2010自贡数学中考模拟试题

合集下载

四川省自贡市数学中考模拟试卷

四川省自贡市数学中考模拟试卷

四川省自贡市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)下列运算正确的是()A . +=B . (a+b)2=a2+b2C . (﹣a)3=﹣6a3D . ﹣(x﹣2)=2﹣x2. (2分)据《2010年三明市国民经济和社会发展统计公报》数据显示,截止2010年底,三明市民用汽车保有量约为98200辆,98200用科学记数法表示正确的是()A . 9.82×103B . 98.2×103C . 9.82×104D . 0.982×1043. (2分)(2016·娄底) 下列几何体中,主视图和俯视图都为矩形的是()A .B .C .D .4. (2分)(2012·梧州) (2012•梧州)下面调查中,适宜采用全面调查方式的是()A . 调查亚洲中小学生身体素质状况B . 调查梧州市冷饮市场某种品牌冰淇淋的质量情况C . 调查某校甲班学生出生日期D . 调查我国居民对汽车废气污染环境的看法5. (2分) (2015八上·南山期末) 在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A . (﹣1,2)B . (2,﹣1)C . (﹣1,﹣2)D . (1,﹣2)6. (2分)式子中x的取值范围是()A . x≥1且x≠﹣2B . x>1且x≠﹣2C . x≠﹣2D . x≥17. (2分)(2017·洛阳模拟) 如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG= ,则△CEF的周长为()A . 8B . 9.5C . 10D . 11.58. (2分) (2017七上·宜昌期中) 如图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()个.A . 25B . 66C . 91D . 1209. (2分)(2019·河池模拟) 如图,线段是的直径,弦,,则等于()A . 160°B . 150°C . 140°D . 120°10. (2分)(2014·百色) 从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C 处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A . (6+6 )米B . (6+3 )米C . (6+2 )米D . 12米11. (2分) (2016八上·沂源开学考) 对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(﹣5,3)D . 开口向上,顶点坐标(﹣5,3)二、填空题 (共8题;共10分)12. (1分)菱形ABCD的一条对角线长为6,边AB的长是方程的解,则菱形ABCD的周长为________ .13. (1分) (2019八下·温州期中) 某射击运动员射击10次的成绩统计如下:成绩(环)5678910次数(次)232111则这10次成绩的中位数为________环.14. (1分)(2018·随州) 计算:﹣|2﹣2 |+2tan45°=________.15. (2分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为________.16. (1分)(2017·姑苏模拟) 超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)708090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是________分.17. (1分) (2018八下·昆明期末) 在矩形ABCD中,AB=2,AD=3,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为________.18. (2分) (2019九上·梁子湖期末) 如图,在等腰中,, .以点为旋转中心,旋转,点分别落在点处,直线交于点,那么的值为________.19. (1分) (2017八下·栾城期末) 观察下列等式:1=12 , 1+3=22 , 1+3+5=32 , 1+3+5+7=42 ,…,则1+3+5+7+…+2017=________(写成某数平方的形式即可,不必计算结果)三、解答题 (共9题;共57分)20. (10分)(2019·莲湖模拟) 计算:(1) | ﹣1|+(3.14﹣π)0+ + .(2) + ÷21. (5分)已知方程组的解中x与y相反数,求k的值.22. (6分)(2020·惠山模拟) 在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;(2)若在布袋中再添加a个红球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.23. (2分)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=3米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)24. (10分) (2017九上·陆丰月考) 在△ABC中,AB = BC = 2,∠ABC = 120°,将△ABC绕点B顺时针旋转角α时(0°<α<90°)得△A1BC1 , A1B交AC于E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察猜想,在旋转过程中,线段EA1与FC有怎样的数量关系,并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.25. (10分)(2015·金华) 如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.26. (2分) (2020九上·覃塘期末) 如图,在平面直角坐标系中,菱形的对角线经过原点,与交于点轴于点,点的坐标为反比例函数的图象恰好经过两点.(1)求的值及所在直线的表达式;(2)求证: .(3)求的值.27. (10分) (2017九上·梅江月考) 某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若每降价0.5元,每天可多销售4件,那么每天要想获得512元的利润,每件应降价多少元?28. (2分) (2019九上·句容期末) 已知抛物线y=ax2+bx-3的图象与x轴交于点A(-1,0)和点B(3,0),顶点为D,点C是直线l:y=x+5与x轴的交点.(1)求该二次函数的表达式;(2)点E是直线l在第三象限上的点,连接EA、EB,当△ECA∽△BCE时,求E点的坐标;(3)在(2)的条件下,连接AD、BD,在直线DE上是否存在点P,使得∠APD=∠ADB?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、填空题 (共8题;共10分)12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共57分)20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、。

