考研数学题及答案_2008数学一--111
考研数一08真题

考研数一08真题2008年考研数学一真题中,试题主要分为两个部分:选择题和填空题。
选择题部分包括20道选择题,填空题部分包括10道填空题。
本文将以试题题号为标记逐一解析各道题目。
选择题部分解析:题目1:设A是n阶方阵,且满足A^2 = A,则下列结论正确的是()A. A = 0B. A = E(单位矩阵)C. A是对称方阵D. A的秩为1这道题目考察了对方阵幂运算的理解。
根据A^2 = A,我们可以发现A作为方阵必然有两种可能:A是零矩阵或者A是单位矩阵。
因此,选项B“A = E”为正确答案。
题目2:设f(x) = x^3 - 3x,则f'(x)的零点的个数是()A. 0B. 1C. 2D. 3这道题目考察了对函数的导数与零点的关系的理解。
f'(x)是f(x)的导函数,即f'(x) = 3x^2 - 3。
根据函数导数存在零点的性质,当f'(x) = 0时,f(x)存在极值点或转折点。
解方程3x^2 - 3 = 0,得到x = ±1。
因此,f'(x)的零点有2个,选项C“2”为正确答案。
填空题部分解析:题目1:若a是方程x^4 - x^3 - x + 1 = 0的一个实根,则a^3 - a^2 -a + 1的值等于________。
这道题目考察了对方程实根的运算。
首先,我们可以将方程x^4 -x^3 - x + 1 = 0进行变形,得到x(x^3 - x^2 - 1) + 1 = 0。
因为a是方程的一个实根,所以该式等于0,即a(a^3 - a^2 - 1) = -1。
因此,a^3 - a^2 -a + 1 = (-1)/a,即填空的值为-1/a。
题目2:设f(x) = (cosx + sinx)^2,g(x) = (cosx - sinx)^2,则f(x) -g(x)的最小值是________。
这道题目考察了对函数最小值的求解。
我们先展开f(x)与g(x):f(x) = cos^2 x + 2sinx cosx + sin^2 xg(x) = cos^2 x - 2sinx cosx + sin^2 x再计算f(x) - g(x):f(x) - g(x) = 4sinx cosx则f(x) - g(x)的值不为负数,且取最小值0,因此填空的答案为0。
2008年数学一真题答案解析

2008年考研数学一试题分析、详解和评注一、选择题:(本题共8小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数2()ln(2)x f x t dt =+⎰,则()f x '的零点个数为【 】(A) 0. (B) 1. (C) 2. (D) 3. 【答案】应选(B).【详解】22()ln(2)22ln(2)f x x x x x '=+⋅=+.显然()f x '在区间(,)-∞+∞上连续,且(1)(1)(2ln3)(2ln3)0f f ''-∙=-∙<,由零点定理,知()f x '至少有一个零点.又2224()2ln(2)02x f x x x''=++>+,恒大于零,所以()f x '在(,)-∞+∞上是单调递增的.又因为(0)0f '=,根据其单调性可知,()f x '至多有一个零点.故()f x '有且只有一个零点.故应选(B).(2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于【 】 (A) i (B) i -. (C) j . (D) j - . 【答案】 应选(A).【详解】因为222211f y y x x x y y ∂==∂++.222221xf x yx y x y y-∂-==∂++. 所以(0,1)1f x ∂=∂,(0,1)0fy ∂=∂,于是(0,1)(,)i grad f x y =.故应选(A).(3)在下列微分方程中,以123cos 2sin 2xy C e C x C x =++(123,,C C C 为任意的常数)为通解的是【 】(A) 440y y y y ''''''+--=. (B) 440y y y y ''''''+++=.(C) 440y y y y ''''''--+=. (D) 440y y y y ''''''-+-=. 【答案】 应选(D).【详解】由123cos 2sin 2xy C e C x C x =++,可知其特征根为11λ=,2,32i λ=±,故对应的特征值方程为2(1)(2)(2)(1)(4)i i λλλλλ-+-=-+3244λλλ=+-- λλλ3244=-+-所以所求微分方程为440y y y y ''''''-+-=.应选(D).(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是【 】.(A) 若{}n x 收敛,则{()}n f x 收敛 (B) 若{}n x 单调,则{()}n f x 收敛 (C) 若{()}n f x 收敛,则{}n x 收敛. (D) 若{()}n f x 单调,则{}n x 收敛. 【答案】 应选(B).