七年级数学上册 3_1 有理数的加法与减法 知识点解读 有理数的减法素材 (新版)青岛版1

合集下载

七年级数学上册第3章有理数的运算3.1有理数的加法与减法教案(新版)青岛版

七年级数学上册第3章有理数的运算3.1有理数的加法与减法教案(新版)青岛版

3.1有理数的加法与减法(1)【教学目标】1.在实际应用中理解有理数加法的意义。

2.熟悉有理数加法法则的过程,学会灵活运用有理数的加法法则去解题,积极地参与有理数加法法则的探索活动,并学会与他人进行交流与合作。

3.能够灵活地运用有理数的加法运算解决简单的实际问题,在教学中让学生熟悉分类讨论思想。

【学习重点】异号两数相加计算方法与技巧。

【学习难点】有理数加法法则的灵活运用。

【学习过程】一、情境导入回顾课本第44页有关黄河水位的例子。

让学生体会同号两数相加,异号两数相加以及一个数与0相加的在实际问题中的不同意义,师生共同做课本第45页题目。

师提问:如何进行有理数的加法运算呢?这是我们这节课一起与大家探讨的主要问题。

(出示课题)有理数的加法。

二、合作交流,解读探究1.看课本第45页,观察水位的变化情形与学生相互交流后,教师引导学生可以把两个有理数相加归纳为(1)、同号两数相加;(2)、异号两数相加;(3)一个数同零相加这三种情形。