2010年四川省中考数学试题

2010年四川省中考数学试题

2010年四川省高中阶段学校招生考试数学试卷(考试时间:120分钟,全卷满分120分)Ⅰ 基础卷(全体考生必做,共3个大题,共72分)一、选择题:(本大题8个小题,每小题3分,共24分)以下每个小题均给出了代号为A 、B 、C 、D 的四个答案,其中只有一个答案是正确的,请将正确答案的代号直接填在题后的括号中.1.–5的相反数是( )A .5B .15C .–5D .– 152.函数y = 2x –1中自变量x 的取值范围是( ) A .x ≠ –1 B .x >1 C .x <1 D .x ≠ 13.下列运算中,不正确...的是( ) A .x 3+ x 3=2 x 3 B .(–x 2)3= –x 5 C .x 2·x 4= x 6 D .2x 3÷x 2 =2x4.今年4月14日,我国青海省玉树发生了7.1级强烈地震.截至4月18日,来自各方参加救援的人员超过了17600人.那么,17600这个数用科学记数法表示为 ( )5.若⊙O 的半径为4cm ,点A 到圆心O 的距离为3cm ,那么点A 与⊙O 的位置关系是( )A .点A 在圆内B .点A 在圆上 c .点A 在圆外 D .不能确定6.小丽在清点本班为青海玉树地震灾区的捐款时发现,全班同学捐款的钞票情况如下:l00元的5张,50元的l0张,l0元的20张,5元的l0张.在这些不同面额的钞票中,众数是( )元的钞票A .5B .10C .50D .1007.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,CD ⊥AB 于点D .则△BCD 与△ABC 的周长之比为( )8.如图是由若干个大小相同的小正方体堆砌而成的几何体.那么其三种视图中面积最小的是( )A .正视图B .左视图C .俯视图D .三种一样二、填空题:(本大题4个小题,每小题3分,共l2分)请把答案直接填在题中的横线上.9.分解因式:2a 2– 4a + 2= 10.在加大农机补贴的政策影响下,某企业的农机在2010年1–3月份的销售收入为5亿元,而2009年同期为2亿元,那么该企业D C BA的农机销售收入的同期增长率为11.方程1x–2=2x的解是12.如图,在平面直角坐标系xoy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形.那么所有满足条件的点P的坐标是三、解答题:(本大题共4小题,共36分)解答时应写出文字说明,证明过程或演算步骤.13.(每小题5分,共15分)(1)计算:(2010+1)0+(–13)–1–||2–2–2sin45°(2)先化简,再求值:(x–1x)÷x+1x,其中x= 2+1.(3)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.43时间(小时)14.(本小题7分)某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动 的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A .从一个社区随机选取200名居民;B .从一个城镇的不同住宅楼中随机选取200名居民;C .从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是 (填番号).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在 这个调查中,这200名居民每天锻炼2小时的人数是多少?(3)若该市有l00万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以 上的人数是多少?(4)15.(本小题7分) 为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出C B A台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这l228台汽车用户共补贴了多少万元?16.(本小题7分)2010年我国西南地区遭受了百年一遇的旱灾,但在这次旱情中,某市因近年来“森林城市”的建设而受灾较轻.据统计,该市2009年全年植树5亿棵,涵养水源3亿立方米,若该市以后每年年均植树5亿棵,到2015年“森林城市”的建设将全面完成,那时,树木可以长期保持涵养水源确11亿立方米.(1)从2009年到2015年这七年时间里,该市一共植树多少亿棵?(2)若把2009年作为第l年,设树木涵养水源的能力y(亿立方米)与第x年成一次函数,求出该函数的解析式,并求出到第3年(即2011年)可以涵养多少水源?Ⅱ拓展卷(升学考生必做,共2个大题,共48分)四、填空题:(本大题4个小题,每小题3分,共12分)在每小题中,请将答案直接填在题中的横线上.17.下列三种说法:(1)三条任意长的线段都可以组成一个三角形;(2)任意掷一枚均匀的硬币,正面一定朝上;(3)购买一张彩票可能中奖.其中,正确说法的番号是18.将半径为5的圆(如图1)剪去一个圆心角为n °的扇形后围成如图2所示的圆锥则n 的 值等于19.已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为.20.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③△APD 一定是等腰三角形; ④∠PFE =∠BAP ;⑤PD = 2EC .其中正确结论的番号是 .五、解答题:(本大题4个小题,共36分)解答时每小题都必须给出必要的演算过程或推理步骤.21.(本题满分8分)已知:如图,在Rt △ABC 中,∠C =90°,过点B 作BD ∥AC ,且BD =2AC ,连接AD . 试判断△ABD 的形状,并说明理由.22.(本题满分8分)某班举行演讲革命故事的比赛中有一个抽奖活动.活动规则是:进入最后决赛的甲、乙两3455n °图1图2P F E D C B A D C B A翻奖牌背面翻奖牌正面1234海宝计算器计算器文具位同学,每人只有一次抽奖机会,在如图所示的翻奖牌正面的4个数字中任选一个数字,选中后可以得到该数字后面的奖品,第一人选中的数字,第二人就不能再选择该数字.(1)求第一位抽奖的同学抽中文具与计算器的的概率分别是多少?(2)有同学认为,如果.甲先抽,那么他抽到海宝的概率会大些,你同意这种说法吗? 并用列表格或画树状图的方式加以说明.23.(本题满分8分)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花 钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表. 为了节约资金,小明应选择哪一种购买方案?请说明理由.24.(本题满分l2分)将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(–3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.x。

自贡市仙市中学初2010级第三次模拟考试数学试题

自贡市仙市中学初2010级第三次模拟考试数学试题

自贡市仙市中学初2010级第三次模拟考试数 学 试 题第Ⅰ卷(选择题 共36分):Ⅰ卷前,考生务必将自己的姓名、准考证号,考试科目涂写在答题卡上选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选案标号,不能答在试卷Ⅰ上.题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符求的.根是 ( )B .2C .±2D .2正确的是 2=x 4 B .(a -1) 2=a 2-1 C .a 2²a 3=a 5 D .3x+2y=5xy y=角坐标系中,点P (x ,y )所在的象限为( )象限 B 第二象限 C 第三象限 D 第四象限 板,如图所示叠放在一起,则AO B C O D ∠+∠=( )B.150°C.160°D.170°正确的是( )币,正面一定朝上; B .掷一颗骰子,点数一定不大于6; 灯泡的使用寿命,宜采用普查的方法;“明天的降水概率为80%”,表示明天会有80%的地方下雨.1)11x a x a x a +>+<的不等式(的解集为,那么的取值范围是( )7、如图,在半径为1的⊙O 中,直径A B 把⊙O 分成上、下两个半圆,点C 是上半圆上一个动点(C 与点A 、B 不重合),过点C 作弦CD AB ⊥,垂足为E ,O C D ∠的平分线交⊙O 于点P ,设,C E x A P y ==,下列图象中,最能刻画y 与x 的函数关系的图象是( )8、用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是( )A .平移和旋转B .对称和旋转C .对称和平移D .旋转和平移 9、若直线21y x =-与反比例函数k y x=的图像交于点(2,)P a ,则反比例函数k y x=的图像还必过点( ) A. (-1,6)B .(1,-6)C.(-2,-3)D.(2,12)10、如图,把R t A B C ∆依次绕顶点沿水平线翻转两次,若90C ∠= ,AC =1B C =,那么A C 边从开始到结束所扫过的图形的面积为( )A .74π B .712π C .94π D .2512π11、已知tan 33)20(0=-α,则锐角α的度数是( )A .60°B.45°C.50°D.75°12、现规定一种新的运算:“*”:*()m n m n m n -=+,那么51*22=( )A.54B.5C.3D.9自贡市仙市中学初2010级第三次模拟考试数 学 试 题第Ⅱ卷(非选择题 共114分)注意事项:1.第Ⅱ卷用钢笔或蓝色圆珠笔将答案直接答在试题卷上.2.答题前请将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分13、2009年初甲型H 1N1流感在墨西哥爆发并在全球蔓延,研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 ;14、函数2y x x =+-中,自变量x 的取值范围是__________;15、在⊙O 中,已知⊙O 的直径AB 为2,,弦AC 的长,弦AD 的长为则DC 2= ;16、因式分解:2221a b b ---= ;17、如图,早上10点小东测得某树的影长为2m ,到了下午5时又测得该树的影长为8m ,若两次日照的光线互相垂直,则树的高度约为_________m. 三、解答题:本大题共4个小题,每小题6分,共24分 18、计算:(π-3.14)0×(-1)2010+(-31)-2-│3-2 │+2cos30°19、先化简,再求值:2221412211a a a a a a --∙÷+-+-,其中a 2-a=020、解不等式组33213(1)8xxx x-⎧+≥⎪⎨⎪--<-⎩,并把解集表示在数轴上。