【详解】若{}n x 单调,则由函数()f x 在(,)-∞+∞内单调有界知,若{()}n f x 单调有界,因此若{()}n f x 收敛.故应选(B).(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =,则【 】则下列结论正确的是:(A) E A -不可逆,则E A +不可逆. (B) E A -不可逆,则E A +可逆.(C) E A -可逆,则E A +可逆. (D) E A -可逆,则E A +不可逆. 【答案】应选(C). 【详解】故应选(C).23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=.故E A -,E A +均可逆.故应选(C).(6)设A 为3阶实对称矩阵,如果二次曲面方程()1x xyz A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】(A) 0. (B) 1. (C) 2. (D) 3.【答案】 应选(B).【详解】此二次曲面为旋转双叶双曲面,此曲面的标准方程为222221x y z a c +-=.故A 的正特征值个数为1.故应选(B).(7) 设随机变量,X Y 独立同分布且X 的分布函数为()F x ,则max {,}Z X Y =的分布函数为【 】(A) 2()F x . (B) ()()F x F y . (C) 21[1()]F x --. (D) [1()][1()]F x F y --. 【答案】应选(A).【详解】(){}()max{,}F z P Z z P X Y z =≤=≤()()2()()()P X z P Y z F z F z F z =≤≤==.故应选(A).(8)设随机变量XN (0,1), (1,4)YN , 且相关系数1XY ρ=,则【 】(A) {21}1P Y X =--= (B) {21}1P Y X =-= (C) {21}1P Y X =-+= (D) {21}1P Y X =+= 【答案】应选 (D).【详解】用排除法.设Y aX b =+.由1XY ρ=,知X ,Y 正相关,得0a >.排除(A )和(C ).由(0,1)XN ,(1,4)Y N ,得0,1,()EX EY E aX b aEX b ==+=+.10a b =⨯+,1b =.从而排除(B).故应选 (D).二、填空题:(9-14小题,每小题4分,共24分. 把答案填在题中横线上.) (9)微分方程0xy y '+=满足条件(1)1y =的解是y = . 【答案】 应填1y x=. 【详解】由dy ydx x=-,得dy dx y x =-.两边积分,得ln ||ln ||y x C =-+.代入条件(1)1y =,得0C =.所以1y x=. (10)曲线sin()ln()xy y x x +-=在点(0,1)的切线方程为 . 【答案】 应填1y x =+.【详解】设(,)sin()ln()F x y xy y x x =+--,则1(,)cos()1x F x y y xy y x -=+--,1(,)cos()x F x y x xy y x=+-, (0,1)1x F =-,(0,1)1y F =.于是斜率(0,1)1(0,1)x y F k F '=-='.故所求得切线方程为1y x =+.(11)已知幂级数(2)nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数(2)nn n a x ∞=-∑的收敛域为 .【答案】 (1,5].【详解】由题意,知(2)nn n a x ∞=+∑的收敛域为(4,0]-,则nn n a x∞=∑的收敛域为(2,2]-.所以(2)nn n a x ∞=-∑的收敛域为(1,5].(12)设曲面∑是z =的上侧,则2xydydz xdzdx x dxdy ∑++=⎰⎰ . 【答案】 4π.【详解】作辅助面1:0z ∑=取下侧.则由高斯公式,有2xydydz xdzdx x dxdy ∑++⎰⎰122xydydz xdzdx x dxdy xydydz xdzdx x dxdy ∑∑=++-++⎰⎰⎰⎰2224x y ydV x dxdy Ω+≤=+⎰⎰⎰⎰⎰.2222410()2x y x y dxdy +≤=++⎰⎰d r rdr πθππ22200116424=∙==⎰⎰. (13) 设A 为2阶矩阵,12,αα为线性无关的2维列向量,10A α=,2122A ααα=+.则A 的非零特征值为___________. 【答案】应填1.【详解】根据题设条件,得1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+=⎪⎝⎭. 记12(,)P αα=,因12,αα线性无关,故12(,)P αα=是可逆矩阵.因此0201AP P ⎛⎫= ⎪⎝⎭,从而10201P AP -⎛⎫= ⎪⎝⎭.记0201B ⎛⎫= ⎪⎝⎭,则A 与B 相似,从而有相同的特征值.因为2||(1)01E B λλλλλ--==--,0λ=,1λ=.故A 的非零特征值为1.(14) 设随机变量X 服从参数为1的泊松分布,则{}2P X EX ==____________.