初步形成有理数相加的做题方法。

2.( 补充)借助数轴来进一步理解有理数的加法。

假定一个物体向前后方向运动,我们规定向前运动为正,向后为负,向前运动8m,记作+8m,那么向后运动3m,记作-3 m。

(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

(2)交流汇报。

(各学习小组的汇报结果,用实物投影仪展示)(3)说一说有理数相加应注意的事项是什么?(①符号,②绝对值的和与差)指导学生用自己的语言进行归纳。

(4)在学生归纳的基础上,教师出示有理数加法法则。

(用投影仪展示)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

③一个数同0相加,仍得这个数。

3. 自学课本例1,并独立解决(2)(3)(4)三个小题。

七年级上册加减知识点归纳总结

七年级上册加减知识点归纳总结

七年级上册加减知识点归纳总结在七年级上册的数学学习中,加法和减法是最基础、最常见的运算。

掌握加法和减法的基本规则和技巧对于后续数学学习的顺利进行至关重要。

本文将对七年级上册的加减法知识点进行归纳总结,以帮助同学们更好地掌握这些知识。

一、整数的加法和减法1. 整数加法:当两个整数具有相同的符号时,将它们的绝对值相加,再附上相同的符号即可。

例如:(-3) + (-5) = -8。

当两个整数具有不同的符号时,可以转化为减法运算。

将绝对值较大的数减去较小的数,差的符号由绝对值较大的数的符号决定。

例如:(-4) + 3 = -1。

2. 整数减法:整数减法可以转化为加法运算。

需要将减数取相反数,然后按照整数加法的规则进行计算。

例如:7 - (-5) = 7 + 5 = 12。

二、小数的加法和减法1. 小数加法:小数加法的步骤与整数加法相同,需要将小数点对齐后进行竖式计算。

例如:0.3+ 0.45-------0.752. 小数减法:小数减法的步骤与小数加法类似,也需要将小数点对齐后进行竖式计算。

例如:0.8- 0.35-------0.45三、分数的加法和减法1. 分数加法:当两个分数的分母相同时,只需将分子相加,分母保持不变。

例如: 1/4 + 3/4 = 4/4 = 1。

当两个分数的分母不同时,需要将它们转化为相同分母的分数,然后再进行加法。

例如:1/3 + 1/2 = 2/6 + 3/6 = 5/6。

2. 分数减法:分数减法的步骤与分数加法类似,需要将分数转化为相同分母的分数,然后进行减法运算。

例如:3/4 - 1/4 = 3/4 - 3/12 = 9/12 - 3/12 = 6/12 = 1/2。

四、近似数的加法和减法当两个近似数的位数相同,可以直接按位相加或相减。

例如:3.27 + 0.523 ≈ 3.793。

当两个近似数的位数不同时,需要将较短的数末尾补零,然后再进行运算。

例如:4.35 - 0.7 ≈ 4.35 - 0.70 ≈ 3.65。

七年级数学2.5有理数的加法与减法知识点解读有理数的减法

七年级数学2.5有理数的加法与减法知识点解读有理数的减法

知识点解读:有理数的减法知识点一:有理数减法法则1.有理数减法的意义:就是已知两个数的和与其中一个加数求另一个加数的运算.2.有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b)归纳总结:(1)进行有理数减法运算时,关键是把减法运算转化为加法运算,再按有理数的加法法则和运算律进行计算,体现了数学的转化思想.(2)把减法运算转化为加法运算要注意:将减号变为加号,同时减数变成原来的相反数.(3)数轴上A、B两点间的距离实际就是它们表示的数a、b差的绝对值即:AB=|a-b|.(4)一个数减去0比较容易,而减去一个数,一定要按法则,写成加上这个数的相反数.例1:计算2-(-3)=_____.分析:先把减法转化为加法运算,再进行有理数的加法运算,即2-(-3)=2+3=5.变式练习:计算:-3-(-7)= .参考答案:4知识点二:有理数加减混合运算1.有理数加减混合运算的方法:(1)将减法统一成加法,并写成省略加号的形式.(2)运用加法的交换律和结合律,简化运算.(3)计算出结果.2.有理数加减混合运算的技巧:(1)把互为相反数的两个数先加.(2)几个数相加的结果是整数时可以先加.(3)同分母分数先加.(4)正数与正数、负数与负数分别先加.归纳总结:在进行有理数运算时,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,这样的式子叫做代数和.例2:计算下列各式(1)(-7)+5-(+3)-(-4);(2)(-4)-⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-32221322.分析:对于有理数的加减混合运算,先按照有理数减法法则,先把减法化成加法,然后按照有理数的加法法则运算,在解决问题时,要先进行全面分析,找出特点,采用适当的步骤,才能计算正确、简便和迅速.根据题目特点,若能应用加法交换律或结合律的一定要尽量先用这些运算律,这样不但可以简便运算,而且还能防止出错. 解:(1)原式=-7+5-3+4=(-7-3)+(5+4)=(-10)+9=-1;(2)原式=214214322322214322213224-=--=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--=--+-. 变式练习: 计算下列各式:(1)9-(-4)+(-3)-(+1); (2)5-(124-)+12+(124-). 参考答案:(1)9;(2) 152.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是() A.B.C.D.2.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°3.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.424.如图,平面直角坐标系xOy中,四边形OABC的边OA在x轴正半轴上,BC∥x轴,∠OAB=90°,点C(3,2),连接OC.以OC为对称轴将OA翻折到OA′,反比例函数y=kx的图象恰好经过点A′、B,则k的值是()A.9 B.133C.16915D.35.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是()A.15°B.30°C.45°D.60°6.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤7.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形8.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A.40°B.50°C.60°D.70°9.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)10.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 11.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG=46°,则∠FAE 的度数是( )A .26°.B .44°.C .46°.D .72°12.12233499100++++++++L 的整数部分是( )A .3B .5C .9D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数ky x=的图象经过点B ,则k 的值是_____.14.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.15.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.16.不等式组21736xx->⎧⎨>⎩的解集是_____.17.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n=__________(用含n的代数式表示).所剪次数 1 2 3 4 …n正三角形个数 4 7 10 13 …a n 18.如图,将矩形ABCD绕点C沿顺时针方向旋转90°到矩形A′B′CD′的位置,AB=2,AD=4,则阴影部分的面积为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.求从袋中随机摸出一球,标号是1的概率;从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.20.