Tubesheet Calculation 管板强度计算

合集下载

一级冷却器管板强度计算

一级冷却器管板强度计算
一级冷却器管板强度计算
一.初始数据 壳程设计压力(MPa) 管程设计压力(MPa) 垫片压紧力作用中心圆直径(mm)
Ps Pt
DG
0.9 5.2 145
二.管子 管子外径(mm) 管子壁厚(mm) 管子根数 管子间距(mm) 管子金属总截面积(mm 2 ) 开孔面积(mm 2 ) 管子有效长度(mm) 管子设计温度下的弹性模量(MPa) 管子设计温度下的许用应力(MPa) 管子设计温度下的屈服点(MPa) 管子回转半径(mm) 管子受压失稳当量长度(mm) 系数 C r 管子稳定许用应力(MPa)
~ K t = K t / E p ~ Pa = Pt /1.5 [ ] tr ~ 1/ 3 Kt ~ Pa 1 / 2
查图 23 得 查图 24 得 ~ Dt C Pa
Pc Ps Pt (1 )
t 1 / [ Pc ( Ps Pt ) At GWE / A1 ]
d
δt
16 3 19 21 2326.7 3818.4 1698 189000 93 155 4.7 700
t
n S na=nπ δ t (d-δ t ) nπ d 2 /4 L (取较长部分计算)
Et
[ ]tt
st
i 1 / 4 d 2 (d 2 t ) 2
l cr (查表 32 得)
At =0.866nS 2
7256 3437.6 96.14 2693.8 0.6768 0.663 0.0356 0.057 0.33 0.239= At - nπ d 2 /4
D t = 4 At /
K t Et na / LDt
=na/ A1
t = D t /D G

特殊形式浮头换热器管板强度计算方法

特殊形式浮头换热器管板强度计算方法

特殊形式浮头换热器管板强度计算方法袁振邦;加万里【摘要】GB/T 15 1 is applicable to strength calculation on a-type tubesheet of floating-head heat ex-changer,while it is not applicable to b-type tubesheet.Tubesheets of this kind should be analyzed accord-ing to appendix Ⅰ of JB/T 4732.Yet this method is very complicated,for it involves a set of linear equa-tions of eleven unknowns.Mechanics theory of tubesheet has been studied,and a set of linear equations of only three unknowns has been established,which helps to simplify solving process.Furthermore,the coeffi-cient matrix have beensorted,simplified,and parameterized on this basis.This method can be not only used in b-type tubesheet,but is also applicable for a-type tubesheets whose parameters are beyond the scope of GB/T 15 1 curves.%我国现行的换热器标准GB/T 151仅适用于固定端为a型连接的浮头式换热器管板计算,对于b型管板,则需按JB/T 4732附录Ⅰ计算。

(看强度)固定管板式换热器设计说明书

(看强度)固定管板式换热器设计说明书

摘要固定管板式换热器是管壳式换热器的一种典型结构,也是目前应用比较广泛的一种换热器。

这类换热器具有结构简单、紧凑、可靠性高、适应性广的特点,并且生产成本低、选用的材料范围广、换热表面的清洗比较方便。

固定管板式换热器能承受较高的操作压力和温度,因此在高温高压和大型换热器中,其占有绝对优势。

本次设计的题目是乙二醇塔底进料换热器的设计,课题预期达到的目标为:换热器面积的计算(实际换热面积:92.6mm2),管程壳程压力降的计算(小于等于0.4MPa),工艺结构尺寸的计算:管程数(1管程),换热管的确定(内径:19mm 数量:500根),壳体内径(600mm),壳程数(1壳程)的计算,折流板的选型(形式:弓形折流板,数量:13)等。