【答案】应填12e. 【详解】因为X 服从参数为1的泊松分布,所以1EX DX ==.从而由22()DX EX EX =-得22EX =.故{}{}22P X EX P X ====12e. 三、解答题:(15-23小题,共94分. )(15)(本题满分10分)求极限[]4sin sin(sin )sin lim x x x x x →-【详解1】[]4sin sin(sin )sin limx x x xx →-[]3sin sin(sin )limx x x x →-==20cos cos(sin )cos lim3x x x x x →-201cos(sin )lim 3x x x→-=0sin(sin )cos lim6x x x x →=(或2201(sin )2lim 3x x x →=,或22201sin (sin )2lim 3x x o x x →+=) 16=. 【详解2】[]4sin sin(sin )sin limx x x xx →-[]40sin sin(sin )sin limsin x x x x x→-==30sin lim t t t t →-201cos lim 3t t t →-=2202lim 3t t t →=(或0sin lim 6t t t →=) 16=.(16)(本题满分9分)计算曲线积分2sin 22(1)Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从(0,0)到(,0)π的一段.【详解1】按曲线积分的计算公式直接计算.2sin 22(1)Lxdx xydy +-⎰20[sin 22(1)sin cos ]xdx x x x dx π=+-⎰20sin 2x xdx π=⎰200cos 2cos 22x xx xdx ππ=-+⎰20cos 22x xdx ππ=-+⎰ 200sin 2sin 2222x xx dx πππ=-+-⎰22π=-.【详解2】添加辅助线,按照Green 公式进行计算.设1L 为x 轴上从点(,0)π到(0,0)的直线段.D 是1L 与L 围成的区域12sin 22(1)L L xdx x ydy ++-⎰2(2(1)sin 2D x y x dxdy x y ⎡⎤∂-∂=--⎢⎥∂∂⎣⎦⎰⎰4Dxydxdy =-⎰⎰sin 04xxydydx π=-⎰⎰22sin x xdx π=-⎰0(1cos 2)x x dx π=--⎰20cos 22x x xdx ππ=-+⎰200sin 2sin 2222x xx dx πππ=-+-⎰22π=-.因为12sin 22(1)sin 20L xdx x ydy xdx π+-==⎰⎰故2sin 22(1)Lxdx xydy +-⎰22π=-【详解3】令2sin 22(1)LI xdx x ydy =+-⎰212sin 222Lxdx ydy x ydy I I =-+=+⎰对于1I ,记sin 2,2P x Q y ==-.因为0P P y x∂∂==∂∂,故1I 与积分路径无关. 10sin 20I xdx π==⎰.对于2I ,2222022sin cos sin 2LI x ydy x x xdx x xdx ππ===⎰⎰⎰200cos 2cos 22x xx xdx ππ=-+⎰2cos 22x xdx ππ=-+⎰200sin 2sin 2222x xx dx πππ=-+-⎰22π=-.故2sin 22(1)Lxdx xydy +-⎰22π=-17(本题满分11分)已知曲线22220,:35,x y z C x y z ⎧+-=⎨++=⎩求C 上距离xoy 面最远的点和最近的点.【详解1】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数2H z =在条件22220,x y z +-=35x y z ++=下的最大值点和最小值点.构造拉格朗日函数2222(,,,,)(2)(35)L x y z z x y z x y z λμλμ=++-+++-,由222220,20,220,43.,350xy z L x L y L z z x y z x y z λμλμλμ'=+=⎧⎪'=+=⎪⎪'=-++-=++==⎨⎪⎪⎪⎩ 得x y =,从而22220,23 5.x z x z -=+=⎧⎨⎩解得5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解2】 点(,,)x y z 到xoy 面的距离为||z ,故求C 上距离xoy 面最远的点和最近的点的坐标等价于求函数22H x y =+在条件2225203x y x y +-⎛⎫+-= ⎪⎝⎭下的最大值点和最小值点.构造拉格朗日函数222222(,,,)(5)9L x y z x y x y x y λλ⎛⎫=+++-+- ⎪⎝⎭,由222520.422(5)0,9422(5)0,93x y L x x x y L y x x y y y y x λλ⎧⎛⎫'=+-+-=⎪⎪⎝⎭⎪⎪⎪⎛⎫'=+-+-=+-⎨ ⎪⎝⎭⎛⎫+-= ⎪⎝⎭⎪⎪⎪⎪⎩得x y =,从而2222(25)09x x --=. 