73for( i = 0;i < m;i++)74 {75object[i].no = i + 1;76object[i].value = 1 + rand()%10000;77object[i].weight = 1 + rand()%10000;78object[i].average = object[i].value/object[i].weight;79 }80 QueryPerformanceFrequency(&nFreq);81 QueryPerformanceCounter(&nBeginTime);82 sort(object,object + m,cmp);83 greedySelector(m,W,solution,object);84 QueryPerformanceCounter(&nEndTime);85 cost=(double)(nEndTime.QuadPart - nBeginTime.QuadPart) / (double)nFreq.QuadPart;86 fout1 << cost << endl;87 fout2 << cost << endl;88 cout << "The running time is:" << cost << " s" << endl;89 }90 fout1.close();91 fout2.close();92 cout << endl;93 cout << "Success!" << endl;94return0;95 }程序设计思路:① 数据结构:结构体中存储物品序号、物品的重量、物品的价值、物品的单位重量价值;② 利⽤C++⾃带的sort函数对结构体按照物品的单位重量价值进⾏降序排列;③ 从排序处于⾸位的物品开始选择直到⽆法完整装⼊背包的物品,将其部分装⼊背包以填满背包的总重量,从⽽求得价值最⾼的选择⽅案。

贪心法解决背包问题

贪心法解决背包问题

算法分析实验报告贪心法解决背包问题学生姓名:专业:班级:学号:指导教师:2017年6月12日目录一、实验题目 (2)二、实验目的 (2)三、实验要求 (2)四、实现过程 (3)1、实验设计: (3)2、调试分析 (5)3、运行结果: (6)4、实验总结: (6)五、参考文献 (6)一、实验题目贪心法解决背包问题二、实验目的1)以背包问题为例,掌握贪心法的基本设计策略。

2)熟练掌握各种贪心策略情况下的背包问题的算法并实现;其中:量度标准分别取:效益增量v、物品重量w、v/ w比值;3) 分析实验结果来验证理解贪心法中目标函数设计的重要性。

三、实验要求1.[问题描述]:给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为C。

应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部装入背包,但不可以重复装入。

2.[算法]:贪心法的基本思路:从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。

当达到某算法中的某一步不能再继续前进时,算法停止。

该算法存在问题:1)不能保证求得的最后解是最佳的;2)不能用来求最大或最小解问题;3)只能求满足某些约束条件的可行解的范围。

四、实现过程1、实验设计:1.用贪心法求解背包问题的关键是如何选定贪心策略,使得按照一定的顺序选择每个物品,并尽可能的装入背包,直至背包装满。

至少有三种看似合理的贪心策略:1)按物品价值v降序装包,因为这可以尽可能快的增加背包的总价值。

但是,虽然每一步选择获得了背包价值的极大增长,但背包容量却可能消耗太快,使得装入背包得物品个数减少,从而不能保证目标函数达到最大。

2)按物品重量w升序装包,因为这可以装入尽可能多的物品,从而增加背包总价值。

但是,虽然每一步选择使背包得容量消耗得慢了,但背包价值却没能保证迅速增长,从而不能保证目标函数达到最大。

c语言算法--贪婪算法---01背包问题

c语言算法--贪婪算法---01背包问题

c语言算法--贪婪算法---0/1背包问题在0 / 1背包问题中,需对容量为c 的背包进行装载。

从n 个物品中选取装入背包的物品,每件物品i 的重量为wi ,价值为pi 。

对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳装载是指所装入的物品价值最高,即n ?i=1pi xi 取得最大值。