换热器的强度计算:对筒体、管箱厚度的计算和校核,对壳体及管箱各处开孔补强,对延长部分兼做法兰的计算及强度核算。

经水压试验、压力校核后显示结果全部合格。

换热器的结构设计:折流板、法兰(甲型平焊法兰)、换热管、支座(鞍式支座)、垫片(石棉橡胶板垫片)的规格及选型。

完善设计图纸及设计说明书。

关键词:换热器;工艺;结构;强度IAbstractFixed tube plate heat exchanger is a typical structure of the shell and tube heat exchanger and a wide range of heat exchanger. This type of heat exchanger has the characteristics of a simple structure, compact, high reliability and wide adaptability , and low cost of the production, wide choice of used materials, more convenient of cleaning heat exchanger the surface . Fixed tube plate heat exchanger can withstands the higher operating pressure and temperature, so it has the absolute advantage in the possession of high temperature and high pressure heat exchangers and large,.This design topic is naphtha condenser design, the goal which the topic anticipated achieved:The craft design of heat exchanger:the heat transfer area computation(actual heat transfer area:322.2mm2);tube side pressure drop computation(≤0.4MPa);the craft structure size computation:number of tube passes(2 tube passes),the number of heat exchange tube(inside diameter:19mm,number:900),the inside diameter of shell(1000mm), number of shell passes(1 shell passes),the lectotype of baffle board(form:segmental baffle,number:13)etc The strength calculation of heat exchanger:the computation and check of cylinder thinckness and channel thinckness,the shell and the reinforcement for opening supplements the intensity,the extension part concurrently makes the flange the computation and the intensity calculation. Examinatation part carried on the hydraulic pressure test, the pressure examination and so on, in which all results has been all qualifiedThe structural design of the heat exchanger:The specification and lectotype of baffle plate、flange(type A manhole weded flange)、heat exchange tube、suppot(saddle support)、gasket(paronite gasket)Consummates the design paper and the design instruction bookletKeywords: heat exchanger; craft;structure; intensity目录摘要 (I)Abstract (II)第1章引言 (1)1.1 换热器的用途 (1)1.2换热器的分类 (1)1.3 换热器的发展趋势 (1)第2章固定管板式换热器的工艺计算 (3)2.1 估算换热面积 (3)2.1.1 选择换热器的类型 (3)2.1.2 流程安排 (3)2.1.3 确定物性数据 (3)2.1.4 估算传热面积 (4)2.2 工艺结构尺寸 (5)2.2.1 管径和管内流速 (5)2.2.2 管程数和传热管数 (5)2.2.4 传热管排列和分程方法 (7)2.2.5 壳体内径 (7)2.2.6 折流板 (8)2.2.7其他附件 (8)2.2.8 接管 (9)2.3 换热器核算 (9)2.3.1 热流量核算 (9)2.3.2 壁温核算 (13)2.3.3 换热器内流体的流动阻力 (14)2.4 换热器的主要结构尺寸和计算结果 (17)第3章强度计算 (19)3.1 筒体壁厚计算 (19)3.2 管箱短节、封头厚度的计算 (20)3.2.1 管箱短节厚度的计算 (20)3.2.2 封头厚度的计算 (20)3.3 管箱短节开孔补强的校核 (21)3.4壳体接管开孔补强校核 (22)3.5 管板设计及校核 (23)3.5.1 管板计算的有关参数的确定 (23)3.5.2 计算法兰力矩 (27)3.5.3管板的计算的相关参数 (28)3.5.4 确定 和G (29)23.5.5 对于其延长部分兼作法兰的管板计算 (29)3.5.6 设计条件不同的组合工况 (30)第4章结构设计 (36)4.1折流挡板 (36)4.2 法兰 (36)4.3 换热管 (37)4.4 支座 (37)4.5 压力容器选材原则 (38)4.6 垫片 (39)第5章结论 (40)参考文献 (41)致谢 (43)第1章引言1.1 换热器的用途换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

半球形管箱高压U形管换热器管板的强度计算

半球形管箱高压U形管换热器管板的强度计算

半球形管箱高压U形管换热器管板的强度计算倪永良;盛嵘;崔琴【摘要】对一台半球形管箱的高压U形管换热器的管板进行强度计算,该管板与管箱、壳程筒体之间的连接方式不属于GB/T 151-2014标准中列出的结构,不能直接选用该标准中的连接方式计算管板的厚度.根据管板所承受的载荷和受力情况,提出了两种计算方法计算了管板的厚度,并根据换热管中心距对管板计算厚度进行修正.因为两种计算结果比较接近,故认为所采用的计算方法是可行的.鉴于该换热器的管箱是半球形封头,而在第2种方法中将管板当作平盖计算时,现有的设计标准中均没有给出与半球形封头连接的平盖的计算方法,于是先按与圆筒连接的平盖的计算方法进行计算,然后采用AN-SYS软件进行有限元应力分析,对计算结果加以验证,验证结果表明所采用的计算方法基本正确的,可用于工程设计.【期刊名称】《化工机械》【年(卷),期】2016(043)005【总页数】6页(P605-609,615)【关键词】U形管换热器;管板;强度计算;平盖;计算厚度;修正系数;半球形管箱;有限元分析【作者】倪永良;盛嵘;崔琴【作者单位】江苏省化工设备制造安装有限公司;江苏省化工设备制造安装有限公司;江苏省化工设备制造安装有限公司【正文语种】中文【中图分类】TQ055.8U形管换热器的管板与管壳程筒体之间的连接方式有多种,GB/T 151-2014标准中[1],图7-3所列的a~f型各种连接方式均可用于U形管换热器管板与管壳程筒体之间的连接。

一台高压U形管式合成气水冷却器,因管板与管壳程筒体的连接方式为非常规结构,不属于GB/T 151-2014标准中图7-3所列的任意一种,故不能用该标准的计算方法对上述管板进行强度计算。

笔者根据该换热器管板的结构,分析了管板所承受的载荷和管板的受力情况,对该管板提出具体的强度计算方法,并采用ANSYS软件进行有限元应力分析,对计算结果加以验证。

合成气水冷却器是一台卧式高压U形管式换热器(图1),管程为高压,壳程为低压,管板与半球形封头焊接成一体组成管箱,管板不兼作法兰,壳程筒体法兰用旋入式螺栓与管板连接,螺栓载荷的作用位置在管箱载荷的内侧。