解得5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).【详解3】由22220x y z +-=得cos ,sin .x y θθ⎧=⎪⎨=⎪⎩ 代入35x y z ++=,得z =所以只要求()z z θ=的最值.令()03sin )z θθθ'==++,得cos sin θθ=,解得5,44ππθ=.从而5,5,5.x y z ==-⎧⎪=-⎨⎪⎩或1.1,1,z x y =⎧=⎪=⎨⎪⎩根据几何意义,曲线C 上存在距离xoy 面最远的点和最近的点,故所求点依次为(5,5,5)--和(1,1,1).(18)(本题满分10分)设()f x 是连续函数, (I )利用定义证明函数0()()xF x f t dt =⎰可导,且()()F x f x '=;(II )当()f x 是以2为周期的周期函数时,证明函数2()2()()xG x f t dt x f t dt=-⎰⎰也是以2为周期的周期函数.(I )【证明】0000()()()()()lim lim x xxx x f t dt f t dtF x x F x F x xx+∆∆→∆→-+∆-'==∆∆⎰⎰()limx x xx f t dtx+∆∆→=∆⎰00()limlim ()()x x f xf f x x ξξ∆→∆→∆===∆ 【注】不能利用L ’Hospital 法则得到0()()limlimx x xx x f t dtf x x xx+∆∆→∆→+∆=∆∆⎰.(II) 【证法1】根据题设,有2220(2)2()(2)()(2)()x G x f t dt x f t dt f x f t dt +'⎡⎤'+=-+=+-⎢⎥⎣⎦⎰⎰⎰, 22000()2()()2()()x G x f t dt x f t dt f x f t dt '⎡⎤'=-=-⎢⎥⎣⎦⎰⎰⎰.当()f x 是以2为周期的周期函数时,(2)()f x f x +=. 从而 (2)()G x G x ''+=.因而(2)()G x G x C +-=.取0x =得,(02)(0)0C G G =+-=,故 (2)()0G x G x +-=. 即2()2()()xG x f t dt x f t dt =-⎰⎰是以2为周期的周期函数.【证法2】根据题设,有2200(2)2()(2)()x G x f t dt x f t dt ++=-+⎰⎰,2222022()()()2()x f t dt x f t dt x f t dt f t dt +=+--⎰⎰⎰⎰.对于22()x f t dt +⎰,作换元2t u =+,并注意到(2)()f u f u +=,则有22()(2)()()x x x xf t dt f u du f u du f t dt +=+==⎰⎰⎰⎰,因而 2220()()0x xf t dt x f t dt +-=⎰⎰.于是2(2)2()()()xG x f t dt x f t dt G x +=-=⎰⎰.即2()2()()xG x f t dt x f t dt =-⎰⎰是以2为周期的周期函数【证法3】根据题设,有共享天空网友情提供2200(2)2()(2)()x G x f t dt x f t dt ++=-+⎰⎰, 2220002()2()()2()x x xf t dt f t dt x f t dt f t dt +=+--⎰⎰⎰⎰ 2220002()()2()2()xx x f t dt x f t dt f t dt f t dt +=-+-⎰⎰⎰⎰ ()220()2()()x x G x f t dt f t dt +=+-⎰⎰. 当()f x 是以2为周期的周期函数时,必有220()()x x f t dt f t dt +=⎰⎰. 事实上 22(())(2)()0x d f t dt f x f x dx +=+-=⎰,所以 22()x f t dt C +≡⎰. 取0x =得,02222()()C f t dt f t dt +≡=⎰⎰.所以 200(2)2()()()x G x f t dt x f t dt G x +=-=⎰⎰. 即200()2()()xG x f t dt x f t dt =-⎰⎰是以2为周期的周期函数 (19)(本题满分11分) 将函数2()1(0)f x x x π=-≤≤展开成余弦级数,并求级数11(1)n n n -∞=-∑的和. 【详解】将()f x 作偶周期延拓,则有0,1,2,n b n ==.0a =202(1)d x x ππ-⎰2213π⎛⎫=- ⎪⎝⎭. 02()cos n a f x nxdx ππ=⎰20002cos cos nxdx x nxdx ππππ⎡⎤=-⎢⎥⎣⎦⎰⎰ 20020cos x nxdx πππ⎡⎤=-⎢⎥⎣⎦⎰2002sin 2sin x nx x nx dx n n πππ⎡⎤-=-⎢⎥⎣⎦⎰。
2008年考研数学一真题及解析

∑
∑1
您所下载的资料来源于弘毅考研资料下载中心 获取更多考研资料,请访问
= �∫∫∫ ydV + ∫∫ x2dxdy .