约束条件为n ?i =1wi xi≤c 和xi?[ 0 , 1 ] ( 1≤i≤n)。

在这个表达式中,需求出xt 的值。

xi = 1表示物品i 装入背包中,xi =0 表示物品i 不装入背包。

0 / 1背包问题是一个一般化的货箱装载问题,即每个货箱所获得的价值不同。

货箱装载问题转化为背包问题的形式为:船作为背包,货箱作为可装入背包的物品。

例1-8 在杂货店比赛中你获得了第一名,奖品是一车免费杂货。

店中有n 种不同的货物。

规则规定从每种货物中最多只能拿一件,车子的容量为c,物品i 需占用wi 的空间,价值为pi 。

你的目标是使车中装载的物品价值最大。

当然,所装货物不能超过车的容量,且同一种物品不得拿走多件。

这个问题可仿照0 / 1背包问题进行建模,其中车对应于背包,货物对应于物品。

0 / 1背包问题有好几种贪婪策略,每个贪婪策略都采用多步过程来完成背包的装入。

在每一步过程中利用贪婪准则选择一个物品装入背包。

一种贪婪准则为:从剩余的物品中,选出可以装入背包的价值最大的物品,利用这种规则,价值最大的物品首先被装入(假设有足够容量),然后是下一个价值最大的物品,如此继续下去。

这种策略不能保证得到最优解。

例如,考虑n=2, w=[100,10,10], p =[20,15,15], c = 1 0 5。

当利用价值贪婪准则时,获得的解为x= [ 1 , 0 , 0 ],这种方案的总价值为2 0。

而最优解为[ 0 , 1 , 1 ],其总价值为3 0。

另一种方案是重量贪婪准则是:从剩下的物品中选择可装入背包的重量最小的物品。

贪婪法求解背包问题

贪婪法求解背包问题

贪婪法求解背包问题-CAL-FENGHAI.-(YICAI)-Company One1实验二贪婪法一、实验目的1)理解和掌握贪婪算法的基本思想;2)使用贪婪算法求解背包问题以及最小花费生成树问题。

二、方法原理贪心算法就是做出一系列选择,使原问题达到最优解。

在每一个决策点,都是做出当前看来的最优选择。

三、实验设备PC机一台,C语言、PASCAL语言、Matlab任选四、方法原理贪心算法就是做出一系列选择,使原问题达到最优解。

在每一个决策点,都是做出当前看来的最优选择。

五、实验内容1)利用贪婪法求如下背包问题的最优解:n=5,M=100,价值P={20,30,66,40,60 },重量为w={10,20,30,40,50}。

六、实验要求1)认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法;2)编写上机实验程序,作好上机前的准备工作;3)上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果);4)分析和解释计算结果;5)按照要求书写实验报告;源代码:#include<stdio.h>#include<stdlib.h>#include<iostream>using namespace std;#define n 5#define M 100typedef struct {int s;float p;//价值float w;float t;//价值重量比float x;}OBJECT;OBJECT obj[n];void swap(float &x, float &y) {float t;t = x;x = y;y = t;}float divide_and_conquer(OBJECT obj[], int low, int high) { int k, i = low;float z = obj[low].t;for (k = low + 1; k <= high; k++) {if (obj[k].t>z) {i += 1;if (i != k)swap(obj[i], obj[k]);}}swap(obj[low], obj[i]);return i;}void quick_sort(OBJECT obj[], int low, int high) {int k;if (low < high) {k = divide_and_conquer(obj, low, high);quick_sort(obj, low, k - 1);quick_sort(obj, k + 1, high);}}void sort_recover(OBJECT obj[]) {int i, j,temp;for (i = 0; i < n-1; i++) {for (j = 0; j < n - 1 - i; j++) {if (obj[j].s > obj[j + 1].s)swap(obj[j], obj[j + 1]);}}}float knapsack_greedy(OBJECT obj[]) {int i;float m,r=0;for(i=0;i<n;i++){obj[i].t=obj[i].p/obj[i].w;obj[i].x = 0;}quick_sort(obj,0,4);m = M;printf(" 物体价值重量价值重量比结果\n");printf("=========================================\n");for (i = 0; i < n; i++) {if (obj[i].w <= m) {obj[i].x = 1;m -= obj[i].w;r += obj[i].p;}else {obj[i].x = m / obj[i].w;r += obj[i].x * obj[i].p;break;}}return r;}void main() {int i;float r;//float x[] = { 0 };float s[] = { 1,2,3,4,5 };float p[]={ 20,30,66,40,60 };float w[]={ 10,20,30,40,50 };for (i = 0; i < n; i++) {obj[i].s = s[i];obj[i].p = p[i];obj[i].w = w[i];}r = knapsack_greedy(obj);sort_recover(obj);for (i = 0; i < n; i++) {printf(" %d %2.0f %2.0f %2.1f %1.1f\n", obj[i].s, obj[i].p, obj[i].w, obj[i].t, obj[i].x);}printf("\n最大价值为:%f\n",r );printf("背包问题的解向量:X={");for (i = 0; i < n; i++) {printf("%1.1f",obj[i].x);if(i<4)printf(",");}printf("}");system("pause");}结果:。