固定管板式换热器工艺计算 说明书

固定管板式换热器工艺计算   说明书

摘要换热器是进行热交换操作的工艺设备。

广泛应用于化工、石油、石油化工、电力、轻工、原子能、造船、航空、供热等工业部门中。

特别是在石油的炼制和化学加工装置中,占有非常重要的地位。

固定管板式换热器的管束连接在管板上,管板与换热器壳体焊接。

其结构设计简单、制造方便、能承受较高压力、造价低;但材料的利用率不高;本设计严格按照要求,主要对固定管板式换热器进行工艺计算,结构设计和强度计算,采用的方法分别为:根据两流体的温度变化情况和物料性质,选择换热器类型;再根据物料操作条件,估算换热器的传热面积,然后求出总传热系数K,核算传热面积;按照GB150-1998,分别对换热器的各个部分结构进行选择、设计;严格按照GB151-1999,分别对封头、筒体、管板法兰进行强度计算和校核。

然后再结合石油、化工、制药、食品等行业实际而进行优化设计,解决了换热器设计中多目标之间相互矛盾的问题,以及提高材料的利用率,增强换热效果,节省了材料。

本换热器适用性强,用途广泛,具有非常广阔的发展前景。

关键词:换热器;管板;筒体;折流板;工艺计算;结构设计;强度计算AbstractHeat exchanger for heat exchange operation is a common process equipment. Widely used in chemical, petroleum, petrochemical, power, light industry, metallurgy, nuclear, shipbuilding, aviation, heating and other industrial sectors. Particularly in the oil refining and chemical processing unit, occupies an extremely important position. Fixed tube plate heat exchanger tubes connected to the tube sheet, tube sheet and shell welding. Its simple structure, convenience, able to withstand high pressure, low cost; but the material utilization is not high; designed in strict accordance with the requirements of the standard GB151-1999, mainly on the fixed tube heat exchanger for process calculation, structural design and strength calculations, the methods used were: two-fluid temperature changes according to circumstances and nature of the materials, select the type of heat exchanger; according to the operating conditions of the material, estimate the heat transfer area, and then find the overall heat transfer coefficient K, accounting for heat transfer area; according to GB150-1998, were all part of the structure of the heat exchanger selection and design; in strict accordance with GB151-1999, respectively, on the head, cylinder, pipe flange for strength calculation and checking. Then combine the oil, chemical, pharmaceutical, food and other industries to optimize the design of practical and solve multi-objective design of heat exchanger between the conflicting issues, and improve material utilization, enhanced heat transfer effect, savings in materials. The heat exchanger applicability, versatility, and has broad prospects for development.Keywords: heat exchanger; bundle; tube plate; head; cylinder; flange; process calculation; structural design; strength calculation目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 选题背景和意义 (1)1.2 国内外研究现状 (1)第2章设计方案 (3)2.1 选择换热器的类型 (3)2.2 物料流程安排 (3)第3章工艺计算 (4)3.1 确定物性参数 (4)3.2 估算传热面积 (4)3.3.1 热流量 (4)3.3.2 平均传热温差 (4)3.3.3 传热面积 (5)3.3.4 冷却水用量 (5)3.4 工艺结构尺寸 (5)3.4.1 管径和管内流速 (5)3.4.2 管程数和传热管数 (5)3.4.3 平均传热温差校正及壳程数 (6)3.4.4 传热管排列和分程方法 (6)3.4.5 壳体内径 (7)3.4.6 折流板 (7)3.4.7 接管 (7)3.5 换热器核算 (7)3.5.1 热流量核算 (7)3.5.1.1 壳程表面传热系数 (7)3.5.1.2 管内表面传热系数 (8)3.5.1.3 污垢热阻和管壁热阻 (9)3.5.1.4 计算传热系数 (9)3.5.1.5 换热器的面积裕度 (9)3.5.2 换热器内流体的流动阻力 (10)3.5.2.1 管程流体阻力 (10)3.5.2.2 壳程流体阻力 (10)3.5.3壁温核算 (11)3.6 换热器主要结构尺寸和计算结果表 (11)第4章强度计算 (13)4.1 壳体、管箱壳体和封头的设计 (13)4.1.1 壁厚的确定 (13)4.1.2 封头的设计 (14)4.1.3 进出口的设计 (14)4.1.3.1 接管外伸长度 (14)4.1.3.2 接管与筒体、管箱壳体的链接 (14)4.1.3.3 接管位置 (14)4.2 管板与换热管 (15)4.2.1 管板 (15)4.2.1.1 管板结构 (15)4.2.1.2 管板最小厚度 (16)4.2.1.3 管板尺寸 (16)4.3 壳体与管板、管板与法兰及换热管的连接 (16)4.3.1 壳体与管板的连接结构 (16)4.3.2 管板与法兰的连接 (16)4.3.3 管子与管板 (16)4.4 螺栓法兰连接设计 (17)4.4.1 垫片选择 (17)4.4.2 螺栓设计 (17)4.5 管板设计 (18)第5章其他各部件结构 (20)5.1 折流板 (20)5.1.1 折流板管孔 (20)5.1.2 折流板的布置 (20)5.2 拉杆 (20)5.3 防冲板 (21)5.4 支座 (21)5.5 膨胀节 (21)5.6 鞍座的选择 (23)5.7 各种可能情况下的应力校核 (26)5.7.1 只有壳程设计压力而管程设计压力 (26)5.7.2 只有管程设计压力而壳程设计压力 (33)结论 (40)参考文献 (41)致谢 (42)第一章绪论1.1 选题背景和意义换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

