(中考复习)函数2

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

中考复习必备-二次函数总复习

中考复习必备-二次函数总复习
线上位置最____高____的点.
字母符号
a>0 a
a<0 b=0 b b与a同号 b与a异号 c=0
c>0
c c<0 b2 b2-4ac=0 - b2-4ac>0 4a c b2-4ac<0
图象的特征 开口向上 开口向下 对称轴为y轴 对称轴在y轴左侧 对称轴在y轴右侧 经过原点
与y轴正半轴相交 与y轴负半轴相交 与x轴有唯一交点(顶点) 与x轴有两个交点 与x轴没有交点
⑤解析式的求法: 确定二次函数的解析式,一般用待定系数法,由于二次函数解析式有三 个待定系数a,b,c(或a,h,k或a,x1,x2),因而确定二次函数解析式需要 已知三个独立的条件: a.已知抛物线上任意三个点的坐标时,选用一般式比较方便. b.已知抛物线的顶点坐标时,选用顶点式比较方便. c.已知抛物线与x轴两个交点的坐标(或横坐标x1,x2)时,选用交点式比 较方便.
命题点4 二次函数的实际应用
3.(2016·丹东24题10分)某片果园有果树80棵,现准备多种一些果树提高果 园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单 棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们 之间的函数关系如图所示.
(1)求y与x之间的函数关系式; (2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750 千克? (3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
命题点1 二次函数的图象与性质 1.(2015·锦州5题3分)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a 的图象可能是( C )
2.(2016·阜新10题3分)二次函数y=ax2+bx+c的图象如图所示,下列选项中正 确的是( B ) A.a>0 B.b>0 C.c<0 D.关于x的一元二次方程ax2+bx+c=0没有实数根

中考数学专题训练第9讲二次函数2(原卷版)

中考数学专题训练第9讲二次函数2(原卷版)