初中数学四川省自贡市中考模拟数学考试题(含解析).docx

初中数学四川省自贡市中考模拟数学考试题(含解析).docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如图,抛物线过、,直线AD交抛物线于点D,点D 的横坐标为,点是线段AD 上的动点.求直线AD及抛物线的解析式;过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?在平面内是否存在整点横、纵坐标都为整数,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.试题2:如图,已知,在的平分线OM上有一点C,将一个角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.当绕点C旋转到CD与OA垂直时如图,请猜想与OC的数量关系,并说明理由;当绕点C旋转到CD与OA不垂直时,到达图2的位置,中的结论是否成立?并说明理由;当绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.试题3:阅读以下材料:对数的创始人是苏格兰数学家纳皮尔年,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉年才发现指数与对数之间的联系.对数的定义:一般地,若,那么x叫做以a为底N的对数,记作:比如指数式可以转化为,对数式可以转化为.我们根据对数的定义可得到对数的一个性质:;理由如下:设,,则,,由对数的定义得又解决以下问题:将指数转化为对数式______;证明拓展运用:计算______.试题4:如图,在中,.作出经过点B,圆心O在斜边AB上且与边AC相切于点E的要求:用尺规作图,保留作图痕迹,不写作法和证明设中所作的与边AB交于异于点B的另外一点D,若的直径为5,;求DE的长如果用尺规作图画不出图形,可画出草图完成问试题5:如图,在中,,,;求AC和AB的长.试题6:某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:在这次调查中,一共调查了______名学生;补全条形统计图;若该校共有1500名,估计爱好运动的学生有______人;在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是______.试题7:解不等式组:,并在数轴上表示其解集.试题8:计算:.试题9:如图,在中,,,将它沿AB翻折得到,则四边形ADBC的形状是______形,点P、E、F 分别为线段AB、AD、DB的任意点,则的最小值是______.试题10:观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有______个.试题11:六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为______、______个试题12:若函数的图象与x轴有且只有一个交点,则m的值为______.试题13:化简结果是______.试题14:分解因式:______.试题15:如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转,得到线段BM,连接AM并延长交CD于N,连接MC,则的面积为A.B.C.D.试题16:已知圆锥的侧面积是,若圆锥底面半径为,母线长为,则R关于l的函数图象大致是A. B. C. D.试题17:从、2、3、这四个数中任取两数,分别记为m、n,那么点在函数图象的概率是A. B. C. D.试题18:如图,若内接于半径为R的,且,连接OB、OC,则边BC的长为A.B.C.D.试题19:回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是A. 数形结合B. 类比C. 演绎D. 公理化试题20:在一次数学测试后,随机抽取九年级班5名学生的成绩单位:分如下:80、98、98、83、91,关于这组数据的说法错误的是A. 众数是98B. 平均数是90C. 中位数是91D. 方差是56试题21:如图,在中,点D、E分别是AB、AC的中点,若的面积为4,则的面积为A. 8B. 12C. 14D. 16试题22:下面几何的主视图是A. B. C. D.试题23:在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若,则的度数是A. B. C. D.试题24:2017年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为A. B. C. D.试题25:下列计算正确的是A. B. C.D.试题26:计算的结果是A. B. C. 4 D. 2 试题1答案:解:把,代入函数解析式,得,解得,抛物线的解析式为;当时,,解得,即.设AD的解析式为,将,代入,得,解得,直线AD的解析式为;设P点坐标为,,化简,得配方,得,当时,;且时,PQDR是平行四边形,由得,又PQ是正整数,,或.当时,,,即,,即;当时,,,即,,即,综上所述:R点的坐标为,,,使得P、Q、D、R为顶点的四边形是平行四边形.【解析】根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案.本题考查了二次函数综合题,解的关键是待定系数法;解的关键是利用二次函数的性质;解的关键是利用且是正整数得出DR的长.试题2答案:解:是的角平分线,,,,,,在中,,同理:,;中结论仍然成立,理由:过点C作于F,于G,,,,同的方法得,,,,,,且点C是的平分线OM上一点,,,,,≌,,,,,;中结论不成立,结论为:,理由:过点C作于F,于G,,,,同的方法得,,,,,,且点C是的平分线OM上一点,,,,,≌,,,,,.【解析】先判断出,再利用特殊角的三角函数得出,同,即可得出结论;同的方法得,再判断出≌,得出,最后等量代换即可得出结论;同的方法即可得出结论.此题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数直角三角形的性质,正确作出辅助线是解本题的关键.试题3答案:;1【解析】解:由题意可得,指数式写成对数式为:,故答案为:;设,,则,,,由对数的定义得,又,;,,,,故答案为:1.根据题意可以把指数式写成对数式;先设,,根据对数的定义可表示为指数式为:,,计算的结果,同理由所给材料的证明过程可得结论;根据公式:和的逆用,将所求式子表示为:,计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.试题4答案:解:如图所示;作于H.是的切线,,,四边形ECHO是矩形,,,在中,,,,,,∽,,,.【解析】作的角平分线交AC于E,作交AB于点O,以O为圆心,OB为半径画圆即可解决问题;作于首先求出OH、EC、BE,利用∽,可得,解决问题;本题考查作图复杂作图,切线的判定和性质,相似三角形的判定和性质、勾股定理、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.试题5答案:解:如图作于H.在中,,,,,在中,,,,.