高压挠性薄管板的计算

高压挠性薄管板的计算

高压挠性薄管板的计算张贤福【摘要】Methods of tubesheets calculation in SH/T 3158,AD Code and EN 12953 were used to calcu-late the thin-tubesheet under high pressure,and ANSYS software was also used to check the thickness calculated before,the conclusion is that the standard formula in calculating the thickness of tube layout ar-ea and close outside area is applicable,but at the corner of the thin-tubesheet,due to the complex load-ing and the flexiblesupport,standard formula can′t consider these factors,so stress ana lysis software shall be used for these parts′design.%利用SH/T 3158,AD 规范及EN 12953中的计算方法对高压薄管板进行了计算,并应用ANSYS软件对计算厚度进行了分析校核,得出的结论是这些标准公式在计算管板布管区及布管区外的厚度是适用的,但在薄管板的转角处因受力复杂,且属于挠性支撑,标准公式无法考虑这些因素,需要使用应力分析软件对这些部位进行设计计算。

【期刊名称】《压力容器》【年(卷),期】2014(000)004【总页数】5页(P49-53)【关键词】换热器;薄管板;高压;挠性;ANSYS;网格【作者】张贤福【作者单位】江苏中圣高科技产业有限公司,江苏南京 211112【正文语种】中文【中图分类】TH123;TQ051.5;T-650 引言乙烯、丙烯等不饱和烯烃是生产各种重要有机化工产品的原材料,目前以管式炉裂解技术最为成熟,其原理是让石油系的烃类和蒸汽的混合物通过裂解炉管,在通过炉管这段很短的时间内,将混合物料加热至高温,一般为800~900℃左右,在高温下,石油系烃类会发生裂解,生成乙烯、丙烯等不饱和烯烃。

管壳式换热器的强度计算

管壳式换热器的强度计算
2 o
t
t=
0.25Do p
[τ ]
t
式中 [τ]t ——管板材料在设计温度下的许用 τ 管板材料在设计温度下的许用 剪应力, τ 剪应力,取[τ]t=0.8 [σ]t σ t ——不包括附加量的管板厚度,t=tc-C。 不包括附加量的管板厚度, 不包括附加量的管板厚度
考虑管板开孔削弱系数为(1-do/to),则管板 考虑管板开孔削弱系数为 , 按剪切强度的计算公式为: 按剪切强度的计算公式为: (3) ) 管孔中心距, 式中 to ——管孔中心距,mm; 管孔中心距 ; d。——管子外径,mm; 管子外径, 。 管子外径 ; D。——布管区最外圈管子中心圆直径,mm 布管区最外圈管子中心圆直径, 。 布管区最外圈管子中心圆直径 当布管区不是圆形时, 当布管区不是圆形时,则D。为布管区外缘 。 管子中心连线所限定的周边当量直径, 管子中心连线所限定的周边当量直径,即 4 Ao Do = Lo
2.将管束当作弹性支承,而管板则作为放置 .将管束当作弹性支承, 弹性支承 于这弹性基础上的圆平板, 弹性基础上的圆平板 于这弹性基础上的圆平板,然后根据载荷大 小、管束的刚度和周边支承情况来确定管板 的弯曲应力。 的弯曲应力。由于它比较全面地考虑了管束 的支承和温差等影响,因而比较精确, 的支承和温差等影响,因而比较精确,但计 算公式较多,计算过程也较繁杂。 算公式较多,计算过程也较繁杂。在大力发 展电子计算技术的今天, 展电子计算技术的今天,是一种有效的设计 方法。 方法。 3.取管板上相邻四根管子之间的棱形面积, .取管板上相邻四根管子之间的棱形面积, 按弹性理论求此棱形面积在均布压力作用下 的最大弯曲应力。 的最大弯曲应力。由于此法与管板实际受载 情况相差甚大,仅用于粗略计算。 情况相差甚大,仅用于粗略计算。

SW6某固定管板换热器强度计算_简单计算书

SW6某固定管板换热器强度计算_简单计算书

软件批准号:CSBTS/TC40/SC5-D01-1999DATA SHEET OF PROCESS EQUIPMENT DESIGN工程名:PROJECT设备位号:ITEM设备名称:EQUIPMENT图号:DWG NO。