二次函数题型一 二次函数的相关概念1.(2021·上海市洛川学校九年级期中)下列函数中.属于二次函数的是( )A .()()242 y x x x =-++B .()()213y x x =+-C .2y ax bx c =++D .42x y x= 2.(2021·山东·济南市莱芜实验中学九年级期中)若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数.那么m 的值是( )A .3B .2-C .2D .2或33.(2021·山东省陵城区江山实验学校九年级月考)下列函数中不属于二次函数的是( )A .(1)(2)y x x =+-B .21(1)2y x =+C .222(2)2y x x =+-D .213y x =-4.(2021·北京海淀·九年级期中)如图.在ABC 中.90C ∠=︒.5AC =.10BC =.动点M .N 分别从A .C 两点同时出发.点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动.点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t .点M .C 之间的距离为y .MCN △的面积为S .则y 与t .S 与t 满足的函数关系分别是( )A .正比例函数关系.一次函数关系B .正比例函数关系.二次函数关系C .一次函数关系.正比例函数关系D .一次函数关系.二次函数关系5.(2021·河北赵县·九年级月考)对于y =ax 2+bx +c .有以下四种说法.其中正确的是( ) A .当b =0时.y =ax 2+c 是二次函数 B .当c =0时.y =ax 2+bx 是二次函数C .当a =0时.y =bx +c 是一次函数D .以上说法都不对6.(2021·北京·首都师范大学附属中学九年级月考)边长为5的正方形ABCD .点F 是BC 上一动点.过对角线交点E 作EG ⊥EF .交CD 于点G .设BF 的长为x .△EFG 的面积为y .则y 与x 满足的函数关系是( )A .正比例函数B .一次函数C .二次函数D .以上都不是 7.(2021·北京海淀·二模)如图.一架梯子AB 靠墙而立.梯子顶端B 到地面的距离BC 为2m .梯子中点处有一个标记.在梯子顶端B 竖直下滑的过程中.该标记到地面的距离y 与顶端下滑的距离x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系8.(2021·安徽·宣城市第六中学九年级期中)若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数.则( )A .a ≠1B .a ≠﹣1C .a =1D .a =±19.以x 为自变量的函数:①(2)(2)y x x =+-.②2(2)y x =+.③2123y x x =+-.④()21y x x x =--.是二次函数的有( )A .②③B .②③④C .①②③D .①②③④ 10.(2021·湖南炎陵·九年级期末)已知二次函数y=(m+2)23m x -.当x<0时.y 随x 的增大而增大.则m 的值为( )A .5B 5C .5±D .211.(2021·湖北嘉鱼·九年级期末)下列各点中.一定不在抛物线222y mx mx =-+上的是( )A .(1.1)B .(2.2)C .(1.2)D .(1.3)12.(2021·浙江湖州·九年级月考)在抛物线245y x x =--上的一个点的坐标为( ) A .()0,4- B .()2,0 C .()1,0 D .()1,0-题型二 二次函数的图像与性质13.(2021·北京·景山学校九年级期中)抛物线y =(x ﹣3)2+1的顶点坐标是( ) A .(3.1) B .(3.﹣1) C .(﹣3.1) D .(﹣3.﹣1) 14.(2021·北京房山·九年级期中)已知二次函数2(2)6y x =--.当14x -≤≤时.y 的最小值为( )A .3B .0C .2-D .6-15.(2021·广东·珠海市九洲中学九年级期中)顶点(﹣5.﹣1).且开口方向、形状与函数y =13x 2的图象相同的抛物线是( )A .2153y x =-B .21(5)13y x =-+ C .21(5)13y x =-- D .21(5)13y x =+- 16.(2021·浙江·杭州市文晖中学九年级期中)对于二次函数y =﹣(x ﹣1)2+4的图象.下列说法正确的是( )A .开口向上B .顶点坐标是(﹣1.4)C .图象与y 轴交点的坐标是(0.4)D .函数有最大值417.(2021·吉林磐石·九年级期中)抛物线y =﹣x 2+3的顶点在( )A .x 轴上B .y 轴上C .第一象限D .第二象限 18.(2021·湖北江汉·九年级期中)已知抛物线y =ax 2+bx +c (a .b .c 为常数且a ≠0)经过P 1(1.y 1).P 2(2.y 2).P 3(3.y 3).P 4(4.y 4)四点.若y 3<y 2<y 1.则下列说法中正确的是( ) A .抛物线开口向下B .对称轴可能为直线x =3C .y 1>y 4D .5a +b >019.(2021·上海市洛川学校九年级期中)已知抛物线()222y ax x a =++-.a 是常数.且0a <.下列选项中可能是它大致图像的是( )A .B .C .D .20.(2021·安徽·宣城市第六中学九年级期中)关于二次函数228y x x =-.下列结论中正确的是( )A .图象与x 轴有两个交点B .当2x =时.y 有最大值8-C .当1x >时.y 随x 的增大而增大D .函数图象开口朝下21.(2021·山东·日照港中学九年级月考)已知二次函数2225y x bx b b =-++-(b 为常数)的图象与x 轴有交点.且当 3.5x <时.y 随x 的增大而减小.则b 的取值范围是( ) A .5b ≤ B .5b ≥ C .3.55b ≤≤ D .3.55b ≤< 22.(2021·北京十四中九年级期中)点()10,A y .()25,B y 在二次函数241y x x =-+的图象上.1y 与2y 的大小关系是( )A .12y y >B .12y y =C .12y y <D .无法比较 23.(2021·浙江·杭州市采荷中学九年级期中)已知二次函数y =2mx 2+(4﹣m )x .它的图象可能是( )A .B .C .D .24.(2021·福建·厦门市第十一中学九年级期中)将二次函数262y x x =+-化成()2y x h k =-+的形式应为( ) A .()237y x =++B .()311y x =-+C .()2311y x =+-D .()224y x =++题型三 二次函数图像与系数的关系25.(2021·山东嘉祥·九年级期中)如图.抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >.②240b ac ->.③a c b +>.④80a c +<.正确的有( )A .1个B .2个C .3个D .4个26.(2021·山东惠民·九年级期中)如图是二次函数2y ax bx c =++图象的一部分.该图象过点()5,0A -.对称轴为直线2x =-.下列结论:①0abc <.②420a b c -+>.③若()13,B y -与()24,C y -是抛物线上两点.则21y y >.④50a c +=.其中正确的有( )A .1个B .2个C .3个D .4个27.(2021·天津市第七中学九年级期中)已知抛物线2(0)y ax bx c a =++>的对称轴为直线1x =-.该抛物线与x 轴的一个交点为()1,0x .且101x <<.有下列结论:①0abc >②930a b c -+>③b a <④30a c +>.其中正确结论的个数是( )A .1B .2C .3D .428.(2021·山东·临沭县第五初级中学九年级月考)关于抛物线y =x 2﹣2x +1.下列说法错误的是( )A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x =1D .当x >1时.y 随x 的增大而减小 29.(2021·广东惠阳高级中学初中部九年级期中)如图所示.已知二次函数y =ax 2+bx +c 的图象与x 轴交于A 、B 两点.与y 轴交于点C .对称轴为直线x =1.直线y =﹣x +c 与抛物线y =ax 2+bx +c 交于C 、D 两点.D 点在x 轴下方且横坐标小于3.则下列结论:①2a +b +c >0.②a ﹣b +c <0.③ax 2﹣a ≥b ﹣bx .④a <﹣1.其中正确的有( )A .4个B .3个C .2个D .1个30.(2021·广东·珠海市九洲中学九年级期中)如图.二次函数y =ax 2+bx 的图象经过点P .若点P 的横坐标为﹣1.则一次函数y =(a ﹣b )x +b 的图象大致是( )A .B .C .D .31.(2021·云南·云大附中九年级期中)已知反比例函数b y x=的图象如图所示.则一次函数y cx a =+和二次函数2y ax bx c =++在同一直角坐标系中的图象可能是( )A .B .C .D .32.(2021·山东南区·九年级期末)在同一平面直角坐标系中.二次函数y =ax 2+bx .一次函数y =ax +b 和反比例函数y ab x =的图象可能是( )A.B.C.D.33.(2021·山东·青岛大学附属中学二模)一次函数y=ax+b与反比列函数y=cx的图象如图所示.则二次函数y=ax2+bx+c的大致图象是()A.B.C .D .34.(2021·山东·青岛实验学校九年级期末)已知二次函数21y ax bx c =++和22y bx ax c =++.a b >.则下列说法正确的是( )A .当0x <时.12y y <B .当01x <<时.12y y <C .当01x <<时.12y y >D .