【解析】如图作于在求出CH、BH,这种中求出AH、AC即可解决问题;本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.试题6答案:100;600;【解析】解:爱好运动的人数为40,所占百分比为共调查人数为:爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,爱好运动所占的百分比为,估计爱好运用的学生人数为:爱好阅读的学生人数所占的百分比,用频率估计概率,则选出的恰好是爱好阅读的学生的概率为故答案为:;;根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形.利用样本估计总体即可估计爱好运动的学生人数.根据爱好阅读的学生人数所占的百分比即可估计选出的恰好是爱好阅读的学生的概率.本题考查统计与概率,解题的关键是正确利用两幅统计图的信息,本题属于中等题型.试题7答案:解:解不等式,得:;解不等式,得:,不等式组的解集为:.将其表示在数轴上,如图所示.【解析】分别解不等式、求出x的取值范围,取其公共部分即可得出不等式组的解集,再将其表示在数轴上,此题得解.本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,通过解不等式组求出x的取值范围是解题的关键.试题8答案:解:原式.故答案为2.【解析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值3个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值等考点的运算.试题9答案:菱;【解析】解:沿AB翻折得到,,,,,四边形ADBC是菱形,故答案为菱;如图作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,此时,过点A作,,,作,,,由勾股定理可得,,,可得,,,最小为,故答案为.根据题意证明四边相等即可得出菱形;作出F关于AB的对称点M,再过M作,交ABA于点P,此时最小,求出ME即可.此题主要考查路径和最短问题,会结合轴对称的知识和“垂线段最短”的基本事实分析出最短路径是解题的关键.试题10答案:6055【解析】解:观察图形可知:第1个图形共有:,第2个图形共有:,第3个图形共有:,,第n个图形共有:,第2018个图形共有,故答案为:6055.每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.试题11答案:10;20【解析】解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.根据二元一次方程组,可得答案.本题考查了二次元一次方程组的应用,根据题意找出两个等量关系是解题关键.试题12答案:【解析】解:函数的图象与x轴有且只有一个交点,,解得:.故答案为:.由抛物线与x轴只有一个交点,即可得出关于m的一元一次方程,解之即可得出m的值.本题考查了抛物线与x轴的交点,牢记“当时,抛物线与x轴有1个交点”是解题的关键.试题13答案:【解析】解:原式故答案为:根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运分式的运算法则,本题属于基础题型.试题14答案:【解析】解:原式提取公因式完全平方公式先提取公因式a,再根据完全平方公式进行二次分解完全平方公式:.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行两次分解,注意要分解要彻底.试题15答案:C【解析】解:作于G,于H,则,,,,,,,由旋转变换的性质可知,是等边三角形,,由题意得,,,,,,的面积,故选:C.作于G,于H,根据旋转变换的性质得到是等边三角形,根据直角三角形的性质和勾股定理分别求出MH、CH,根据三角形的面积公式计算即可.本题考查的是旋转变换的性质、正方形的性质,掌握正方形的性质、平行线的性质是解题的关键.试题16答案:A【解析】解:由题意得,,则,故选:A.根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.本题考查的是圆锥的计算、函数图象,掌握圆锥的圆锥的侧面积的计算公式是解题的关键.试题17答案:B【解析】解:点在函数的图象上,.列表如下:m 2 2 2 3 3 3n 2 3 3 2 2 3mn 6 6 6 6mn的值为6的概率是.故选:B.根据反比例函数图象上点的坐标特征可得出,列表找出所有mn的值,根据表格中所占比例即可得出结论.本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表找出的概率是解题的关键.试题18答案:D【解析】解:延长BO交于D,连接CD,则,,,,,,故选:D.延长BO交圆于D,连接CD,则,;又,根据锐角三角函数的定义得此题综合运用了圆周角定理、直角三角形角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.试题19答案:A【解析】解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想.故选:A.从函数解析式到函数图象,再利用函数图象研究函数的性质正是数形结合的数学思想的体现.本题考查了函数图象,解题的关键是掌握初中数学常用的数学思想.试题20答案:D【解析】解:98出现的次数最多,这组数据的众数是98,A说法正确;,B说法正确;这组数据的中位数是91,C说法正确;,D说法错误;故选:D.根据众数、中位数的概念、平均数、方差的计算公式计算.本题考查的是众数、中位数的概念、平均数和方差的计算,掌握方差的计算公式是解题的关键.试题21答案:D【解析】解:在中,点D、E分别是AB、AC的中点,,,∽,,,的面积为4,的面积为:16,故选:D.直接利用三角形中位线定理得出,,再利用相似三角形的判定与性质得出答案.此题主要考查了三角形的中位线以及相似三角形的判定与性质,正确得出∽是解题关键.试题22答案:B【解析】解:从几何体正面看,从左到右的正方形的个数为:2,1,故选B.主视图是从物体正面看所得到的图形.本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.试题23答案:D【解析】解:由题意可得:,.故选:D.直接利用平行线的性质结合已知直角得出的度数.此题主要考查了平行线的性质,正确得出的度数是解题关键.试题24答案:B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是非负数;当原数的绝对值时,n是负数.此题考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.试题25答案:C【解析】解:原式,故A错误;原式,故B错误;原式,故D错误;故选:C.根据相关的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.试题26答案:A【解析】解:;故选:A.利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.本题考查了有理数的加法,比较简单,属于基础题.。