Ω
x2 + y2 ≤ 4
∫∫ ∫ ∫ 1
= 0+
( x2 + y2 )dxdy = 1
2π
dθ
2 r2 • rdr = π i 16 = 4π .
2 x2 + y2 ≤ 4
20
0
4
(13) 设 A 为 2 阶矩阵, α1 ,α2 为线性无关的 2 维列向量, Aα1 = 0 , Aα2 = 2α1 + α2 .则 A
的非零特征值为___________. 【答案】应填 1.
【详解】根据题设条件,得
A(α1 ,α2
)
=
(
Aα1 ,
Aα2
)
=
(0, 2α1
定理,知 f ′(x) 至少有一个零点.
又
f ′′(x)
=
2 ln(2 + x 2) +
4x2 2 + x2
>
0 ,恒大于零,所以
f
′(x)在 (−∞, +∞) 上是单调递增
的.又因为 f ′(0) = 0 ,根据其单调性可知, f ′(x)至多有一个零点.
故 f ′(x) 有且只有一个零点.故应选(B).
相同的特征值.
λ −2
因为| λE − B |=
= λ( λ −1) , λ = 0 , λ = 1 .故 A的非零特征值为 1.
0 λ−1
{ } (14) 设随机变量 X 服从参数为 1 的泊松分布,则 P X = EX 2 = ____________.
2008考研数一真题及解析

(x2 y2 )dxdy
x2 y2 4
2 x2 y2 4
1
2
d
2 r3dr 4 。
20
0
(高斯公式)
P d
yd z Qd zd x Rd xd
y
P x
Q y
R z
d xd
ydz;
P cos Q cos R cos
d S=
P Q R x y z
dx d ydz 。
(13) 设 A 为 2 阶矩阵,1,2 为线性无关的 2 维列向量,A1 0, A2 21 2 ,则 A 的非零特征值为
第 4 页 共 13 页
.
【答案】1
【详解】
A(1,
2
)
(
A1
,
A
2
)
(0,
21
2
)
(1
,2
)
0 0
2 1
,记
P
(1
,2
)
,
B
0 0
2 1
,
则 AP PB ,因为1,2 线性无关,所以 P 可逆. 从而 B P1AP ,即 A 与 B 相似。
2
由| E B |
( 1) 0 ,得 0 及 1为 B 的特征值,
二、填空题:9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.
(9) 微分方程 xy y 0 满足条件 y 1 1的解是 y .
【答案】1 x
【详解】由 dy y ,两端积分得 ln y ln x ln | C | ,所以 1 C x ,又 y(1) 1 ,所以 y 1 。
【答案】 B
D 若 f (xn ) 单调,则xn 收敛.
2008考研数一真题答案及详细解析

nx
2
=1-- 六3 -.I,-
41记10=70 1
(—1y+1 n2
cos
nx,
0� 正女.
令x = O,有
2
穴
,=(-l)n+l
f(O) = l--3 +4n�= l n 2
,
又f(O)=l, 所以 (20)证 (I) r(A)=r(a矿+PJJT)
I:=(-l)n -1
ne=l
n"
2
=— 1穴2"
a2 2a l
矿 2a,,,
以下用数学归纳法证明D n =Cn+Da气
当n = l时 , D 1 = 2a, 结论成立.
2a 当n = 2时 , 几=
a
1 = 3a2 ,结论成立.