当1x >时12y y <35.(2021·安徽淮南·九年级月考)在同一平面直角坐标系中.函数y =ax 2+b 与y =bx 2+ax 的图象可能是( )A .B .C .D . 36.(2021·广东·汕头市龙湖实验中学九年级期中)如图.抛物线2(0)y ax bx c a =++≠的顶点为(1,)n .与x 轴的一个交点(3,0)B .与y 轴的交点在(0,3)-和(0,2)-之间.下列结论中:①0ab c>.②22()0a c b +-=.③22c a n -<.则正确的个数为( )A .0B .1C .2D .3题型四 二次函数的对称性与最值37.(2021·广东·广州市南武中学九年级期中)二次函数y =ax 2+bx +c 的图象如图所示.则该二次函数的顶点坐标为( )A .(1.3)B .(0.1)C .(0.—3)D .(2.1) 38.(2021·广东·珠海市九洲中学九年级期中)已知二次函数y =ax 2+bx +c (a ≠0)图象上部分点的坐标(x .y )的对应值如表所示.则方程ax 2+bx +2.32=0的根是( ) x …… 0 5 4 …… y …… 0.32 ﹣2 0.32 ……A .0或4B .1或5C .5或4﹣5D .5或5﹣2 39.(2021·陕西·安康高新区初级中学(汉滨初中高新校区)九年级期中)已知点()11,A y -、()23,B y -、()32,C y 均在抛物线22y x x m =-+-上.则1y .2y .3y 的大小关系是( ) A .123y y y >> B .231y y y >> C .213y y y >> D .312y y y >>40.(2021·山西·九年级期中)如果三点()()1122,1,1,P y P y -和()335,P y 在抛物线25y x x c =-++的图象上.那么123,,y y y 之间的大小关系是( )A .312y y y <<B .231y y y <<C .132y y y <<D .321y y y <<41.(2021·四川·江油外国语学校九年级月考)已知抛物线和直线l 在同一直角坐标系中的图象如图所示.抛物线的对称轴为直线x =﹣1.P 1(x 1.y 1)、P 2(x 2.y 2)是抛物线上的点.P 3(x 3.y 3)是直线l 上的点.且﹣1<x 1<x 2.x 3<﹣1.则y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 142.(2021·湖北武昌·九年级月考)若点(2.5).(4.5)在抛物线y =ax 2+bx +c 上.则它的对称轴是( ) A .x =0B .x =1C .x =2D .x =343.(2021·福建福州·九年级期末)二次函数y =x 2+2bx +4c 的图象与x 轴的两个交点的横坐标分别为x 1.x 2.且x 1>1.x 2-x 1=4.当1≤x ≤3时.该函数的最小值为m .则m 与b .c 的数量关系是( ) A .m =1+2b +4c B .m =4+4b +4c C .m =9+6b +4cD .m =-b 2+4c44.(2021·福建省泉州实验中学九年级期中)若二次函数2y ax bx c =++的图象经过()11,A x y 、()22,B x y 、()2,C m n -、()()1,D m n y n ≠则下列命题正确的是( )A .若0a >且1211x x ->-.则12y y <B .若0a <且12y y <.则1211x x -<-C .若1211x x ->-且12y y >.则0a <D .若()12122x x x x +=≠.则//AB CD45.(2021·浙江平阳·九年级期中)二次函数221y x x =-++.当12x -≤≤时.下列说法正确的是( )A .有最大值1.有最小值-2B .有最大值2.有最小值-2C .有最大值1.有最小值-1D .有最大值2.有最小值146.(2021·湖北十堰·九年级期中)若二次函数24y mx x m =-+有最大值-3.则m 等于( ) A .4m =B .1m =或-4C .4m =-D .1m =47.(2021·辽宁台安·九年级月考)函数21215555y x x =---的最大值是( )A .15-B .155C .5-D .155-48.(2021·江苏·南闸实验学校九年级月考)如图.矩形ABCD 中.AB =8.AD =4.E 为边BC 上一个动点.连接AE .取AE 的中点G .点G 绕点E 顺时针旋转90°得到点F .连接DF 、DE .EFD 面积的最小值是( )A .15B .16C .14D .12题型五 二次函数的解析式与图像平移49.(2021·广东海珠·九年级期中)已知二次函数的图象的顶点是(1,2)-.且经过点(0,5)-.则二次函数的解析式是( ). A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x50.(2021·安徽·合肥蜀山行知学校九年级期中)已知抛物线与二次函数y =2x 2的图象的开口大小相同.开口方向相反.且顶点坐标为(﹣1.2021).则该抛物线对应的函数表达式为( )A .y =﹣2(x ﹣1)2 +2021B .y =2(x ﹣1)2 +2021C .y =﹣2(x +1)2+2021D .y =2(x +1)2+202151.(2021·福建·龙岩市第五中学九年级月考)设函数y =a (x ﹣h )2+k (a .h .k 是实数.a ≠0).当x =1时.y =1.当x =6时.y =6.( ) A .若h =2.则a <0 B .若h =3.则a >0 C .若h =4.则a>0D .若h =5.则a >052.(2021·浙江·杭州市公益中学九年级开学考试)已知抛物线2y ax bx =+经过点(3,3)A --.且该抛物线的对称轴经过点A .则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx xD .2123y x x =+53.(2021·四川巴中·中考真题)已知二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值见表格.则下列结论:①c =2.②b 2﹣4ac >0.③方程ax 2+bx =0的两根为x 1=﹣2.x 2=0.④7a +c <0.其中正确的有( ) x … ﹣3 ﹣2 ﹣1 1 2 … y …1.875 3m1.875…54.(2021·湖南绥宁·九年级期末)在平面直角坐标系中.如果点P 的横坐标与纵坐标相等.则称点P 为和谐点.例如:点P (1.1)、(﹣2.﹣2)、(0.5.0.5)….都是和谐点.若二次函数y =ax 2+7x +c (a ≠0)的图象上有且只有一个和谐点(﹣1.﹣1).则此二次函数的解析式为( ) A .y =3x 2+7x +3B .y =2x 2+7x +4C .y =x 2+7x +5D .y =4x 2+7x +255.(2021·湖南长沙·模拟预测)如图.是抛物线21y ax bx c =++(0a ≠)图象的一部分.抛物线的顶点坐标是A (1.3).与x 轴的一个交点B (4.0).直线2y mx n =+(0m ≠)与抛物线交于A .B 两点.下列结论:①20a b +=. ②抛物线与x 轴的另一个交点是(2-.0).③方程23ax bx c ++=有两个相等的实数根.④当时14x <<.有21y y <.⑤若221122ax bx ax bx +=+.且12x x ≠.则121x x =+.则命题正确的个数为( )A .5个B .4个C .3个D .2个56.(2021·天津津南·九年级期中)把抛物线21(2)12y x =+-向上平移2个单位长度.则平移后抛物线的解析式是( )A .2112y x =-B .21(2)2y x =+C .21(2)12y x =++ D .21(4)12y x =+-57.(2021·山东惠民·九年级期中)在平面直角坐标系中.将抛物线244y x x =--向左平移3个单位.再向上平移5个单位.得到抛物线的表达式为( ) A .()2113y x =+- B .()2513y x =-- C .()253y x =--D .()213y x =+-58.(2021·浙江·杭州市采荷中学九年级期中)将抛物线y =3x 2的图象先向右平移2个单位.再向上平移5个单位后.得到的抛物线解析式是( ) A .y =3(x ﹣2)2﹣5 B .y =3(x ﹣2)2+5 C .y =3(x +2)2﹣5D .3(x +2)2+559.(2021·广东·广州市第九十七中学九年级期中)抛物线22y x =-向左平移2个单位长度.再向下平移3个单位长度后得到的抛物线解析式为( ) A .()2223y x =-+- B .()2223y x =--- C .()2223y x =-++D .()2223y x =--+.60.(2021·辽宁连山·九年级月考)如图.在平面直角坐标系中.二次函数212y x b =-+的图象经过正方形ABOC 的顶点A .B .C .且A 点为其顶点.将该抛物线经过平移.使其顶点为C 点.则平移后抛物线的表达式为( )A .21(2)22y x =--+B .21(2)22y x =-++ C .22(2)2y x =-+- D .22(2)2y x =--+题型六 二次函数与一元二次方程61.(2021·黑龙江·鸡西市第一中学校九年级期中)如果二次函数2y ax bx c =++中.有0a b c -+=.那么二次函数图像一定经过的点是( )A .(1,0)B .(1,0)-C .(0,1)-D .(0,1)62.(2021·山东费县·九年级期中)抛物线221y x x =-+与坐标轴的交点个数为( )A .0个B .1个C .2个D .3个63.(2021·北京市大兴区第三中学九年级期中)如图.抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1.与x 轴的一个交点坐标为(﹣1.0).其部分图象如图所示.下列结论: ①4ac <b 2.②方程ax 2+bx +c =0的两个根是x 1=﹣1.x 2=3. ③3a +c >0④当y >0时.x 的取值范围是﹣1≤x <3.其中结论正确的个数是( )A .4个B .3个C .2个D .1个64.(2021·安徽·蒙城县第六中学九年级期中)若抛物线y =ax 2+bx +c 与x 轴两个交点之间的距离为10.且4a +b =0.则关于x 的方程ax 2+bx +c =0的根为( ) A .x 1=﹣7.x 2=3B .x 1=﹣6.x 2=4C .x 1=6.x 2=﹣4D .x 1=7.x 2=﹣365.(2021·天津市南开田家炳中学九年级月考)已知抛物线212y x x =-.它与x 轴的两个交点间的距离为( ) A .0B .1C .2D .466.(2021·安徽合肥·九年级月考)已知抛物线y=x2-x-1.与x轴的一个交点为(m.0).则代数式m2-m+2021的值为()A.2019 B.2020 C.2021 D.2022 67.(2021·河北·育华中学九年级月考)如图.点A.B的坐标分别为(1.4)和(4.4).抛物线y=a(x﹣m)2+n的顶点在线段AB上运动.与x轴交于C、D两点(C在D的左侧).点C的横坐标最小值为﹣3.则点D的横坐标最大值为()A.13 B.7 C.5 D.8 68.(2021·广东·珠海市九洲中学九年级期中)抛物线y=x2+4x﹣m2+2(m是常数)与坐标轴交点的个数为()A.0 B.1 C.3 D.2或3 69.(2021·湖北武昌·九年级月考)抛物线y=x2﹣2x+1与坐标轴的交点个数是()A.0 B.1 C.2 D.3 70.(2021·陕西·交大附中分校模拟预测)将抛物线y=x2+2mx+m2﹣1向左平移8个单位.平移后的抛物线对称轴为直线x=1.则平移后的抛物线与y轴的交点坐标为()A.(0.0) B.(0.4) C.(0.15) D.(0.16) 71.(2021·天津·南开翔宇学校九年级开学考试)如图.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1.0).与y轴的交点B在(0.﹣2)和(0.﹣1)之间(不包含这两点).对称轴为直线x=1.在下列结论中:①abc>0.②16a+4b+c<0.③4ac﹣b2<8a.④13<a<23.⑤b<c.正结论的个数为()A.1 B.2 C.3 D.4 72.(2021·广东·佛山市华英学校九年级月考)根据表格对应值:x 1.1 1.2 1.3 1.4 ax 2+bx +c﹣0.590.842.293.76判断关于x 的方程ax 2+bx +c =3的一个解x 的范围是( ) A .1.1<x <1.2B .1.2<x <1.3C .1.3<x <1.4D .无法判定题型七 二次函数与不等式73.(2021·广东·广州市第九十七中学九年级期中)如图.直线1y x b =-+与抛物线()220y ax a =≠交于点A (-2.4).B (1.1).若12y y <.则x 的取值范围是( )A .2x <-B .21x -<<C .2x <-或1x >D .1x >74.(2021·吉林·长春市第八十七中学九年级月考)二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示.它与x 轴的一个交点坐标为(﹣3.0).当y >0时.则x 的取值范围是( )A .x <﹣3B .x >1C .﹣3<x <1D .x <﹣3或x >175.二次函数y =a x 2+bx +c 的图象如图所示.且方程a x 2+bx +c =k 有两个不相等的实数根.则k 的取值范围是( )A .k <2B .k ≤2C .k <3D .1<k <376.(2021·江苏·苏州高新区实验初级中学九年级月考)如图.反比例函数4y x=的图象和二次函数23y x x =+图象交于点()1,4A .则不等式32340x x +->的解集为( )A .1x >B .01x <<C .0x <D .1x >或0x <77.(2021·山东济南·二模)已知函数227y x ax =-+.当3x ≤时.函数值随x 增大而减小.且对任意的112x a ≤≤+和212x a ≤≤+.1x .2x 相应的函数值1y .2y 总满足129y y -≤.则实数a 的取值范围是( ) A .34a -≤≤B .35a -≤≤C .34a ≤≤D .35a ≤≤78.(2021·山东·胶州市初级实验中学模拟预测)函数2y x bx c =++与y x =的图象如图所示.下面结论:①240b c ->.②10b c ++=.③360b c ++=.④当13x <<时.()210x b x c +-+<.其中正确的是( )A .②③④B .③④C .①②③④D .①79.(2021·福建·厦门市槟榔中学九年级期中)已知二次函数y =x 2+bx +1当102x <<的范围内.都有y ≥0.则b 的取值范围是( ) A .b ≥0B .b ≥﹣2C .b ≥﹣52D .b ≥﹣380.(2021·浙江杭州·九年级期中)若二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表x … 0 1 2 3 … y…1-232…点()11,A x y 点()22,B x y 在该函数图象上.当12101,23,x x y <<<<与2y 的大小关系是( ) A .12y y <B .12y y >C .12y y ≥D .12y y ≤81.(2021·江苏建湖·二模)如图为某二次函数的部分图像.有如下四个结论:①此二次函数表达式为y =14x 2﹣x +9:②若点B (﹣1.n )在这个二次函数图像上.则n >m .③该二次函数图像与x 轴的另一个交点为(﹣4.0).④当0<x <5.5时.m <y <8.所有正确结论的序号是( )A .①③B .①④C .②③D .②④82.(2021·陕西·安康高新区初级中学(汉滨初中高新校区)九年级期中)如图.抛物线()20y ax bx c a =++≠的对称轴为直线1x =.与x 轴的一个交点坐标为(-1.0).其图象如图所示.下列结论:①0abc >.②24ac b <.③方程20ax bx c ++=的两个根是11x =-.23x =.④30a c +>.⑤当0y >时.x 的取值范围是13x .⑥()a b m am b +>+(1m ≠.m 为实数).其中结论正确的个数是( )A .4个B .3个C .2个D .1个83.(2021·浙江·杭州市余杭区维翰学校九年级月考)已知函数y 1=ax 2+bx +c 与函数y 2=kx +b 的图象大致如图所示.若y 1<y 2.则自变量x 的取值范围是( )A .﹣2<x <32B .x >2或x <﹣32C .x <﹣2或x >32D .﹣32<x <284.(2021·重庆云阳·九年级月考)如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分.抛物线的顶点坐标A (1.3).与x 轴的一个交点B (4.0).直线y 2=mx +n (m ≠0)与抛物线交于A .B 两点.下列结论:①2a +b =0.②abc >0.③方程ax 2+bx +c =3有两个相等的实数根.④抛物线与x 轴的另一个交点是(﹣1.0).⑤当1<x <4时.有y 2<y 1.其中正确结论的个数是( )A .5B .4C .3D .2题型八 二次函数综合85.(2021·黑龙江·鸡西市第一中学校九年级期中)已知抛物线()230y ax bx a =++≠交x轴于(1,0)A 和(3,0)B -.交y 轴于C .(1)求抛物线的解析式.(2)D 是抛物线的顶点.P 为抛物线上的一点(不与D 重合).当PAB ABD S S ∆∆=时.求P 的坐标.86.(2021·广东·广州市南武中学九年级期中)如图.已知抛物线的顶点为A (1.4).抛物线与y 轴交于点B (0.3).与x 轴交于C 、D 两点. (1)求此抛物线的解析式. (2)求△BCD 的面积.87.(2021·吉林·九年级期中)如图.在平面直角坐标系中.过原点的抛物线的顶点M 的坐标为()1,1--.点A 的坐标为()1,1.以OA 为边的菱形OABC 的顶点C 在x 轴的正半轴上.把菱形OABC 沿AB 向上翻折得到菱形EABD . (1)求抛物线对应的函数关系式.(2)若把抛物线向右平移使抛物线经过点D .求平移的距离.88.(2021·甘肃·平凉市第十中学九年级期中)如图.已知顶点是M的抛物线()230y ax bx a=+-≠与x轴交于()1,0A-.()3,0B两点.与y轴交于点C.(1)求抛物线对应的函数解析式.(2)点P是x轴上方抛物线上的一点.若PAB△的面积等于3.求点P的坐标.(3)是否在y轴存在一点Q.使得QBM为直角三角形?若存在.求出Q的坐标.若不存在.说明理由.89.(2021·吉林·长春市第八十七中学九年级月考)在平面直角坐标系中.函数y=x2﹣ax+2a﹣2(a为常数)与y轴交于点A.(1)当函数图象经过点(1.0)时.①求此函数的表达式并写出当y随x的增大而增大时.自变量x的取值范围.②此时函数有最值为.(2)已知点M(1.2)、N(3.2).连结M、N.若函数y=x2﹣ax+2a﹣2(a为常数)的图像与线段MN只有一个交点.直接写出a的取值范围.90.(2021·河南·息县教育体育局基础教育教学研究室九年级月考)已知二次函数2 13y x bx=+-的图象与直线21y x=+交于点()1,0A-和点()4,B m.(1)求1y 的表达式和m 的值.(2)当12y y 时.则自变量x 的取值范围为__________.(3)将直线AB 沿y 轴上下平移.当平移后的直线与抛物线只有一个公共点时.求平移后的直线表达式.。