2010年中考模拟数学试卷和答案

2010年中考模拟数学试卷和答案

2010年中考模拟试卷数 学考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟 .2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号 .3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应 .4.考试结束后,上交试题卷和答题卷试题卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的 .注意可以用多种不同的方法来选取正确答案 .1. 如果0=+b a ,那么a ,b 两个实数一定是( )A.都等于0B.一正一负C.互为相反数D.互为倒数2. 要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各100名学生 3. 直四棱柱,长方体和正方体之间的包含关系是( )4. 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都属于四个象限 .其中错误的是( )A.只有①B.只有②C.只有③D.①②③ 5. 已知点P (x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限B. 第二象限C. 第三象限D. 第四象限6. 在一张边长为4cm 的正方形纸上做扎针随机试验,纸上有一个半径为1cm 的圆形阴影区域,则针头扎在阴影区域内的概率为( )A.161 B.41 C.16π D.4π 7. 如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( ) A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个8. 如图,在菱形ABCD 中,∠A=110°,E ,F 分别是边AB 和BC的中点,EP ⊥CD 于点P ,则∠FPC=( ) A.35° B.45° C.50° D.55°9. 两个不相等的正数满足2=+b a ,1-=t ab ,设2)(b a S -=,则S 关于t 的函数图象是( )A.射线(不含端点)B.线段(不含端点)C.直线D.抛物线的一部分10. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点)(k k k y x P ,处,其中11=x ,11=y ,当k≥2时,⎪⎪⎩⎪⎪⎨⎧---+=----+=--]52[]51[])52[]51([5111k k y y k k x x k k k k ,[a ]表示非负实数a 的整数部分,例如[2.6]=2,[0.2]=0 .按此方案,第2009棵树种植点的坐标为( )A.(5,2009)B.(6,2010)C.(3,401) D (4,402)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11. 如图,镜子中号码的实际号码是___________ .12. 在实数范围内因式分解44-x = _____________________ . 13. 给出一组数据:23,22,25,23,27,25,23,则这组数据的中位数是___________;方差(精确到0.1)是_______________ .14. 如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________ .15. 已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为______________ . 16. 如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上 .①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________;②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤 .如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以 . 17. (本小题满分6分)如果a ,b ,c 是三个任意的整数,那么在2b a +,2c b +,2ac +这三个数中至少会有几个整数?请利用整数的奇偶性简单说明理由 .18. (本小题满分6分)如图,,有一个圆O 和两个正六边形1T ,2T .1T 的6个顶点都在圆周上,2T 的6条边都和圆O 相切(我们称1T ,2T 分别为圆O 的内接正六边形和外切正六边形) . (1)设1T ,2T 的边长分别为a ,b ,圆O 的半径为r ,求a r :及b r :的值; (2)求正六边形1T ,2T 的面积比21:S S 的值 .如图是一个几何体的三视图 . (1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B 出发,沿表面爬到AC 的中点D ,请你求出这个线路的最短路程 .20. (本小题满分8分)如图,已知线段a .(1)只用直尺(没有刻度的尺)和圆规,求作一个直角三角形ABC ,以AB 和BC 分别为两条直角边,使AB=a ,BC=a 21(要求保留作图痕迹,不必写出作法); (2)若在(1)作出的RtΔABC 中,AB=4cm ,求AC 边上的高 .学校医务室对九年级的用眼习惯所作的调查结果如表1所示,表中空缺的部分反映在表2的扇形图和表3的条形图中.(1)请把三个表中的空缺部分补充完整;(2)请提出一个保护视力的口号(15个字以内).22. (本小题满分10分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P .(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论.在杭州市中学生篮球赛中,小方共打了10场球 .他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y 比前5场比赛的平均得分x 要高 .如果他所参加的10场比赛的平均得分超过18分 (1)用含x 的代数式表示y ;(2)小方在前5场比赛中,总分可达到的最大值是多少? (3)小方在第10场比赛中,得分可达到的最小值是多少?24. (本小题满分12分)已知平行于x 轴的直线)0(≠=a a y 与函数x y =和函数xy 1=的图象分别交于点A 和点B ,又有定点P (2,0) . (1)若0>a ,且tan ∠POB=91,求线段AB 的长; (2)在过A ,B 两点且顶点在直线x y =上的抛物线中,已知线段AB=38,且在它的对称轴左边时,y 随着x 的增大而增大,试求出满足条件的抛物线的解析式; (3)已知经过A ,B ,P 三点的抛物线,平移后能得到259x y =的图象,求点P 到直线AB 的距离 .2010年中考模拟试卷数学参考答案一、仔细选一选(每小题3分,芬30分)二. 认真填一填(本题有6个小题,每小题4分,共24分) 11、326512.)2)(2)(2(2-++x x x 13、23;2.614、14或16或2615、46-≠->m m 或16、①5∶2 ;②21三. 全面答一答(本题有8个小题,共66分) 17、(本题6分)至少会有一个整数 .因为三个任意的整数a,b,c 中,至少会有2个数的奇偶性相同,不妨设其为a ,b , 那么2ba +就一定是整数 . 18、(本题4分)(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形 . 所以r ∶a=1∶1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r ∶b=3∶2;(2) T 1∶T 2的连长比是3∶2,所以S 1∶S 2=4:3):(2=b a .19、(本题6分)(1) 圆锥; (2) 表面积S=πππππ164122=+=+=+r rl S S 圆扇形(平方厘米)(3) 如图将圆锥侧面展开,线段BD 为所求的最短路程 . 由条件得,∠BAB ′=120°,C 为弧BB ′中点,所以BD =33 .20、(本题8分)(1)作图如右,ABC ∆即为所求的直角三角形;(2)由勾股定理得,AC =52cm , 设斜边AC 上的高为h, ABC ∆面积等于h ⨯⨯=⨯⨯52212421,所以554=h 21、(本题8分)(1)补全的三张表如下:(表一)(2)例如:“象爱护生命一样地爱护眼睛!”等 . 22、(本题10分)(1)∵BA=AD ,∠BAE=∠ADF ,AE=DF , ∴△BAE ≌△ADF ,∴BE=AF ; (2)猜想∠BPF=120° .∵由(1)知△BAE ≌△ADF ,∴∠ABE=∠DAF .∴∠BPF=∠ABE+∠BAP=∠BAE ,而AD ∥BC ,∠C=∠ABC=60°, ∴∠BPF=120° . 23、(本题10分)(1)9191215225++++=x y ;(2)由题意有x x >++++9191215225,解得x <17,所以小方在前5场比赛中总分的最大值应为17×5-1=84分;(3)又由题意,小方在这10场比赛中得分至少为18×10 + 1=181分, 设他在第10场比赛中的得分为S ,则有81+(22+15+12+19)+ S ≥181 .解得S≥29,所以小方在第10场比赛中得分的最小值应为29分 .24、(本题12分)(1)设第一象限内的点B (m,n ),则tan ∠POB 91==m n ,得m=9n ,又点B 在函数xy 1=的图象上,得m n 1=,所以m =3(-3舍去),点B 为)31,3(,而AB ∥x 轴,所以点A (31,31),所以38313=-=AB ;(2)由条件可知所求抛物线开口向下,设点A (a , a ),B (a 1,a ),则AB =a1- a =38, 所以03832=-+a a ,解得313=-=a a 或 .当a = -3时,点A (―3,―3),B (―31,―3),因为顶点在y = x 上,所以顶点为(-35,-35),所以可设二次函数为35)35(2-+=x k y ,点A 代入,解得k= -43,所以所求函数解析式为35)35(432-+-=x y .同理,当a = 31时,所求函数解析式为35)35(432+--=x y ;(3)设A (a , a ),B (a 1,a ),由条件可知抛物线的对称轴为aa x 212+= .设所求二次函数解析式为:)2)1()(2(59++--=aa x x y .点A (a , a )代入,解得31=a ,1362=a ,所以点P 到直线AB 的距离为3或136.。