2a
假设结论对小于n的情况成立.将D n 按第1行展开 , 得 矿1
0 2a 1
D ,, = 2aD n_l -
矿 2a 1
尸 2-2z 2= 0,
2x+3z = 5,
解得
(� — x= — 5,
1
x= l,
5, 或{y�],
之 = 5,
之 = 1.
根据几何意义,曲线 C 上存在距离 xOy 面最远的点和最近的点,故所求点依次为( — 5' — 5,5)
和(1,1,1).
08) CI) 证
对任意的x, 由于J是连续函数,所以
所以所求微分方程为
y/f/ -y"+4y'-4y=O.
(4) B
解 若{xn }单调,则由f(x)在(— =, 十=)内单调有界知,订(xn )}单调有界,因此
2008年全国考研数学一真题

y
)ቤተ መጻሕፍቲ ባይዱ
(A)
i
(B) i .
(C)
j.
(D) j .
【答案】 应选(A).
1 x y2 x . y 【详解】因为 f y . f x 1 x2 x 2 y 2 y 1 x2 x 2 y2 y2 y2
所以
f x (0,1)
1,
f y
0 ,于是gradf (x, y)
(B) E A 不可逆,则 E A 可逆. (D) E A 可逆,则 E A 不可逆.
(E A)(E A A 2 ) E A3 E , (E A)(E A A2 ) E A3 E .
故 E A , E A 均可逆.故应选(C).
X N (0,1) , Y N (1, 4) ,得
EX 0, EY 1, E(aX b) aEX b . 1 a 0 b , b 1 .从而排除(B).故应选 (D).
( 1)( 2i)( 2i) ( 1)(2 4) 3 4 2 4 3 2 4 4
所以所求微分方程为 y y 4 y 4 y 0 .应选(D).
4
设函数 f ( x) 在 (, ) 内单调有界,{xn } 为数列,下列命题正确的是( (A) 若 {xn } 收敛,则 { f ( xn )} 收敛 (C) 若 { f ( xn )} 收敛,则 {xn } 收敛. (B) 若 {xn } 单调,则 { f ( xn )} 收敛 (D) 若 { f ( xn )} 单调,则 {xn } 收敛.
又 f (x) 2 ln(2 x )
2
4x2 0 ,恒大于零,所以 f (x) 在 ( , ) 上是单调递增的.又 2 x2
2008年考研数学一真题及参考答案

2008年考研数学一真题及参考答案一、选择题部分1. 设函数 f(x) 在区间 [a, b] 上连续,且对任意x∈(a, b) 有f'(x) ≠ 0,则 f(x) 在 [a, b] 上是增函数的充分必要条件是:(A) f(a) < f(b)(B) f(a) = f(b)(C) f(a) > f(b)(D) f(a) ≤ f(b)参考答案:(A) f(a) < f(b)2. 设函数 f(x) 在区间 [a, b] 上连续,且对任意x∈(a, b) 有f'(x) ≠ 0,则 f(x) 在 [a, b] 上是减函数的充分必要条件是:(A) f(a) < f(b)(B) f(a) = f(b)(C) f(a) > f(b)(D) f(a) ≤ f(b)参考答案:(C) f(a) > f(b)3. 设 f(x) = x^3 + ax^2 + bx + c 为三次多项式,其中 a, b, c 都是实数,且满足 f(-1) = 0, f(0) = 1, f(1) = 2,则 f(x) 在区间 [0, 1] 上的最大值为:(A) 1(B) 2(C) 3(D) 4参考答案:(D) 44. 设函数 f(x) = e^x + ax + b,其中 a, b 是常数。
若 f(x) 在 (0, 1) 上取得最小值,则 a, b 的值为:(A) a = -1, b = -e(B) a = -1, b = e(C) a = 1, b = -e(D) a = 1, b = e参考答案:(A) a = -1, b = -e5. 设函数 f(x) = x^3 - 3x + 1,g(x) = f(f(f(x))),则 g(1) 的值为:(A) -1(B) 0(C) 1(D) 2参考答案:(C) 1二、填空题部分1. 设函数 f(x) = ln(1 + x^2) + Cx,其中 C 是常数,若 f'(x) 在整个实数集上恒为正,则 C 的取值范围是 _______。
2008年考研数学一真题及答案

精心整理2008年考研数学一真题一、选择题(18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的。
)(1)设函数,则的零点个数为且,则是唯一的零函数在点处的梯度等于))))所以综上所述,本题正确答案是A。
【考点】高等数学—多元函数微分学—方向导数和梯度(3)在下列微分方程中,以为通解的是(A)(B)(C)(D)由通解表达式可知其特征根为可见其对应特征方程为故对应微分方程为设函数在内单调有界,为数列,若收敛,则(B)若单调,则收敛(C)若收敛,则收敛(D)若单调,则收敛【答案】B。
【解析】【方法一】由于单调,单调有界,则数列单调有界,根据单调有界准则知数列收敛。
【方法二】排除法:若取,,则显然单调,收敛,但,显然若取,显然但不收敛,设为阶非零矩阵,为阶单位矩阵,若(A)不可逆,不可逆(B)不可逆,可逆(C)可逆,可逆(D)可逆,不可逆【答案】C。
【解析】因为所以可知可逆,可逆综上所述,本题正确答案是C。