函数2

函数2

7
如何书写呢?
函数的关系式是等式.
那么函数解析式的书写有没有要求呢?
通常等式的右边是含有自变量的代数 式,左边的一个字母表示函数.
根据所给的条件,写出y与x的函数关系式:
矩形的周长是18cm,它的长是y cm,宽是x cm.
8
1.下列各式中,x是自变量,请判断y是不是x的
函数?若是,求出自变量的取值范围。
(1)y=2x+4 1 y ( 3) x 2
(2)y=-2x2
( 4) y
x 3
如果当x=a时, y=b,那么b叫做 当自变量的值为a 时的函数值
解:(1)当x=3时,y=2x+4=2×3+4=10 (2)当x=3时,y=-2x2=-2×32=-18 (3)当x=3时, y
1 1 1 x 2 32
小露牛角
• 完成P26,练习1
当堂检测
1、 求下列函数中自变量x的取值范围 (1)y= (2)
(3)y =-
1、(凉山·中考)函数 是( )
的自变量x的取值范围
A.x≥﹣2且x≠2
C.x≠±2
B.x>﹣2且x≠2
D.全体实数
x 2 0 【解析】 选B.由题意知, 2 解得 x 4 0
由于池中共有300 m3每时排25 m3全部排完 只需300÷25=12(h),故自变量T的取值范 围是0≤t≤12
(3)开始排水后的第5h末,游泳池中还有多 少水? 当t=5,代入上式得Q=-5×25+300=175(m3), 即第5h末池中还有水175 m3
(4)当游泳池中还剩150 m3已经排水多少时? 当Q=150时,由150=-25 t +300,得t =6, 即第6 h末池中有水150m3