设计单位:压力容器专用计算软件DESIGNER固定管板换热器设计计算设计计算条件:壳程: 管程:设计压力P s (MPa) 2.4 设计压力P t (MPa) 0.6设计温度t s (℃) 100 设计温度t t (℃) 60壳程圆筒外径Do (mm) 325 管箱圆筒外径Do (mm) 325材料名称20(GB8163) 材料名称20(GB8163)前端管箱封头计算计算所依据的标准GB 150.3-2011计算条件计算压力P c (MPa) 0.60 外径D o (mm) 325.00 设计温度t (℃) 60.00 曲面高度h o (mm) 73.00 材料名称Q235-B 材料类型板材试验温度许用应力[σ] (MPa) 116.00 钢板负偏差C1 (mm) 0.30 设计温度许用应力[σ]t(MPa) 114.50 腐蚀裕量C2 (mm) 1.00 焊接接头系数φ 1.00压力试验时应力校核压力试验类型液压试验压力试验允许通过的应力试验压力值P T (MPa) 1.0000 [σ]T (Mpa) 211.50试验压力下封头的校核条件σT ≤[σ]T周向应力σT (MPa) 29.90 校核结果合格厚度及重量计算形状系数K 1.2750 最小厚度δmin (mm) 3.00 计算厚度δh (mm) 1.08 名义厚度δnh (mm) 8.00 有效厚度δeh (mm) 6.70 重量(kg) 7.75 结论满足最小厚度要求压力计算最大允许工作压力[P w](MPa) 3.82974 结论合格后端管箱封头计算计算所依据的标准GB 150.3-2011计算条件计算压力P c (MPa) 0.60 外径D o (mm) 325.00 设计温度t (℃) 60.00 曲面高度h o (mm) 73.00 材料名称Q235-B 材料类型板材试验温度许用应力[σ] (MPa) 116.00 钢板负偏差C1 (mm) 0.30 设计温度许用应力[σ]t(MPa) 114.50 腐蚀裕量C2 (mm) 1.00 焊接接头系数φ 1.00压力试验时应力校核压力试验类型液压试验压力试验允许通过的应力试验压力值P T (MPa) 1.0000 [σ]T (Mpa) 211.50试验压力下封头的校核条件σT ≤[σ]T周向应力σT (MPa) 29.90 校核结果合格厚度及重量计算形状系数K 1.2750 最小厚度δmin (mm) 3.00 计算厚度δh (mm) 1.08 名义厚度δnh (mm) 8.00 有效厚度δeh (mm) 6.70 重量(kg) 7.75 结论满足最小厚度要求压力计算最大允许工作压力[P w](MPa) 3.82974 结论合格内压圆筒校核计算所依据的标准GB 150.3-2011计算条件计算压力P c (MPa) 2.40 设计温度t (℃) 100.00 外径D o (mm) 309.00材料名称20(GB8163) 材料类型管材试验温度许用应力[σ] (MPa) 152.00 钢板负偏差C1 (mm) 1.20 设计温度许用应力[σ]t (MPa) 147.00 腐蚀裕量C2 (mm) 1.00 试验温度下屈服点σs (MPa) 245.00 焊接接头系数φ 1.00厚度及重量计算计算厚度δ (mm) 2.50 名义厚度δn (mm) 8.00 有效厚度δe (mm) 5.80 重量(kg) 68.53压力试验时应力校核压力试验类型液压试验压力试验允许通过的应力试验压力值P T (MPa) 3.0000[σ]T0.90σs220.50试验压力下圆筒的应力σT (MPa) 78.41 校核条件σT≤[σ]T校核结果合格压力及应力计算最大允许工作压力[P w] (MPa) 5.62401 设计温度下计算应力σt (MPa) 62.73 [σ]tφ147.00 校核条件[σ]tφ≥σt 结论合格开孔补强计算设计条件接管: A1,A2, φ80×10计算方法: GB150.3-2011 等面积补强法,单孔计算压力p c (MPa) 0.6 接管焊接接头系数 1 设计温度t (℃) 60 接管腐蚀裕量(mm) 1 壳体型式椭圆形封头凸形封头开孔中心至壳体材料Q235-B 封头轴线的距离(mm)名称及类型板材接管厚度负偏差C1t (mm)壳体开孔处焊接接头系数φ 1 接管材料许用应力[σ]t (MPa)壳体内直径D I (mm) 309 接管材料20(GB8163) 壳体开孔处名义厚度δn (mm) 8 名称及类型管材壳体厚度负偏差C1 (mm) 补强圈材料名称壳体腐蚀裕量C2 (mm) 1 补强圈外径(mm)壳体材料许用应力[σ]t (MPa) 补强圈厚度(mm)椭圆形封头长短轴之比 2.1164 补强圈厚度负偏差C1r (mm)接管连接型式补强圈许用应力[σ]t (MPa)接管实际外伸长度(mm) 20 凸形封头上接管轴线与封头轴线的接管实际内伸长度(mm) 0 夹角(°)开孔补强计算非圆形开孔长直径(mm) 64.5 开孔长径与短径之比 1 壳体计算厚度δ(mm) 接管计算厚度δt (mm)补强圈强度削弱系数f rr接管材料强度削弱系数f r开孔补强计算直径d (mm) 64.5 补强区有效宽度B (mm)接管有效外伸长度h1 (mm) 接管有效内伸长度h2 (mm)壳体多余金属面积A1 (mm2)开孔削弱所需的补强面积A(mm2)接管多余金属面积A2 (mm2) 补强区内的焊缝面积A3(mm2)A1+A2+A3= (mm2)补强圈面积A4 (mm2) A-(A1+A2+A3) (mm2)开孔补强计算设计条件接管: B1,B2, φ60×5计算方法: GB150.3-2011 等面积补强法,单孔计算压力p c (MPa) 2.4 接管焊接接头系数 1 设计温度t (℃) 100 接管腐蚀裕量(mm) 1 壳体型式圆形筒体凸形封头开孔中心至壳体材料20(GB8163) 