(6分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.22.(8分)如图,AB为半圆O的直径,AC是⊙O的一条弦,D为»BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.求证:EF为半圆O的切线;若DA=DF=3求阴影区域的面积.(结果保留根号和π)23.(8分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.24.(10分)如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.求证:DE是⊙O的切线;若AE=6,∠D=30°,求图中阴影部分的面积.25.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两点.求证:MD=MC;若⊙O的半径为5,AC=45,求MC的长.26.(12分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4个数……第9个数……第n个数A组﹣6 ﹣5 ﹣2 ……58 ……n2﹣2n﹣5 B组 1 4 7 10 ……25 ……(1)A组第4个数是;用含n的代数式表示B组第n个数是,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.27.(12分)某水果批发市场香蕉的价格如下表购买香蕉数(千克) 不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.2.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.3.B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA 证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC 和△BDF 中CAD DBF AD BD FDB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B .【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.4.C【解析】【分析】设B (2k ,2),由翻折知OC 垂直平分AA′,A′G=2EF ,AG =2AF ,由勾股定理得OC=A′(526,613),根据反比例函数性质k =xy 建立方程求k .【详解】如图,过点C 作CD⊥x 轴于D ,过点A′作A′G⊥x 轴于G ,连接AA′交射线OC 于E ,过E 作EF⊥x 轴于F ,设B (2k,2),在Rt△OCD 中,OD =3,CD =2,∠ODC=90°, 222232OD CD +=+13由翻折得,AA′⊥OC,A′E=AE , ∴sin∠COD=AECDOA OC =, ∴AE=213213kCD OA OC ⨯⋅==,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD, ∴sin∠OAE=EFODAE OC ==sin∠OCD, ∴EF=1331313OD AEk OC ⋅==, ∵cos∠OAE=AFCDAE OC ==cos∠OCD, ∴1321313CDAF AE k OC =⋅==,∵EF⊥x 轴,A′G⊥x 轴,∴EF∥A′G, ∴12EFAFAEA G AG AA ==='', ∴6213A G EF k '==,4213AG AF k ==, ∴14521326OG OA AG k k k =-=-=,∴A′(526k,613k),∴562613k k k⋅=,∵k≠0,∴169=15 k,故选C.【点睛】本题是反比例函数综合题,常作为考试题中选择题压轴题,考查了反比例函数点的坐标特征、相似三角形、翻折等,解题关键是通过设点B的坐标,表示出点A′的坐标.5.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.6.C【解析】【分析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a <0,b <0,c >0,则①当x=1时,y=a+b+c <0,正确;②当x=-1时,y=a-b+c >1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-2b a=-1,b=2a ,又x=-1时,y=a-b+c >1,代入b=2a ,则c-a >1,正确. 故所有正确结论的序号是①②③⑤.故选C7.D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答. 详解:A 、对角线互相平分且垂直的四边形是菱形,故错误;B 、四条边相等的四边形是菱形,故错误;C 、对角线相互平分的四边形是平行四边形,故错误;D 、对角线相等且相互平分的四边形是矩形,正确;故选D .点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.8.B【解析】【详解】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.9.C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.10.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.11.A【解析】【分析】先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.【详解】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°﹣∠ABG﹣∠EAB=180°﹣46°﹣108°=26°.故选A.【点睛】此题考查平行线的性质,多边形内角与外角,解题关键在于求出∠EAB.12.C【解析】21 +2﹣123+=3299100+=99100式23299100=﹣1+10=1.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)133【解析】【分析】已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B 的坐标;将点B 的坐标代入反比例函数的解析式k y x =中,即可求出k 的值.【详解】过点B 作BC 垂直OA 于C ,∵点A 的坐标是(2,0),∴AO=2,∵△ABO 是等边三角形,∴OC=1,BC=3,∴点B 的坐标是()1,3,把()1,3代入k y x=,得3k =. 故答案为3.【点睛】考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标; 14.4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°, ∴OC=2CD=42,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积 =22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 15.【解析】【分析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.16.x >1【解析】【分析】首先分别求出两个不等式的解集,再根据大大取大确定不等式组的解集.【详解】解:21736xx->⎧⎨>⎩①②,由①得:x>1,由②得:x>2,不等式组的解集为:x>1.故答案为:x>1.【点睛】此题考查解一元一次不等式组,解题关键在于掌握解不等式的方法.17.3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题解析:故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.18.823 3π-【解析】试题解析:连接,CE∵四边形ABCD是矩形,4,2,90 AD BC CD AB BCD ADC∴====∠=∠=o,∴CE=BC=4,∴CE=2CD,30DEC ∴∠=o ,60DCE ∴∠=o ,由勾股定理得:23DE =, ∴阴影部分的面积是S=S 扇形CEB′−S △CDE 260π4218223π2 3.36023⨯=-⨯⨯=- 故答案为8π2 3.3- 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)13;(2)这个游戏不公平,理由见解析. 