背包问题C语言程序设计

背包问题C语言程序设计

1 问题要求及任务描述1.1 题目要求假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。

例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解:(1,4,3,2)(1,4,5)(8,2)(3,5,2)。

1.2 主要任务在给定物品数量,物品各自体积和背包体积的前提下,找出物体组合后的总体积与背包体积相等的物体组合2 解决问题的主要思路和方法2.1 关键问题如何选择第i件物品:(1)考虑物品i被选择,这种可能性仅当包含它不会超过方案总重量限制时才是可行的。

选中后,继续去考虑其余物品的选择。

(2)考虑物品i不被选择,这种可能性仅当不包含物品i也有可能会找到价值更大的方案的情况。

2.2 拟采用解决问题的方法可利用回溯法的设计思想来解决背包问题。

首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。

但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。

2.3 主要算法和处理流程图1.输入物品总个数2.依次输入各物品的体积3.输入背包总体积4.将物品排成一列,按顺序选取物品装入背包中,当物品太大不能装入时则弃之继续选取下一件,直到背包装满为止,5.出现在剩余的物品中找不到合适的物品填满背包的情况是说明刚刚装入背包的那件物品不适合,将它取出后继续选取后面的物品。

6.重复步骤4和5直至求出满足条件的解或者无解。

0-1背包问题c语言实现

0-1背包问题c语言实现

0-1背包问题c语言实现问题描述:给定n种物品和一个背包。

物品i的重量为w[i],其价值为v[i],背包的容量为c。

应如何选择装入背包的物品,使得装入背包中的物品的总价值最大。

每种物品最多装入一次。

0-1背包问题:对于要装入背包中的物品,只有两种选择:全部装入或者不装入。

背包问题:对于要装入背包中的物品,可以选择装入一部分,不一定要全部装入背包中。

算法分析:使用贪心策略求解此类问题时,首先要选出最优的度量标准。

可供选择的度量标准有三种:价值,容量,单位价值(v/w,价值/重量)。

显然,价值高的物品容量可能太大,容量大的物品价值也可能很低。

最优的度量标准是单位价值。

背包问题算法思路:1、将各个物品按照单位价值由高到低排序;2、取价值最高者放入背包;3、计算背包的剩余空间;4、重复2-3步,直到背包剩余容量=0或者物品全部装入背包为止(对于0-1背包,终止条件为背包剩余容量无法装入任意一件物品或者物品全部装入背包)。

下面是C语言实现(DEV c++4.9.9.2运行通过)[cpp]#includevoid package(int n,float c,float v[],float w[],float x[]); void package0_1(int n,float c,float v[],float w[],float x[]);int main(void){int n = 3;float c = 20;float v[] = {24,15,25};float w[] = {15,10,18};//已经按照单位价值降序排列float *x;x = (float*)malloc(sizeof(float)*n);printf("******背包*******\n");package(n,c,v,w,x);printf("*******0-1背包******\n");package0_1(n,c,v,w,x);system("PAUSE");}/** 背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入,0-1放入一部分)*/void package(int n,float c,float v[],float w[],float x[]){int i;for(i=0;i{x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i{if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c);}if(i<=n)//还可以放入一个物品的一部分{x[i] = c/w[i];printf("放入第%d件物品的%f部分.背包剩余容量为0.\n",(i+1),w[i]*x[i]);}}/** 0-1背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入)*/void package0_1(int n,float c,float v[],float w[],float x[]) {int i;for(i=0;i{x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i{if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c); }}#includevoid package(int n,float c,float v[],float w[],float x[]); void package0_1(int n,float c,float v[],float w[],float x[]);int main(void){int n = 3;float c = 20;float v[] = {24,15,25};float w[] = {15,10,18};//已经按照单位价值降序排列float *x;x = (float*)malloc(sizeof(float)*n);printf("******背包*******\n");package(n,c,v,w,x);printf("*******0-1背包******\n");package0_1(n,c,v,w,x);system("PAUSE");}/** 背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入,0-1放入一部分)*/void package(int n,float c,float v[],float w[],float x[]){int i;for(i=0;i<n;i++){x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i<n;i++){if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c);}if(i<=n)//还可以放入一个物品的一部分{x[i] = c/w[i];printf("放入第%d件物品的%f部分.背包剩余容量为0.\n",(i+1),w[i]*x[i]);}}/** 0-1背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入)*/void package0_1(int n,float c,float v[],float w[],float x[]){int i;for(i=0;i<n;i++){x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i<n;i++){if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c);}}虽然背包问题和0-1背包都具有最优子结构性质,但是背包问题用贪心算法求出来的是最优解,0-1背包问题通过贪心算法得不到最优解,因为无法保证最后能将背包装满,部分闲置的背包空间使总价值降低了。