初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理

初中数学中考复习二次函数知识点总结归纳整理二次函数是指形如y=ax²+bx+c的函数,其中a、b、c为常数且a ≠ 0。

二次函数是初中数学中的重要内容,掌握了二次函数的知识,能够帮助我们理解函数的基本概念、图像和性质,同时也是后续学习函数、解析几何和微积分等内容的基础。

一、二次函数的定义和基本性质1.二次函数是一个以抛物线形状为特征的函数,其图像在平面直角坐标系中呈现出对称轴和顶点。

2.对于任意的a、b、c,二次函数的图像都存在对称轴,并且过对称轴的顶点。

3.当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

4. 当Δ=b²-4ac>0时,二次函数的图像与x轴有两个不同的交点,即该二次函数的解存在两个不同的实根;当Δ=0时,二次函数的图像与x轴有一个交点,即该二次函数的解存在一个实根;当Δ<0时,二次函数的图像与x轴没有交点,即该二次函数无实根。

5. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(x) =ax²+bx+c。

二、二次函数的图像与平移1. 对于y=ax²+bx+c,当a>0时,整个二次函数图像上移a个单位;当a<0时,整个二次函数图像下移a个单位。

2. 对于y=ax²+bx+c,当c>0时,整个二次函数图像上移c个单位;当c<0时,整个二次函数图像下移c个单位。

3. 对于y=ax²+bx+c,当b>0时,整个二次函数图像向左平移b个单位;当b<0时,整个二次函数图像向右平移b个单位。

三、二次函数的解和性质1.根据二次函数的定义,可以用求根公式计算二次函数的解,即x=(-b±√Δ)/(2a)。

2.根据二次函数的判别式Δ的大小,可以判断二次函数的解的情况,进而判断图像的开口方向和顶点的位置。

3.根据二次函数的顶点坐标和开口方向,可以确定二次函数的整个图像。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

人教版初三数学下册 中考复习 二次函数

人教版初三数学下册 中考复习 二次函数

中考复习之二次函数二次函数的一般式为y=ax2+bx+c(a≠0)a控制开口方向a>0,开口向上;a<0,开口向下。

|a|越大,开口越小;|a|越小,开口越大b控制顶点坐标顶点坐标公式24 (,) 24b ac ba a--顶点坐标的横坐标决定对称轴,顶点坐标的纵坐标决定最值对称轴在y轴左边,a、b同号;对称轴在y轴右边,a、b异号,对称轴刚好是y轴,b=0。

口诀:左同右异c控制二次函数与y轴的交点二次函数与y轴一定有一个交点,这个交点坐标为(0,c)当c>0,二次函数与y轴交于正半轴当c<0,二次函数与y轴交于负半轴当c=0,二次函数经过原点(0,0)二次函数x轴的交点由Δ控制Δ>0,二次函数与x轴有2个交点Δ=0,二次函数与x轴有1个交点Δ_____,二次函数与x轴有交点Δ<0,二次函数与x轴无交点求函数与x 轴的交点=>令y=0求函数与y 轴的交点=>令x=01、抛物线y =x 2﹣4x+4的顶点坐标为( )A .(﹣4,4)B .(﹣2,0)C .(2,0)D .(﹣4,0)2、抛物线y =x 2+x ﹣1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =﹣D .直线x =3、抛物线y =x 2+1的对称轴是( )A .直线x =﹣1B .直线x =1C .直线x =0D .直线y =14、抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)5、把抛物线y =﹣x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .y =﹣(x ﹣1)2+3B .y =﹣(x+1)2+3C .y =﹣(x+1)2﹣3D .y =﹣(x ﹣1)2﹣36、函数y =kx 2﹣4x+2的图象与x 轴有公共点,则k 的取值范围是( )A .k <2B .k <2 且 k ≠0C .k ≤2D .k ≤2 且 k ≠07、二次函数y =kx 2﹣2x ﹣3的图象和x 轴有交点,则k 的取值范围是( )A .k >31- B .k >31-且k ≠0 C .k ≥31- D .k ≥31-且k ≠0例1、二次函数y=ax2+bx+c的图象如图所示,对称轴为x=1,给出下列结论:①abc<0 ②b2>4ac ③4a+2b+c<0 ④2a+b=0其中正确的结论有()A.4个B.3个C.2个D.1个例2、如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0②b﹣a>c ③4a+2b+c>0 ④3a>﹣c ⑤a+b>m(am+b)(实数m≠1)。

中考考点二次函数知识点汇总全

中考考点二次函数知识点汇总全

中考考点二次函数知识点汇总全二次函数是高中数学中的重要内容之一,也是中考考试的重点内容。

它是由一次项、常数项和二次项组成的一元二次方程的图像,其函数关系为y=ax²+bx+c,其中a、b、c为常数,且a≠0。

下面将汇总全面介绍中考中二次函数的知识点。

1.二次函数的图像特点:-当a>0时,二次函数的开口向上,图像是一个U型,顶点在下方;-当a<0时,二次函数的开口向下,图像是一个倒U型,顶点在上方;-函数的图像关于顶点对称。