【解析】【分析】(1)由把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲胜,乙胜的情况,即可求得求概率,比较大小,即可知这个游戏是否公平.【详解】解:(1)由于三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中,故从袋中随机摸出一球,标号是1的概率为:13; (2)这个游戏不公平.画树状图得:∵共有9种等可能的结果,两次摸出的球的标号之和为偶数的有5种情况,两次摸出的球的标号之和为奇数的有4种情况,∴P(甲胜)=59,P(乙胜)=49.∴P(甲胜)≠P(乙胜),故这个游戏不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20.(1)50;(2)16;(3)56(4)见解析【解析】【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.21.(1)证明见解析;(2)BD=23.【解析】【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出CE CDBD AB=,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.【详解】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴CE CD BD AB=,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,=【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.22.(1)证明见解析(2)2﹣6π【解析】【分析】(1)直接利用切线的判定方法结合圆心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S阴影=S△AED﹣S扇形COD,求出答案.【详解】(1)证明:连接OD,∵D为弧BC的中点,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF为半圆O的切线;(2)解:连接OC与CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC为等边三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=∴OD=DF•tan30°=6,在Rt△AED 中,DA =63,∠CAD=30°, ∴DE=DA•sin30°=33,EA =DA•cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO =DO ,∴△COD 是等边三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S △ACD =S △COD ,∴S 阴影=S △AED ﹣S 扇形COD =216093362360π⨯⨯-⨯=2736π-.【点睛】此题主要考查了切线的判定,圆周角定理,等边三角形的判定与性质,解直角三角形及扇形面积求法等知识,得出S △ACD =S △COD 是解题关键.23.(1)证明见解析;(2)AB 、AD 的长分别为2和1.【解析】【分析】(1)证Rt△ABO≌Rt△DEA(HL )得∠AOB=∠DAE,AD∥BC.证四边形ABCD 是平行四边形,又90ABC ∠=︒,故四边形ABCD 是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt△DEA 中,由222AE DE AD +=得:()22293x x -+=.【详解】(1)证明:∵AB⊥OM 于B ,DE⊥ON 于E ,∴90ABO DEA ∠=∠=︒.在Rt△ABO 与Rt△DEA 中,∵AO AD OB AE =⎧⎨=⎩∴Rt△ABO≌Rt△DEA(HL ). ∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四边形ABCD 是平行四边形.∵90ABC ∠=︒,∴四边形ABCD 是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt△DEA 中,由222AE DE AD +=得:()22293x x -+=,解得5x =.∴AD=1.即AB 、AD 的长分别为2和1.【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.24.(1)证明见解析;(2)阴影部分的面积为83π. 【解析】【分析】(1)连接OC ,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案.【详解】解:(1)连接OC , ∵OA=OC, ∴∠OAC=∠OCA,∵AC 平分∠BAE, ∴∠OAC=∠CAE,∴∠OCA=∠CAE, ∴OC∥AE, ∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S△OCD=43422⋅⨯=CD OC=83,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=16×π×OC2=83π,∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣83π,∴阴影部分的面积为83﹣83π.25.(1)证明见解析;(2)MC=154.【解析】【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【详解】(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,5∵AB是⊙O的直径,∴∠ACB=90°,()221045-5∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴OD AOBC AC=2545=可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=154,即MC=154.【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.26.(1)3;(2)32n -,理由见解析;理由见解析(3)不存在,理由见解析【解析】【分析】(1)将n=4代入n 2-2n-5中即可求解;(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n 个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n 2-2n-5=3n-2有无正整数解的问题.【详解】解:(1))∵A 组第n 个数为n 2-2n-5,∴A 组第4个数是42-2×4-5=3,故答案为3;(2)第n 个数是32n -.理由如下:∵第1个数为1,可写成3×1-2;第2个数为4,可写成3×2-2;第3个数为7,可写成3×3-2;第4个数为10,可写成3×4-2;……第9个数为25,可写成3×9-2;∴第n 个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,22532n n n --=-,解之得,n = 由于n 是正整数,所以不存在列上两个数相等.【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键.27.第一次买14千克香蕉,第二次买36千克香蕉【解析】【分析】本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y >40③当20<x <3时,则3<y <2.【详解】设张强第一次购买香蕉xkg ,第二次购买香蕉ykg ,由题意可得0<x <3.则①当0<x≤20,y≤40,则题意可得5065264x y x y +⎧⎨+⎩==. 解得1436x y ⎧⎨⎩==. ②当0<x≤20,y >40时,由题意可得5064264x y x y +⎧⎨+⎩==. 解得3218x y ⎧⎨⎩==.(不合题意,舍去) ③当20<x <3时,则3<y <2,此时张强用去的款项为5x+5y=5(x+y )=5×50=30<1(不合题意,舍去);④当20<x≤40 y>40时,总质量将大于60kg ,不符合题意,答:张强第一次购买香蕉14kg ,第二次购买香蕉36kg .【点睛】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.。