封头轴线的距离(mm)名称及类型管材接管厚度负偏差C1t (mm)壳体开孔处焊接接头系数φ 1 接管材料许用应力[σ]t (MPa)壳体内直径D I (mm) 309 接管材料20(GB8163) 壳体开孔处名义厚度δn (mm) 8 名称及类型管材壳体厚度负偏差C1 (mm) 补强圈材料名称壳体腐蚀裕量C2 (mm) 1 补强圈外径(mm)壳体材料许用应力[σ]t (MPa) 补强圈厚度(mm)0 补强圈厚度负偏差C1r (mm)接管轴线与筒体表面法线的夹角(°)接管连接型式补强圈许用应力[σ]t (MPa)接管实际外伸长度(mm) 77.5 凸形封头上接管轴线与封头轴线的接管实际内伸长度(mm) 0 夹角(°)开孔补强计算非圆形开孔长直径(mm) 53.25 开孔长径与短径之比 1 壳体计算厚度δ(mm) 接管计算厚度δt (mm)补强圈强度削弱系数f rr接管材料强度削弱系数f r开孔补强计算直径d (mm) 53.25 补强区有效宽度B (mm)接管有效外伸长度h1 (mm) 接管有效内伸长度h2 (mm)壳体多余金属面积A1 (mm2)开孔削弱所需的补强面积A(mm2)接管多余金属面积A2 (mm2) 补强区内的焊缝面积A3(mm2)A1+A2+A3= (mm2)补强圈面积A4 (mm2) A-(A1+A2+A3) (mm2)延长部分兼作法兰固定式管板设计计算条件:壳程圆筒:设计压力p s (MPa) 2.4 平均温度下热膨胀系数αs(1/℃) 1.076e-05 设计温度T s (℃) 100 壳程圆筒内径D I(mm) 309 平均金属温度t s (℃) 0 壳程圆筒名义厚度δs(mm) 5.8 装配温度t0 (℃) 15 壳体法兰弹性模量E f’(MPa) 1.97e+05材料名称20(GB8163)壳程圆筒内直径横截面积A(mm2)7.499e+04设计温度下许用应力[σ]t(MPa) 147 壳程圆筒金属横截面积A s(mm2)5736平均温度下弹性模量E s(MPa) 2.023e+05管箱圆筒:设计压力p t (MPa) 0.6 弹性模量E h (MPa) 2.01e+05 设计温度T t(℃)60 管箱圆筒名义厚度δh(mm) 7 材料名称20(GB8163)管箱法兰弹性模量E f”(MPa) 1.99e+05 换热管:材料名称BFe10-1-1管子壁厚δt (mm) 0.6 管子平均温度t t (℃) 0 管子根数n464 设计温度下管子材料许用应力换热管中心距S (mm) 12 [σ]t t(MPa) 63 一根管子金属横截面积α(mm2)16.78 设计温度下管子材料屈服应力管子有效长度(两管板内侧间σs t (MPa) 94距) L (mm) 1152 设计温度下管子材料弹性模量管束模数K t2731 E t t (MPa) 1.21e+05管子回转半径i 3.154 平均温度下管子材料弹性模量管子受压失稳当量长度l cr170 E t (MPa) 1.249e+05系数C r159.4 平均温度下管子材料热膨胀系比值l cr53.9 数αt 1.153e-05 管子稳定许用压应力[σ]cr39.05 管子外径d (mm) 9.5管板:材料名称Q235-B管板强度削弱系数η0.4 设计温度t p100 管板刚度削弱系数μ0.4 设计温度下许用应力[σ]r t (MPa) 108 管子加强系数K 4.23 设计温度下弹性模量E P (MPa) 1.97e+05 管板和管子连接型式胀接,不开槽管板腐蚀裕量C2 (mm) 2 管板和管子胀接(焊接)高度l(mm) 17 管板输入厚度δn (mm)20 许用拉脱应力[q](MPa) 2 管板计算厚度δ(mm) 17.7 隔板槽面积(包括拉杆和假管区面积)A d (mm2) 0管箱法兰:材料名称Q235-B法兰宽度b f (mm) 45.5 管箱法兰厚度δf”(mm) 20 比值δh/D i0.02265 法兰外径D f (mm) 400 比值δf”/D i0.06472 基本法兰力矩M m(N⋅mm)3.362e+06 系数C”0.00 管程压力操作工况下法系数ω”0.002577 兰力M p (MPa) 1.34e+06 旋转刚度K f”(MPa) 52.39 壳体法兰:材料名称Q235-B系数ω’0.001598 壳体法兰厚度δf’(mm) 18 旋转刚度K f’(MPa) 33.61 法兰外径D f (mm) 400 法兰外径与内径之比K 1.294 法兰宽度b f (mm) 45.5 壳体法兰应力系数Y7.666 比值δs/D i0.01877 旋转刚度无量纲参数f~K0.009666比值δf’/D i0.05825 膨胀节总体轴向刚度K ex(N/mm)系数C’0.00注:管板参数计算:管板开孔后面积A1(mm2) 4.21e+04 管板布管区当量直径D t(mm)271.4管板布管区面积A t(mm2)5.786e+04 系数计算:管板第一弯矩系数m 1 0.3562 管板第二弯矩系数m 2 1.884 系数 ψ 8.785 系数 M 1 0.01283 系数 G 22.473 系数 G 30.01426 换热管束与不带膨胀节 法兰力矩折减系数 ξ0.4039壳体刚度之比 Q 0.8376 管板边缘力矩变化系~M ∆0.9565 换热管束与带膨胀节壳 法兰力矩变化系数 f ~M ∆0.6136 体刚度之比 Q ex系数 β=na A /l0.1849系数 λ=A 1/A 0.5614 管板布管区当量直径与系数 ∑s2.364 壳体内径之比 0.8784系数 ∑t 3.035 管板周边不布管区无量纲宽度 k = K (1-ρt )0.5143仅有壳程压力P s 作用下的工况 (P t = 0):不计温差应力计温差应力 换热管与壳程圆筒热膨胀变形差 