2010年中考模拟卷 数学卷

2010年中考模拟卷 数学卷

2010年中考模拟卷 数学参考答案及评分标准题号 选择填空1718192021222324总分得分一.仔细选一选 (本题有10个小题, 每小题3分, 共30分)二.认真填一填(本题有6个小题, 每小题4分, 共24分)11. 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.12. (1,3) 13. =3 14. 215. 3 16. 0或3或4或8 三.全面答一答 (本题有8个小题, 共66分) 17.(本小题满分6分) 解:由题意得120k -≠ 12k ≠..........................................(2) 10k +≥ 1k ≥- (2)△2(21)4(12)(1)k k =-+-⨯-⨯->0k <2 ∴0k ≤<2且12k ≠ (2)18.(本小题满分6分)过点B 作直线BF ∥CD (1)135°105°A BC DFE∵CD ∥AE∴BF ∥CD ∥AE (1)题号 1 2 3 4 5 6 7 8 9 10 答案DBCDDCCBCD∴∠A=∠ABF=105°……………………………………(1) ∴∠CBF=∠ABC-∠ABF=30°………………………….(1) 又BF ∥CD∴∠CBF+∠C=180°..........................................(1) ∴∠C=150° (1)19.(本小题满分6分)(1)5+8+11+16+6=46(人) 一共分成5组。

组距是:65-55=10(分) (2)(2)分布两端虚设的频数为0的是:40─50和100─110两组。

它们的组中值分别是:45分和105分…………(2) (3)80─90一组人数最多。

它的频率是:1684623=…………………………(1) (4)5558651175168569546⨯+⨯+⨯+⨯+⨯77.2≈分 (1)20.(本小题满分8分)作出△ABC 的内心............(3) 作出△ABC 的外心................(3) 作处线段DO2 (1)∴如图所示,线段DO2的长就是△ABC 的内心、外心分别到点A 的距离之差。

2010年四川省自贡市中考数学试题及答案(word)

2010年四川省自贡市中考数学试题及答案(word)
26.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需 6 周完成,共需装修 费为 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周才能完成,共需装 修费 4.8 万元。玲玲的爸爸妈妈商量后决定只选一个公司单独完成。
(1)如果从节约时间的角度考虑应选哪家公司? (2)如果从节约开支的角度考虑呢?请说明理由。
B.(-3,2)
C.(-2,3)
D.(2,3)
6.小球从 A 点入口往下落,在每个交叉口都有向左或向右两种可
能,且可能性相等。则小球最终从 E 点落出的概率为( )。
A. 1 8
C. 1 4
B. 1 6
D. 1 2
7.为估计池塘两岸 A、B 间的距离,杨阳在池塘一侧选取了一
点 P,测得 PA=16m,PB=12m,那么 AB 间的距离不可能是( )。
位置-------------(1') 内外比例----------(各 1 分共 2')
21.(1)m=160,n=0.25 ………………………………………………………………(2') (2)如图
…………………………………………(4')
(3)捐款金额的中位数落在 30 元~40 元这个金额段 …………………………………(6') 四、解答题:(每小题 8 分,共计 24 分)
继部分,但该步以后的解答未改变这一道题的内容和难度,后来发生第二次错误前,出现错误的那一步不 给分,后面部分只给应给分数之半;明显笔误,可酌情少扣;如有严重概念性错误,则不给分;在同一解 答中,对发生第二次错误起的部分不给分。
三、涉及计算过程,允许合理省略非关键性步骤。 四、在几何题中,考生若使用符号“ ”进行推理,其每一步应得分数,可参照该题的评分意见进 行评分。

2010年中考模拟试卷sa

2010年中考模拟试卷sa

22121121(1)(1)(1)(1)111(1)1201,211221a a a a a a a a a a a a a a a a a a a a =+∙-+-+-=+++=++-=∴==-=∴==-==+解:原式 时分母=0舍去 当,原式2010年中考模拟试卷 数学参考答案及评分标准一、选择题 (每题3分共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案CABCDCBBBD二、填空题(每题4分,共24分)11. 2 12. 甲 13. 820≥≤<d d 或14. 36 15.9256 16.x=6,y=23,383y x =-+三、解答题(满分66分)17、 (本小题满分6分)……………… 3分……………… 2分……………… 1分18、 (本小题满分6分)(1)填表正确得2分(每格1分);画图正确得2分; (2)结论正确得2分。