七年级数学上册1.3有理数的加减法有理数加减运算中的结合技巧素材新人教版(new)

七年级数学上册1.3有理数的加减法有理数加减运算中的结合技巧素材新人教版(new)

有理数加减运算中的结合技巧有理数的加减混合运算是七年级数学的重点,也是同学们难以掌握,常常出错的地方,如能根据题目特征选择适当的方法,则可简化运算过程,提高解题速度与准确度。

现举例如下,供同学们学习参考。

一、把符号相同的加数相结合例1 计算:(+5)+(-6)+(+4)+(+9)+(-7)+(—8)。

解:原式=[(+5)+(+4)+(+9)]+[(—6)+(—7)+(-8)]=(+18)+(-21)=-3.二、把和为零的加数结合例2 计算:(-15。

43)+(-4.15)+(+15.20)+(+4。

15)+(+0。

23)+(—5)。

解:原式=[(-15。

43)+(+15.20)+(+0.23)]+[(-4.15)+(+4.15)]+(—5)=0+0+(—5)=—5。

三、把和为整数的加数相结合例3 计算:(+6。

4)+(—5。

1)-(-3.9)+(—2.4)—(+4。

9)。

解:原式=(+6.4)+(-5.1)+(+3.9)+(-2.4)+(-4。

9)=6.4—5。

1+3.9—2.4—4.9=(6。

4—2.4)+(-5。

1—4.9)+3。

9=4—10+3.9=—2。

1。

四、把整数与整数,分数与分数分别相结合例4 计算:—423-313+612-214。

解:原式=(-4—3+6-2)+(-23—13+12—14)=—3-1 4=-334。

点评:在分拆带分数时,要注意符号。

如:—423=-4-23,而不是-4+23.五、统一形式后再结合例5 计算:(—0.125)+(—0.75)+(34)+18+1。

解:原式=(-18)+(-34)+(-34)+18+1=[(—18)+18]+[(-34)+(—34)]+1=0+(-64)+1=—1 2 .点评:当同一个算式中既有分数,又有小数时,一般要先统一形式,具体统一成分数还是统一成小数要看哪一种计算简便。

六、把分母相同或便于通分的加数相结合例6 计算:(+37)+(—513)+(+47)+(+1526)+(—17)+(+3).解:原式=[(+37)+(+47)+(—17)]+[(-513)+(+1526)]+(+3)=67+526+3=737 182。

七年级数学上学期期中考点专题03有理数的加减法含解析新人教版

七年级数学上学期期中考点专题03有理数的加减法含解析新人教版

专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。

有理数的加法运算律:1.两个数相加,交换加数的位置,和不变。

即a b b a +=+;2.三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

即()()a b c a b c ++=++。

知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。

即()a b a b -=+-。

【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。

有理数减法步骤: 1.将减号变为加号。

2.将减数变为它的相反数。

3.按照加法法则进行计算。

考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a,b 满足:|a|=-a,|b|=b,a +b <0,则在数轴上表示数a,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a,|b|=b,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|, ∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b,于是有-a>b,-b>a,易得a,b,-a,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b, ∴-a>b,-b>a,∴a,b,-a,-b 的大小关系为:-a>b>-b>a, 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃ C .8℃ D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,在向东行驶lm,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( ) A .(﹣3)﹣(+1)=﹣4 B .(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律 B.加法结合律C.分配律 D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为( )A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5 B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3 D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1 C .5 D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1 C .﹣2 D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2 C .-4 D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( ) A .-x B .0 C .2x D .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可.【详解】()2x x x x x --=+=, ∵0x <, ∴20x <,∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃; 星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512. 变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10-+-【详解】解:(1)6789-+-=189-=79=-2---+--(2)2(5)(8)5=-+--2585=--385=--55=-10【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键.变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a,b,c的值;(2)8-a+b-c的值.【答案】(1)a=-3,b=±7,c=-1或-15; (2)33或5.【详解】解:(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7;∵a=-3,b=±7,c和b的和是-8,∴当b=7时,c= -15,当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5.【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。