γ 0.0 -1.155e-05当量压力组合 P c (MPa)2.4 2.4 有效压力组合 P a (MPa) 5.673 5.407 基本法兰力矩系数 m M ~0.04555 0.04779 管板边缘力矩系数~M 0.05782 0.06006 管板边缘剪力系数 ν 0.5079 0.5277 管板总弯矩系数 m 0.871 0.884 系数 G 1e 0.24910.2529系数 G 1i0.14340.1434 系数 G 10.24910.2529 管板径向应力系数σ~r0.028370.02918 管板布管区周边处径向应力系数σ~r0.07093 0.07294 管板布管区周边处剪切应力系数~τp0.1139 0.1154 壳体法兰力矩系数 ws M ~0.010530.01143计算值 许用值 计算值 许用值 管板径向应力 σr (MPa)68.86 162 67.48 324 管板布管区周边处径向应力 σr ’(MPa) 84.68 162 83.92 324 管板布管区周边剪切应力 τP (MPa) 13.91 54 13.43 162 壳体法兰应力 σf (MPa)59.4916261.58324换热管轴向应力 σt (MPa)-5.996[σ]t t =63[σ]cr = 39.05-4.9583[σ]t t =189 [σ]cr =39.05壳程圆筒轴向应力σc (MPa)18.97 147 18.31 441 换热管与管板连接拉脱应力 q (MPa) 0.1982 20.1639 2t s = 0):不计温差应力计温差应力 换热管与壳程圆筒热膨胀变形差 γ 0.0 -1.155e-05当量压力组合 P c (MPa) -0.7109 -0.7109 有效压力组合 P a (MPa) -1.821 -2.087 操作情况下法兰力矩系数p M ~-0.05659 -0.04936 管板边缘力矩系数 M M p ~~=-0.05659 -0.04936 管板边缘剪力系数 ν -0.4972 -0.4336 管板总弯矩系数 m -1.155 -0.8138 系数 G 1e 0.3303 0.2328 系数 G 1i 1.097 0.8784 系数 G 11.0970.8784 管板径向应力系数 σ~r0.041680.03757 管板布管区周边处径向应力系数σ~'r -0.03136 -0.02489 管板布管区周边处剪切应力系数 ~τp0.03798 0.04278 壳体法兰力矩系数 ws M ~-0.03569-0.03277计算值 许用值 计算值 许用值 管板径向应力 σr (MPa)32.46 162 33.55 324 管板布管区周边处径向应力σr ’ (MPa) 28.11 162 28.23 324 管板布管区周边剪切应力 τP (MPa) -1.488 54 -1.922 162 壳体法兰探讨应力σf(MPa) 64.73 162 68.13 324 换热管轴向应力σt (MPa) 4.75 [σ]t t =63 [σ]cr =39.055.827 3[σ]t t =189 [σ]cr =39.05壳 程圆筒轴向应力 σc (MPa) 5.814 147 5.223 441 换热管与管板连接拉脱应力 q (MPa) 0.1572 0.19272 结论管板名义厚度 δn (mm)20管板校核通过换热管内压计算计算条件设计压力P c (MPa) 0.60 试验温度许用应力[σ] (MPa) 67.00 设计温度t (℃) 100.00 设计温度许用应力[σ]t (MPa) 63.00 内径D i (mm) 8.30 钢板负偏差C1 (mm) 0.00 材料名称BFe10-1-1 腐蚀裕量C2 (mm) 0.00 材料类型管材焊缝接头系数φ 1.00厚度及重量计算计算厚度(mm) 0.04 名义厚度(mm) 0.60 有效厚度(mm) 0.60 重量(kg) 0.18压力及应力计算最大允许工作压力[P] (MPa) 8.49438 设计温度下计算应力σt (MPa) 4.45 [σ]tφ63.00校核条件[σ]tφ≥σt结论换热管内压计算合格换热管外压计算计算条件设计压力P c (MPa) -2.40 试验温度许用应力[σ] (MPa) 67.00 设计温度t (℃) 100.00 设计温度许用应力[σ]t (MPa) 63.00 内径D i (mm) 8.30 钢板负偏差C1 (mm) 0.00 材料名称BFe10-1-1 腐蚀裕量C2 (mm) 0.00 材料类型管材焊缝接头系数φ 1.00厚度及重量计算计算厚度(mm) 0.62 L/D o 4.97有效厚度(mm) 0.60 D o/δe15.83 名义厚度(mm) 0.60 A值0.0047973外压计算长度L (mm) 1192.00B值48.70外径D o (mm) 9.50重量(kg) 0.18压力计算许用外压力[P] (MPa) 3.87672结论换热管外压计算合格管箱法兰计算设计条件设计压力p c (MPa) : 0.600 螺栓根径d B (mm) : 13.8 计算压力p c (MPa) 0.600 螺栓材料名称35 设计温度t(︒C) 60.0 螺栓材料常温下许用应力法兰材料名称Q235-B [σ]b (MPa) 117.0 法兰材料常温下许用应力螺栓材料设计温度下许用应力[σ]f (MPa) 116.0 [σ]t b (MPa) 111.0 法兰材料设计温度下许用应力螺栓公称直径d B(mm)16.0 [σ]t f (MPa) 114.5 螺栓数量n (个) 16 法兰输入厚度δf (mm) 20.0垫片参数:b’=4(b’0)1/2 21.91 D I (mm) 309.0 2b" 5 D b (mm) 370.0 m 2.00 d b(mm) 