2.顶点坐标与轴对称:-二次函数的顶点坐标是(-b/2a,f(-b/2a)),其中f(x)为二次函数的定义域;-二次函数的轴对称是x=-b/2a。

3.判断二次函数的开口方向及平移:-当a>0时,二次函数的开口向上;-当a<0时,二次函数的开口向下;-平移后的二次函数的顶点坐标为(x-h,f(x-h)),其中h为平移的横坐标单位,f(x)为原二次函数。

4.与坐标轴的交点与函数值:- 与x轴的交点(零点)是二次方程ax²+bx+c=0的解;-与y轴的交点是二次函数的常数项c;-函数值f(x)是二次函数在x处的y值。

5.最值及取值范围:-当a>0时,二次函数的最小值是顶点的纵坐标,没有最大值,取值范围是[最小值,+∞);-当a<0时,二次函数的最大值是顶点的纵坐标,没有最小值,取值范围是(-∞,最大值]。

6.对称轴的方程及关于顶点的对称点:-对称轴的方程是x=-b/2a;-对于点P(x,y),在对称轴上的对称点是P'(-b/a-x,y)。

7.解析式与一般式转换:- 一般式:y=ax²+bx+c,解析式则为y=a(x-h)²+k,其中(h,k)为顶点坐标;- 解析式:y=a(x-p)(x-q),则一般式为y=ax²-(ap+aq)x+apq,其中p、q是解析式的两个根。

8.方程与二次函数的关系:- 二次函数y=ax²+bx+c的解析式的自变量x和函数值y满足方程y=ax²+bx+c;- 方程y=ax²+bx+c=0的解是对应二次函数的图像在x轴上的交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用顶点式求二次函数关系式! 用顶点式求二次函数关系式!
江苏) (2009江苏)如图,已知二次函数 =x2-2x-1的图象的顶点为 江苏 如图,已知二次函数y= - 的图象的顶点为 A.二次函数 =ax2+bx的图象与 轴交于原点 及另一点 ,它的 的图象与x轴交于原点 及另一点C, .二次函数y= 的图象与 轴交于原点O及另一点 顶点B在函数 在函数y= 的图象的对称轴上. 顶点 在函数 =x2-2x-1的图象的对称轴上. - 的图象的对称轴上 与点C的坐标 (1)求点 与点 的坐标; )求点A与点 的坐标; 为菱形时, 的关系式. (2)当四边形 )当四边形AOBC为菱形时,求函数 =ax2+bx的关系式. 为菱形时 求函数y= 的关系式
待定系数法是确定函数关系式的重要方法! 待定系数法是确定函数关系式的重要方法!
2.确定反比例函数的关系式需要知道图象上一个点的坐 确定反比例函数的关系式需要知道图象上一个点的坐 标. y 设点P(1,2)是反比例函数图 设点 , 是反比例函数图 象的一点, 象的一点, P
3 2 1
-4
-2
O
-1 -2
题组一: 题组一:函数自变量取值范围
函数自变量的取值范围是函数关系成立的基础, 函数自变量的取值范围是函数关系成立的基础,常见 的类型有分式型、二次根式型、 的类型有分式型、二次根式型、整式型及实际问题中的自 变量. 变量. 1.求下列函数的自变量的取值范围: 函数的自变量的取值范围 .求下列函数的自变量的取值范围: 1-x - 1 ;(3)y= 2x-1. (1)y= 2 ;(2)y= ) = ( ) = ( ) = - . x+1 +
y
l2
P
根据图象可知, 根据图象可知,当x>1时,y1<y2. > 时 . 说明: 说明:这里考查一次函数图象的 特征(两条相交直线), ),即相交 特征(两条相交直线),即相交 表示当x= 时 时,表示当 =1时,y1=y2. .
O
1
l1
x
题组二: 题组二:函数图象的特征问题
2.已知一次函数 y=kx+b 的图象交 y 轴于正半轴,且 y . 轴于正半轴, = + 的增大而减小,请写出符合上述条件的一个 ... 随 x 的增大而减小,请写出符合上述条件的一个关系式 .. =-x+ 式 y=- +2 . . =- 根据题意知, < , > . 根据题意知,k<0,b>0.
(1) = 解: ) y=x2- 2x-1=(x-1)2-2,所以 ( - = - , 的坐标为(1,- ,-2). 顶点 A 的坐标为 ,- . 的图象经过原点, 因为二次函数 y=ax2+bx 的图象经过原点, = 且它的顶点在二次函数 y=x2-2x-1 图象 = - 的对称轴 l 上,所以点 C 和点 O 关于直线 l 对称, 的坐标为(2, . 对称,所以点 C 的坐标为 ,0).
∴自变量 x 的取值范围是 0<x<2. < < .
说明: 说明:实际问题和几何问题中的自变量取值范围要关注 变量的实际意义和几何意义! 变量的实际意义和几何意义!
题组二: 题组二:函数图象的特征问题
函数图象的特征问题是根据函数的概念、 函数图象的特征问题是根据函数的概念、具体函数的 图象特征而命制的试题,要依据基本性质解决问题. 图象特征而命制的试题,要依据基本性质解决问题. 1.如图,直线 l1:y1=k1x+a 与 l2:y2=k2x+b 的交点坐标为 .如图, + + ,则使 的取值范围为( (1,2) 则使 y1<y2 的 x 的取值范围为( A ) , ) , . A.x>1 B.x>2 C.x<1 D.x<2 . > . > . < . <
y
∵根据题意 ,当C的横坐标最小时,图象顶点为 的横坐标最小时, 的横坐标最小时 图象顶点为A(1,4); , ; A(1,4) B(4,4) 当D的横坐标最大时,图象顶点为 的横坐标最大时, 的横坐标最大时 图象顶点为B(4,4), , ,
x D
∴将(-3,0)代入 y=a(x-1)2+4,得 a=- - , 代入 = - , =- C O 1 1 当顶点为(4, 时 =- - .当顶点为 ,4)时,y=-4(x-4)2+4,令 , 4 1 说明: 说明:二次函数图 y=0,得到- (x-4)2+4=0, = ,得到-4 - = , 象的位置及顶点坐 标确定函数关系式, 标确定函数关系式, x1=0,x2=8. , .
( )一切实数; 解: 1)一切实数 (2)∵x+1≠0,∴x≠-1; ) + ≠ , ≠ 1 (3)∵2x-1≥0,∴x≥2. ) - ≥ , ≥
说明:分式型中分母不为 、 说明:分式型中分母不为0、 二次根式的被开方数非负, 二次根式的被开方数非负, 要注意是分母、 要注意是分母、被开方数整 体非零、非负, 体非零、非负,而不是自变 量满足非零、非负! 量满足非零、非负!
题组二: 题组二:函数图象的特征问题
3.如图,点 A,B 的坐标分别为 ,4)和(4,4),抛物线 y=a(x- .如图, , 的坐标分别为(1, 和 , , = - m)2+n 的顶点在线段 AB 上运动,与 x 轴交于 C、D 两点(C 在 D 上运动, 、 两点( 的左侧) ,点 的横坐标最小值为- , 的左侧) 点 C 的横坐标最小值为-3,则点 D 的横坐标最大值为 , ( D ). . A.- .-3 B.1 C.5 D.8 .- . . .