青岛版数学七上3.1《有理数的加法与减法》精品课件

青岛版数学七上3.1《有理数的加法与减法》精品课件
43;2)+(-3)=-1 (-2)+(+3)=+1
(-3)+(+3)=0
观察这2个算式,和的符号与加数的符号有什么关系?和的绝 对值与加数的绝对值有什么关系?
总结有理数加法法则2: 异号两数相加,,取绝对值较大的加数的符号, 并用较大的绝对值减去较小的绝对值.
互为相反数的两个数相加得0;
活动三: (6)海水下降3厘米,又上升了0厘米,共上升了几厘米?
PPT素材:./sucai/ PPT图表:./tubiao/ PPT教程: ./powerpoint/ 范文下载:./fanwen/ 教案下载:./jiaoan/
PPT课件:./kejian/ 数学课件:./kejian/shuxue/ 美术课件:./kejian/meishu/ 物理课件:./kejian/wuli/ 生物课件:./kejian/shengwu/ 历史课件:./kejian/lishi/
(-3)+0=-3
总结有理数加法法则3:一个数同0相加,仍得这个数
利用数轴也可以探究有理数的加法法则:
有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对 值相加。 (2)异号两数相加,取绝对值较大的加数的符 号,并用较大的绝对值减去较小的绝对值。 (3)互为相反数的两个数相加得0。 (4)一个数同0相加,仍得这个数。
活动二:(3)海水上升2厘米,又下降了3厘米,共上升了几厘米?
(4)海水下降2厘米,又上升了3厘米,共上升了几厘米? (5)海水下降3厘米,又上升了3厘米,共上升了几厘米?
PPT模板:./moban/ PPT背景:./beijing/ PPT下载:./xiazai/ 资料下载:./ziliao/ 试卷下载:./shiti/ PPT论坛: 语文课件:./kejian/yuwen/ 英语课件:./kejian/yingyu/ 科学课件:./kejian/kexue/ 化学课件:./kejian/huaxue/ 地理课件:./kejian/dili/

第二章 有理数的运算 小结与复习课件(共16张PPT) 人教版(2024)数学七年级上册

第二章 有理数的运算 小结与复习课件(共16张PPT) 人教版(2024)数学七年级上册

2. 有理数的减法
减法法则:减去一个数,等于加上这个数的相反数.
3. 有理数的乘法
(1) 乘法法则
乘法的交换律
(2) 乘法的运算律 乘法的结合律
乘法的分配律
4. 有理数的除法
除法法则:除以一个数,等于乘这个数的倒数.
5. 有理数的乘方 求几个相同因数的积的运算,叫做乘方.
6. 有理数的混合运算
a 幂
考点讲练 考点1: 有理数的运算
例1 计算:
解:
1. 把减法转化为加法 时,要注意符号; 2. 对几个有理数相加 减的题目,要注意观 察,将哪些数放在一 起会使计算简便.
= 21 - 27 + 30 - 10 = 14.
注意符号问题
= -2×12×12 = -288.
先确定商的符号, 再把绝对值相除
注意:1. 底数或因数 是带分数时,要先将 带分数化成假分数; 2. 区分 -24 与 (-2)4.
练一练
1. 计算:(1) -3 + 8 - 7 - 15; (2) 23 - 6×(-3) + 2×(-4);
答案:(1) -17. (3) -3.3.
(2) 33.
考点2: 科学记数法
例2 (保定模拟考) 地球与太阳的最远距离约为 15 200
1 400 000 000 000 元,比上年增长 4.5%,其中数据
1 400 000 000 000 用科学记数法表示为( A )
A. 1.4×1012
B. 0.14×1013
C. 1.4×1013
D. 14×1011
考点3: 近似数
例3 用四舍五入法对 0.030 47 取近似值,精确到
0.001 的结果是(D )

七年级数学上册3.1有理数的加法与减法知识点解读有理数的加法素材青岛版(2021-2022学年)

七年级数学上册3.1有理数的加法与减法知识点解读有理数的加法素材青岛版(2021-2022学年)