c应用贪心算法求解背包问题

c应用贪心算法求解背包问题

实验五应用贪心算法求解背包问题学院:计算机科学与技术专业:计算机科学与技术学号:班级:姓名:一、实验内容:背包问题指的是:有一个承重为W的背包和n个物品,它们各自的重量和价值分别是n,假设Wwi和vi(1i n)wi1i,求这些物品中最有价值的一个子集。

如果每次选择某一个物品的时候,只能全部拿走,则这一问题称为离散(0-1)背包问题;如果每次可以拿走某一物品的任意一部分,则这一问题称为连续背包问题。

二、算法思想:首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。

若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。

依此策略一直地进行下去,直到背包装满为止。

三、实验过程:#include <iostream>using namespace std;struct goodinfo{float p; //物品效益float w; //物品重量float X; //物品该放的数量int flag; //物品编号};//物品信息结构体void Insertionsort(goodinfo goods[],int n)//插入排序,按pi/wi价值收益进行排序,一般教材上按冒泡排序{int j,i;for(j=2;j<=n;j++){goods[0]=goods[j];i=j-1;while (goods[0].p>goods[i].p){}goods[i+1]=goods[0];}}//按物品效益,重量比值做升序排列goods[i+1]=goods[i];i--;void bag(goodinfo goods[],float M,int n){float cu;int i,j;for(i=1;i<=n;i++)goods[i].X=0;cu=M;//背包剩余容量for(i=1;i<n;i++){if(goods[i].w<cu)//若不超过容量,尽量增加物品{goods[i].X=1;cu-=goods[i].w;//确定背包新的剩余容量}else{goods[i].X=0;}for(j=2;j<=n;j++) /*按物品编号做降序排列*/ {goods[0]=goods[j];while (goods[0].flag<goods[i].flag){goods[i+1]=goods[i];i--;}}goods[i+1]=goods[0];}cout<<"最优解为:"<<endl;for(i=1;i<=n;i++){cout<<"第"<<i<<"件物品要放:";cout<<goods[i].X<<endl;}}void main(){cout<<"|--------运用贪心法解背包问题---------|"<<endl; int j,n;float M;goodinfo *goods;//定义一个指针{cout<<"请输入物品的总数量:";cin>>n;goods=new struct goodinfo [n+1];//cout<<"请输入背包的最大容量:";cin>>M;cout<<endl;int i;for(i=1;i<=n;i++){goods[i].flag=i;cout<<"请输入第"<<i<<"件物品的重量:";cin>>goods[i].w;cout<<"请输入第"<<i<<"件物品的效益:";cin>>goods[i].p;goods[i].p=goods[i].p/goods[i].w;//得出物品的效益,重量比cout<<endl;}Insertionsort(goods,n);bag(goods,M,n);cout<<"press <1> to run agian"<<endl;cout<<"press <0> to exit"<<endl;cin>>j;}}四、实验结果:对于0-1背包问题,贪心选择之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档