(可写相似、周长比、面积比或位似比等,只要正确即可) 19、(本小题满分6分) (1)25……………… 2分 (2) 50………………1分A DC BE F 图(略)……………1分(3)5人(要有过程) ………………2分20、(本小题满分8分)解 :(1)真命题是:已知:如图①AC ⊥BD ;②AC 平分对角线BD ;③AD ∥BC ; 则有四边形ABCD 为菱形 ………… 2分 证明:∵AC ⊥BD ,AC 平分对角线BD ∴ AB=AD,BC=CD,BAO DAO ∠=∠ ………… 1分 ∵AD ∥BC∴OAD BCO ∠=∠ ∴BCO BAO ∠=∠ ∴AB=BC ………… 1分 ∴AB=BC=CD=DA∴四边形ABCD 为菱形………… 1分(2)假命题是:已知②AC 平分对角线BD ③AD ∥BC ;④∠OAD=∠ODA. 求证:四边形ABCD 为菱形…………… 2分 反例:如矩形………… 1分21、(本小题满分8分)解:(1)在R t △BCD 中,cos40o CB CD=,∴52033cos 404o CB CD ===≈6.7,…………3分(2)在R t △BCD 中, BC =5, ∴ BD =5 tan400=4.2. …………1分过E 作AB 的垂线,垂足为F ,在R t △AFE 中,AE =1.6, ∠EAF =180O -120O =60O , AF =12AE =0.8………… 2分∴FB =AF +AD +BD =0.8+2+4.20=7米-…………1分答:钢缆CD 的长度为6.7米,灯的顶端E 距离地面7米. …………1分CBADO22、(本小题满分10分)解:(1)设A 种类型店面的数量为x 间,则B 种类型店面的数量为(80-x )间,根据题意,得: ⎩⎨⎧⨯≤-+⨯≥-+%.852400)80(2028%,802400)80(2028x x x x ………………………………………………3分解之,得⎩⎨⎧≤≥.55,40x x∴A 种类型店面的数量为40≤x ≤55,且x 为整数. ……………………………3分(2) 设应建造A 种类型的店面x 间,则店面的月租费为: W =400×75%·x +360×90%·(80-x )=-24x +25920, …………………………………………………………………………2分 ∵-24<0,40≤x ≤55,∴为使店面的月租费最高,应建造A 种类型的店面40间.…………………2分 23.(本小题满10分) 解:(1)连接AP∵四边形ODPC 为矩形∴PD ⊥AB∴AD=BD=1/2AB=1/2×6=3 …………………………1分又∵抛物线y=ax 2+bx +4经过A , B , C 三点 ∴C (0,4) …………………………1分 即OC=4∴PD=OC=4∴有勾股定理得AP=5 …………………………1分 ∴⊙P 的半径R 的长为5 (2)∵OD=CP=AP=5∴A(2,0) B(8,0)求得函数解析式为 y=1/4(x-2)(x-8) …………………………2分抛物线与⊙P 的第四个交点E 的坐标为(10,4)…………………………1分 (3)连接BF∵AB 为⊙D 的直径∴∠AFB=900=∠COA 又∵∠CAO=∠BAF∴△AOC ∽△AFB∴ ---------------------2分∵AO=2 AC=52422222=+=+CO OA AB=6 …1分∴∴AF= --------1分24.(本小题12分) (1)方案①211(120)(60)180022y x x x =⨯⨯-=--+当x=60时,y 最大值=1800; ……………4分(2)方案②过点B 作BE ⊥AD 于E,CF ⊥AD 于F, 设AB=CD=xcm ,梯形的面积为2scm , 则BC=EF=(120-2x )cm , AE=DF=12x ,BE=CF=32x ,AD=120-x , ∴S=1322x ⨯(240-3x ) 当x=40,S 最大值= 12003, S 最大值>y 最大值;……………4分方案:①正八边形一半,②正十边形一半,③半圆等(作出两个即可)……………4分CABCABABCDFE 30 135° 135° 135°30 3030 半径=π60 6522=AF 556AB ACAF OA =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010自贡数学中考模拟试题一、细心填一填(本大题共有12小题,15空,每空2分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)1、-2的倒数是_________,()=-32 ________.2、9的平方根是__________,-8是_______的立方根.3、用四舍五入所得的数是-2.164,它精确到 位.4、计算:cos45︒= ,tan30︒= .5、函数y =11-x 中,自变量x 的取值范围是__________;函数yx 的取值范围是_________.6、在实数内分解因式:x 4-2x 2= .7、一个多边形的每个外角都等于30︒,这个多边形的内角和为_________度.8、下面一组数据表示初三(1)班23位同学衣服上衣口袋的数目,若任选一位同学,则其上衣口袋的数目为5的概率为 .3,4,2,6,5,5,3,1,4,2,4,2,4,5,10,6,1,5,5,62,10,3 9、一个矩形的周长为60㎝,其面积为S ,则S 的取值不超过 ㎝2.10、⊙O 的直径CD 与弦AB 交于点M ,添加条件 (写出一个即可)就可得到M 是AB 的中点.11、如下图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要 枚棋子.12、如图所示是由7个完全相同的正方形拼成的图形,请你用一条直线将它分成面积相等的两部分.(在原图上作出).二、精心选一选(本大题共8小题,每题3分,共24分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)13、已知x =-1是方程x 2+mx +1=0的一个实数根,则m 的值是( ) A 、0 B 、1 C 、2 D 、-2 14、下列各式中,与3是同类二次根式的是( ) A 、9 B 、27 C 、18 D 、2415、如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分)的面积,验证了一个等式是( )A 、()()b a b a b a -+=-22(1)(2)(3)第11题第12题aaabB 、()2222b ab a b a ++=-C 、()2222b ab a b a +-=-D 、()()2222b ab a b a b a -+=-+16、在直角坐标系中,⊙O 的圆心在圆点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交17、有十五位同学参加智力竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛( )A 、平均数B 、众数C 、最高分数D 、中位数18、在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替( ) A 、两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面” B 、两个形状大小完全相同,但一红一白的两个乒乓球 C 、扔一枚图钉D 、人数均等的男生、女生,以抽签的方式随机抽取一人 19、相信同学们都玩过万花筒,右图是某个万花筒的造型,图中的小三角形均是全等的等边三角形,那么图中的菱形AEFG 可以看成是把菱形ABCD以A 为旋转中心( )A 、顺时针旋转60°得到B 、顺时针旋转120°得到C 、逆时针旋转60°得到D 、逆时针旋转120°得到20、将一张正方形的纸片按下图所示的方式三次折叠,折叠后再按图所示沿MN 裁剪,则可得( )A 、多个等腰直角三角形B 、一个等腰直角三角形和一个正方形C 、四个相同的正方形D 、两个相同的正方形三、认真答一答(本大题共7小题,满分58分. 只要你认真思考, 仔细运算, 一定会解答正确的!) 21、(本题共有3小题,每小题5分,共15分) (1)计算:()0020053323++-(2)已知不等式5(x -2)+8<6(x -1)+7的最小整数解是方程2x -ax =4的解,求a 的值.A B C DF EG 第19ABCDAB C DABCDABCDNNM(3)先化简,再求值:112223+----x x xx x x ,其中x =2.22、(本题满分6分)方格纸中每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.