19.0 y11.0 D’G=D b-(d b+2b") (mm) 346.0 D(mm) 400.0 δ1 (mm) 13.0螺栓受力计算W a=bπ'D b y = (N)280133.2 W p=F'+F p+F R= (N)173972.0 实际螺栓总截面积A b (mm2)2405.3弯矩计算F D = 0.785D2i p c (N)49749.4 L’T=0.25(D b+d b+2b"-D I)(mm17.2)F’T=0.785(D b-d b)2p c-F D (N) 8278.3 L’P=0.5(d b+2b") (mm) 12.0 F’T=6.28 D’G m p c b" (N)6521.9 L R=(D-(D b+d b))/4+d b/2 12.2(mm)F R=(F D L D+ F’P L’P+ F’T L’T)/L R (N) 109422.4 M D= F D L D (N.mm)1119361.0 整体: L D=0.5(D b-D i-δ1) M’T= F’T L’T(N.mm)142800.5 活套: L D=0.5(D b-D i) (mm) 22.5 M’P= F’P L’P(N.mm)78263.3 计算用弯矩M0(N.mm) 1340424.9螺栓间距校核实际间距(mm) 72.6 最小间距(查GB150.3-2011表7-3)(mm) 38.0 最大间距(mm) 88.0计算结果:按弯曲应力确定的法兰厚度δfn (mm) 9.0校核合格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Approved No.:CSBTS/TC40/SC5-D01-1999 DATA SHEET OF PROCESS EQUIPMENT DESIGN
PROJECT :
ITEM :
EQUIPMENT :
DWG. NO. :
DESIGNER:SELS
Designed by Date
Checked by Date
Verified by Date
Approved by Date
Calculation of Tubesheet for Packed Floating Head Heat Exchanger Calculation Unit
SELS
Design Conditions
Design Pressure in Shell Side A d 0.60 MPa Design Pressure in Tube Side P t 0.60 MPa Design Temperature in Shell Side t s 120.00 °C Design Temperature in Tube Side t t 90.00 °C Nominal Diameter of Heat Exchanger D i 700.00 mm Corrosion Allowance of Shell Side C s 1.00 mm Corrosion Allowance of Tube Side C t 1.00
mm Application Situation of Tubes Special Scene Connection Type of Exchanger
Tubes-to-Tubesheet(Expanded or Welded)
Welded
Initial Data
Material S30408
Plate Nominal Thickness of Tubesheet δn
35.00 mm Ligament Efficiency of Strength of Tubesheet μ 0.40 Tubesheet Ligament Efficiency of Stiffness of Tubesheet η
0.40 Area of Partition Groove A d
0.00 mm 2 Expanded Length of Fillet Weld Height between Tube and Tubesheet l
33.00 mm Modulus of Elasticity of Tubesheet Material at Design Temperature E p
187800.00 MPa Allowable Stress of Tubesheet Material at Design Temperature []σr t 109.60 MPa Allowable Pulling Away Force []q
4.00 mm Depth of Construction Groove at Shell Side h 1 0.00 mm
Depth of Partition Groove at Tube Side h 2
0.00 mm Material Designation S30408 Outside Diameter of Tube d 14.00 mm Thickness of Tube δt 1.00 mm Tube Number of Tubes n 846 Exchanger Tube Pitch S 19.00 mm Length of Tube L t
2561.00 mm Equivalent Length of Tube in Buckling l cr 150.00 mm Modulus of Elasticity of Exchanger Tube Material at Design Temperature E t
187800.00 MPa
Yield Point of Exchanger Tube Material at Design Temperature σs t
166.80
MPa。

相关文档
最新文档