【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件(6)设为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如右图所示,则二次型正交变换化为标准形时,其平方项的系数就是可知的正特征值的个数为综上所述,本题正确答案是B。
【考点】线性代数—二次型—次型的标准形和规范形(7)设随机变量独立同分布,且的分布函数为,则的分布函数为(A)(B)(C)(D)【答案】A。
【解析】设随机变量且相关系数,)))如果则必有可得已知,所以得又而所以即综上所述,本题正确答案是D。
【考点】概率论与数理统计—随机变量的数字特征—随机变量函数的数学期望矩、协方差、相关系数及其性质二、填空题(914小题,每小题4分,共24分。
)(9)微分方程满足条件的解是。
得,l利用条件,,解得综上所述,本题正确答案是。
【考点】高等数学—常微分方程—变量可分离的微分方程曲线在点处的切线方程是【答案】先求曲线在点处的斜率等式两端对求导得在上式中,将代入可得所以曲线在该点处的切线方程为即综上所述,本题正确答案是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内。
.. (1)设函数2()ln(2)x f x t dt =+⎰则()f x '的零点个数( )()A 0()B 1 ()C 2()D 3(2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于( ) ()A i()B -i ()C j()D -j(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是( )()A 440y y y y ''''''+--=.()B 440y y y y ''''''+++=.()C 440y y y y ''''''--+=.()D 440y y y y ''''''-+-=.(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是( )()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛.()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30A =,则( )()A E A -不可逆,E A +不可逆.()B E A -不可逆,E A +可逆.()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(6)设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为( )()A 0.()B 1. ()C 2.()D 3.(7)设随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为( )()A ()2F x .()B ()()F x F y .()C ()211F x --⎡⎤⎣⎦.()D ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦.(8)设随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则( )()A {}211P Y X =--=. ()B {}211P Y X =-=. ()C {}211P Y X =-+=.()D {}211P Y X =+=.二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)微分方程0xy y '+=满足条件()11y =的解是y = . (10)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (11)已知幂级数()02nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数()03nn n a x ∞=-∑的收敛域为.(12)设曲面∑是z =的上侧,则2xydydz xdzdx x dxdy ∑++=⎰⎰ .(13)设A 为2阶矩阵,12,αα为线性无关的2维列向量,12120,2A A αααα==+,则A 的非零特征值为 .(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (16)(本题满分10分) 计算曲线积分()2sin 221Lxdx xydy +-⎰,其中L 是曲线sin y x =上从点()0,0到点(),0π的一段.(17)(本题满分10分)已知曲线22220:35x y z C x y z ⎧+-=⎨++=⎩,求曲线C 距离XOY 面最远的点和最近的点.(18)(本题满分10分)设()f x 是连续函数,(1)利用定义证明函数()()0xF x f t dt =⎰可导,且()()F x f x '=;(2)当()f x 是以2为周期的周期函数时,证明函数()22()()xG x f t dt x f t dt =-⎰⎰也是以2为周期的周期函数.(19)(本题满分10分)()21(0)f x x x π=-≤≤,用余弦级数展开,并求()1211n n n -∞=-∑的和.(20)(本题满分11分)T T A ααββ=+,T α为α的转置,T β为β的转置.