(1)在10³10的方格中(每个小方格的边长为1个单位),画一个面积为1的格点钝角三角形ABC ,并标明相应字母.(2)再在方格中画一个格点△DEF ,使得△DEF ∽△ABC ,且相似比为2,并加以证明.23、(本题满分7分)如图,给出五个条件:①AE 平分∠BAD ,②BE 平分∠ABC ,③E 是CD 的中点,④AE ⊥EB ,⑤AB=AD+BC(1)请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以说明; (2)请你以其中三个作为命题的条件,写出一个不一定能推出AD ∥BC 的正确命题,并举例说明.24、(本题满分6分)夏雪同学调查了班级同学身上有多少零用钱,将每位同学的零用钱记录下来,下面是全班40名同学的零用钱的数目(单位:元)2,5,0,5,2,5,6,5,0,5,5,52,5,8,0,5,5,2,5, 5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.A BDE(1)请你写出同学的零用钱(0元,2元,5元,6元8元)出现的频数;(2)求出同学的零用钱的平均数、中位数和众数;(3)假如老师随机问一个同学的零用钱,老师最有可能得到的回答是多少元?25、(本题满分8分)某校每学期都要对优秀的学生进行表扬,而每班采取民主投票的方式进行选举,然后把名单报到学校. 若每个班级平均分到3位三好生、4位模范生、5位成绩提高奖的名额,且各项均不能兼得. 现在学校有30个班级,平均每班50人.(1)作为一名学生,你恰好能得到荣誉的机会有多大?(2)作为一名学生,你恰好能当选三好生、模范生的机会有多大?(3)在全校学生数、班级人数、三好生数、模范生数、成绩提高奖人数中,哪些是解决上面两个问题所需要的?(4)你可以用哪些方法来模拟实验?26、(本题满分8分)某市的一家报刊摊点从报社买进一种晚报,其价格为每份0.30元,卖出的价格为0.50元,卖不掉的报纸可以退还给报社,不过每份退还的钱数与退还的报纸的数量关系如下:现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.(1)通过在坐标系中(以退还的钱数为纵坐标,退还的报纸数量为横坐标)描出点,分析出退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式.(2)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x<150),则当买进多少报纸时,毛利润最大?最多可赚多少钱?27、(本题满分8分)在一块长16m、宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半. 下面分别是小明和小颖的设计方案.16m16mx小明说:我的设计方案如图(1),其中花园四周小路的宽度相等. 通过解方程,我得到小路的宽为2m 或12m.小颖说:我的设计方案如图(2),其中花园中每个角上的扇形相同. (1)你认为小明的结果对吗?请说明理由. (2)请你帮助小颖求出图中的x (精确到0.1m ).(3)你还有其他的设计方案吗?请在下边的矩形中画出你的设计草图,并加以说明.四、动脑想一想(本大题共有2小题,共18分. 开动你的脑筋,只要你勇于探索,大胆实践,你一定会获得成功的!)28、(本题满分8分)如图,在△ABC 中,∠C=90°,AC=6,BC=8,M 是BC 的中点,P 为AB 上的一个动点,(可以与A 、B 重合),并作∠MPD=90°,PD 交BC (或BC 的延长线)于点D.(1)记BP 的长为x ,△BPM 的面积为y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)是否存在这样的点P ,使得△MPD 与△ABC 相似?若存在,请求出x 的值;若不存在,请说明理由.29、(本题满分10分) 如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,点D 是ABC 的中点,弦DE ⊥AB ,垂足为F ,DE交AC 于点G.(1)图中有哪些相等的线段?(要求:不再标注其他字母,找结论的过程中所作的辅助线不能出现在结论中,不写出推理过程)(2)若过点E 作⊙O 的切线ME ,交AC 的延长线于点M (请补完整图形),试问:ME=MG 是否成立?若成立,请证明;若不成立,请说明理由.(3)在满足第(2)问的条件下,已知AF=3,FB=34,求AG 与GM 的比.〖第(1)的结论可直接利用〗12m16mABCP D (参考答案一、细心填一填1. ﹣21,﹣8 2. ±3 ,﹣125 3. 千分位 4. 22,33 5. x ≠1 ,x ≥3 6 . x 2(x+2)(x-2) 7. 1800 8. 2349. 225 10. CD ⊥AB 11. 179 12. 略 二、精心选一选13. C 14. B 15. A 16. C 17. D 18. C 19. D 20. C 三、认真答一答21. (1)3;(2)a=4 ; (3) 2x-1 ,3 22. 略 23.(1) ①②⑤⇒AD ∥BC .证明:在AB 上取点M ,使AM =AD ,连结EM ,可证△AEM ≌△AED , △BEM ≌△BCE ,∴∠D =∠AME , ∠C =∠BME ,故∠D +∠C =∠AME +∠BME =180° ∴AD ∥BC .(2)①②③⇒ AD ∥BC 为假命题 反例 :△ABM 中,E 是内心,过E 作DC ⊥EM ,显然有,AE 平分∠BAM ,BE 平分∠ABM ,ED =EC ,但AD 不平分于BC .24.(1)0元的频数是5,2元的频数是7,5元的频数是21,6元的频数是5,8元的频数是2. (2)平均数是4.125,中位数是5,众数是5. (3)5元.25.(1)256;(2)503,252;(3)班级人数、三好生数、模范生数、成绩提高奖人数;(4)用50个小球,其中3个红球、4个白球、5个黑球,其余均位黄球,把它们装进不透明的口袋中搅均,闭着眼从中摸出一个球,则摸到非黄球的机会就是得到荣誉的机会,摸到红球或白球的机会就是当选为三好生和模范生的机会.26.(1)通过作图,知y =mk +n ,⎩⎨⎧+=+=,1020.0,525.0n m n m⎩⎨⎧=-=.3.0,1.0n m 当0<k <30,且为整数, y =﹣0.1k +0.3;当k ≥30 , y =0.02.(2) S =2³0.2x +100³10³0.2-(0.3-y)(x -100)= 4x +200-0.1(x -100)2=﹣0.1x +24x -800.当x =﹣)1.0(224-⨯=120时,即每天买进120份报纸时,可获最大毛利润为640元.27.(1)设小路的宽为x m ,则(16-2x )(12-2x )=21×16³12,解得x=2,或x=12(舍去). ∴x=2,故小明的结果不对.(2故有πr 2=21×16³12,解得r ≈5.5m. (3)依此连结各边的中点得如图的设计方案.28.(1)作PK ⊥BC 于K ,BM =4,AB =10,∵PK ∥AC ,∴8pk =10x ⇒pk =54x ,∴y =21³4³54x =58x (0<x<10). (2)①∠PMB=∠B, PM=PB ,MK=KB=2 ,10x =82, x=2.5; ②∠PMD=∠A, 又∠B =∠B ,∴△BPM ∽△BAC ,∴BP ²AB =BM ²BC , ∴10x=4³8 ,x =3.2,∴存在 x =2.5或3.2.29.(本题仅供学有余力的同学参考)(1)OA=OB ,DF=EF ,DE=AC ,AG=DG ,EG=CG .(2)ME=GM. 理由是:连EO 并延长交⊙O 于点N ,连结DN. ∵EM 是⊙O 的切线,∴∠OEM=90º,∴∠GEM+∠GEN=90º. ∵EN 是⊙O 的直径,∠N+∠GEN=90º,∴∠N=∠GEM. ∵AB 是⊙O 的直径,∴∠B+∠BAC=90º,∵∠AGF+∠GAF=90º,∴∠AGF=∠B ,∵∠AGF=∠CGE ,∴∠CGE=∠B. ∵AC=DE ,∴∠N=∠B ,∴∠GEM=∠CGE ,∴MG=ME. (3)答案:310.。

相关文档
最新文档