数(二)
南京市金陵汇文学校 张爱平
函数的本质特征是变化和对应,是表示、 函数的本质特征是变化和对应,是表示、处理 数量关系及变化规律的有效工具, 数量关系及变化规律的有效工具,函数的各种形 式体现“函数知识” 函数思想”的统一. 式体现“函数知识”与“函数思想”的统一. 题型:选择题、填空题、解答题. 题型:选择题、填空题、解答题. 难度纬度:容易题、中等题、难题. 难度纬度:容易题、中等题、难题. 能力纬度:知识技能、理解概念、运用规则、 能力纬度:知识技能、理解概念、运用规则、解决问 题.
2
x

k 则函数 y=x(k≠0,k 为常数 的中 k=2. = , 为常数)的 = .
2 函数的关系式是 = ∴函数的关系式是 y=x.
-3
3.确定二次函数的关系式需要知道图象上三个点的坐标或 确定二次函数的关系式需要知道图象上三个点的坐标或 一个点和顶点坐标. 一个点和顶点坐标.
已知二次函数y= 已知二次函数 =x2+bx+c中,函数与自变量的部分对应值如下 + 中 表:
从而解决问题. 从而解决问题..
题组三: 题组三:函数关系式的确定问题
函数关系式的确定根据一次函数、反比例函数、二次函数的特征, 函数关系式的确定根据一次函数、反比例函数、二次函数的特征, 利用待定系数法,要注意解题的基本步骤是: 利用待定系数法,要注意解题的基本步骤是:设、代、解、答.
1.一次函数的图象经过点 ,0)和(0,1),则一次函数的 一次函数的图象经过点(1, 和 , , 一次函数的图象经过点 = + 关系式是 y=-x+1 .
已知二次函数y= 已知二次函数 =x2+bx+c中,函数与自变量的部分对应值如下 + 中 表:
x y … … -1 10 0 5 1 2 2 1 3 2 4 5 … …
求该二次函数的关系式. 求该二次函数的关系式.
(1)根据题意,函数图象的顶点是(2, , 解: )根据题意,函数图象的顶点是 ,1), ( ∴设函数关系式是 y=a(x-2)2+1(a≠1). = - ≠ . ∵当 x=1 时,y=2,∴2=a(1-2)2+1,a=1. = = , = - , = . ∴该二次函数关系式为 y=(x-2)2+1, = - , 即 y=x2-4x+5. = + .
题组一: 题组一:函数自变量取值范围
2.若一个矩形的周长为 4,则它的一边长 y 关于另一个 . , 的函数关系式是什么? 关系式是什么 的取值范围 范围是什 边长 x 的函数关系式是什么?自变量 x 的取值范围是什 么?
解:由题意得
x>0, > , y=2-x,其中 = - , 2-x>0. - > .
x y … … -1 10 0 5 1 2 2 1 3 2 4 5 … …
求该二次函数的关系式. 求该二次函数的关系式.
(1)根据题意, 解: )根据题意,当 x=0 时,y=5; ( = = ; 当 x=1 时,y=2. = = . 5=c, b=- , =-4, = , =- 所以 解得 2=1+b+c. = + + . = . c=5. 所以, 所以,该二次函数关系式为 y=x2-4x+5. = + .
设一次函数关系式是y=kx+b(k≠0),再将 ,0)、(0,1) 设一次函数关系式是 = + ,再将(1, 、 , 的坐标代入计算k, 的值及可 的值及可. 的坐标代入计算 ,b的值及可.
k+b=0, k=-1, , + = , = ∴ 解得 ∴y=-x+1. = + . b=1. b=1. = . = .
l B
O
1 C2
3
x
菱形和抛物线的对称性及待定系数 法!
A
• 关注基本题型的复习. 关注基本题型的复习. • 注重表达的规范和思维的严谨. 注重表达的规范和思维的严谨. • 注意知识和方法的系统和整理. 注意知识和方法的系统和整理.
-k2-1 图象在二 四象限内, 在二、 ∴反比例函数 y= x 的图象在二、四象限内, = 的增大而增大. 在各自象限内 y 随 x 的增大而增大.
1<0, ∵-k2-1<0,
∵-1<0 <2 <3 , ∴y2< y3<0 <y1. < 说明: 说明:根据-k2-1的符号确定反比例函数图象的位置及 的符号确定反比例函数图象的位置及 函数性质是解决问题的关键! 函数性质是解决问题的关键!.
y 2 1 O 1 A 2 3 x
关注抛物线的对称性及配方法! 关注抛物线的对称性及配方法!
相关文档
最新文档