知识点解读:有理数的加法知识点一:有理数的加法法则1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.3.互为相反数的两个数相加得0.4.一个数同0相加仍得这个数.方法技巧:在进行有理数的加法运算时,运算步骤可归纳为“一看、二定、三求和”.一看:即观察两个数的符号是同号还是异号,算式中有没有零;二定:即用哪条法则及和的符号;三求和:根据法则求出结果.例1:在1,-1,—2这三个数中,任意两数之和的最大值是_______.分析:在1,—1,—2这三个数中,求任意两数之和的最大值,则先求出两数之和再进行比较,1+(-1)=0;1+(-2)=—1;(-1)+(—2)=—3;所以最大值为0.变式练习:计算:-1+(+3)的结果是( )A.-1 B.1 C.2 D.3参考答案:C知识点二:有理数加法的运算律1.加法交换律:两个数相加,交换加数的位置,和不变.即:a+b=b +a.2.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.即(a+b )+c=a+(b+c)方法技巧: (1)有些加数相加后可以得到整数时,可以先行相加.(2)分母相同或易于通分的分数,可以先行相加;(3)有相反数可以互相消去0时,可以先行相加.(4)有许多正数和负数相加时,可以把符号相同的数相加,即正数与正数相加,负数与负数相加,最后再把一个正数和一个负数相加.例2:计算下列各式(1)(—45.3)+9。

5+(-4。

7)+(-0。

5);(2) ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+21174128分析:(1)观察四个加数的符号以及它们的小数部分的特点,发现调整加数的顺序,使可以得到整数的先相加,使运算变得比较简便.(2)做带分数加法时,可将整数部分与分数部分分别相加,然后再把结果相加;解题时要注意:①分开的整数部分与分数部分必须保持原带分数的符号;②运算符号和数的性质符号要用括号分开.解: (1) 原式=[(-45.3)+(—4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点解读:有理数的减法
知识点一:有理数减法法则
1.有理数减法的意义:就是已知两个数的和与其中一个加数求另一个加数的运算.2.有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b)
归纳总结:(1)进行有理数减法运算时,关键是把减法运算转化为加法运算,再按有理数的加法法则和运算律进行计算,体现了数学的转化思想.(2)把减法运算转化为加法运算要注意:将减号变为加号,同时减数变成原来的相反数.(3)数轴上A、B两点间的距离实际就是它们表示的数a、b差的绝对值即:AB=|a-b|.(4)一个数减去0比较容易,而减去一个数,一定要按法则,写成加上这个数的相反数.
例1:计算2-(-3)=_____.
分析:先把减法转化为加法运算,再进行有理数的加法运算,即2-(-3)=2+3=5.
变式练习:
计算:-3-(-7)= .
参考答案:4
知识点二:有理数加减混合运算
1.有理数加减混合运算的方法:(1)将减法统一成加法,并写成省略加号的形式.(2)运用加法的交换律和结合律,简化运算.(3)计算出结果.
2.有理数加减混合运算的技巧:
(1)把互为相反数的两个数先加.(2)几个数相加的结果是整数时可以先加.
(3)同分母分数先加.(4)正数与正数、负数与负数分别先加.
归纳总结:在进行有理数运算时,我们可以根据有理数减法法则将减法转化为加法,这样就可将混合运算统一为加法运算,统一后的式子是几个正数或负数的和的形式,这样的式子叫做代数和.
例2:计算下列各式
(1)(-7)+5-(+3)-(-4);
2 (2)(-4)-⎪⎭
⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛
-32221322. 分析:对于有理数的加减混合运算,先按照有理数减法法则,先把减法化成加法,然后按照有理数的加法法则运算,在解决问题时,要先进行全面分析,找出特点,采用适当的步骤,才能计算正确、简便和迅速.根据题目特点,若能应用加法交换律或结合律的一定要尽量先用这些运算律,这样不但可以简便运算,而且还能防止出错.
解:(1)原式=-7+5-3+4=(-7-3)+(5+4)=(-10)+9=-1;
(2)原式=21
421
432
2322214322213224-=--=⎪⎭⎫
⎝⎛-+⎪⎭⎫ ⎝⎛--=--+-.
变式练习:
计算下列各式:
(1)9-(-4)+(-3)-(+1);
(2)5-(1
24-)+1
2+(1
24-).
参考答案:(1)9;(2) 1
52.。

相关文档
最新文档