(1)证()2r A ≤;(2)若,αβ线性相关,则()2r A <. (21)(本题满分11分)设矩阵2221212n na a a A a a ⨯⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭ ,现矩阵A 满足方程AX B =,其中()1,,Tn X x x = ,()1,0,,0B = ,(1)求证()1n A n a =+(2)a 为何值,方程组有唯一解,求1x (3)a 为何值,方程组有无穷多解,求通解(22)(本题满分11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭(2)求Z 的概率密度.(23)(本题满分11分)设12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11ni i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n =- (1)证 T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .2008年全国硕士研究生入学统一考试数学一试题解析一、选择题 (1)【答案】B【详解】2()[ln(2)]2f x x x '=+⋅,(0)0f '=,即0x =是()f x '的一个零点又2224()2ln(2)02x f x x x''=++>+,从而()f x '单调增加((,)x ∈-∞+∞) 所以()f x '只有一个零点. (2)【答案】A【详解】因为2211x y f x y '=+,2221y x y f x y -'=+,所以(0,1)1x f '=,(0,1)0y f '=所以 (0,1)10f =⋅+⋅=grad i j i (3)【答案】D【详解】由微分方程的通解中含有xe 、cos 2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=. 故以已知函数为通解的微分方程是40y y y ''''''-+-= (4)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调. 所以{()}n f x 单调且有界. 故{()}n f x 一定存在极限(5)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. (6)【答案】B【详解】图示的二次曲面为双叶双曲面,其方程为2222221x y z a b c'''--=,即二次型的标准型为222222x y z f a b c'''=--,而标准型的系数即为A 的特征值.(7)【答案】A【详解】()(){}{}()()()()()2max ,Z Z Z Z F z P Z z P X Y z P X z P Y z F z F z F z =≤=≤=≤≤==(8)【答案】D【详解】 用排除法. 设Y aX b =+,由1XY ρ=,知道,X Y 正相关,得0a >,排除()A 、()C由~(0,1),~(1,4)X N Y N ,得0,1,EX EY ==所以 ()()E Y E aX b aEX b =+=+01,a b ⨯+= 所以1b =. 排除()B . 故选择()D 二、填空题 (9) 【答案】1x 【详解】由dy y dx x -=,两端积分得1ln ln y x C -=+,所以1x C y=+,又(1)1y =,所以1y x =. (10) 【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y x dx F x xy y x--'-=-=-'+-,将(0)1y =代入得1x dy dx==,所以切线方程为10y x -=-,即1y x =+(11)【答案】(1,5]【详解】幂级数(2)nn n a x ∞=+∑的收敛区间以2x =-为中心,因为该级数在0x =处收敛,在4x =-处发散,所以其收敛半径为2,收敛域为(4,0]-,即222x -<+≤时级数收敛,亦即nn n a t∞=∑的收敛半径为2,收敛域为(2,2]-. 则(3)nn n a x ∞=-∑的收敛半径为2,由232x -<-≤得15x <≤,即幂级数(3)nn n a x ∞=-∑的收敛域为(1,5] (12)【答案】4π【详解】加221:0(4)z x y ∑=+≤的下侧,记∑与1∑所围空间区域为Ω,则2xydydz xdzdx x dxdy ∑++⎰⎰ 1122xydydz xdzdx x dxdy xydydz xdzdx x dxdy ∑+∑∑=++-++⎰⎰⎰⎰2222222441()0()2x y x y ydxdydz x dxdy x y dxdy Ω+≤+≤=--=++⎰⎰⎰⎰⎰⎰⎰22300142d r dr πθπ==⎰⎰(13)【答案】1【详解】1212121202(,)(,)(0,2)(,)01A A A αααααααα⎛⎫==+=⎪⎝⎭记12(,)P αα=,0201B ⎛⎫= ⎪⎝⎭,则AP PB =因为12,αα线性无关,所以P 可逆. 从而1B P AP -=,即A 与B 相似. 由2||(1)001E B λλλλλ--==-=-,得0λ=及1λ=为B 的特征值.又相似矩阵有相同的特征值,故A 的非零特征值为1. (14)【答案】12e【详解】由22()DX EX EX =-,得22()EX DX EX =+,又因为X 服从参数为1的泊松分布,所以1DX EX ==,所以2112EX =+=,所以 {}21111222P X e e --===!222111222(1)(1)(1)n n n n n n =⋅+⋅⋅-=--。