卫星导航增强系统SBAS_图文
卫星导航差分系统和增强系统(六)

卫星导航差分系统和增强系统(六)+刘天雄3 完好性增强系统及其实现方案3.1 完好性分析卫星导航系统提供的服务是单方向的,系统对提供的定位精度和质量没有闭环监测和反馈能力。
基本导航系统没有快速告警手段和通道,系统发生异常情况或中断情况时不能及时把告警信息通报用户,可能导致大量用户仍使用错误的导航信息,引发生命安全事故。
完好性增强主要是利用地面监测站网络,监测导航信号健康状态,结合伪距观测量的状态域改正数或者观测值域改正数生成相应的完好性信息,在系统出现故障或者异常情况下及时告知用户,卫星导航系统完好性概念示意如图16所示。
完好性增强技术的本质是及时有效地识别、剔出导致卫星导航PNT服务不可信的各类因素。
空中交通管理是为了有效地维护和促进空中交通安全,维护空中交通秩序,保障空中交通畅通,根据通信系统、导航系统和监视系统的信息,实施空中交通管理,包括空中交通服务、空中交通流量管理、空域管理三方面内容。
民航起降过程如图17所示。
为空中交通管理提供导航信息的系统有定向机/无方向信标(DF/NDB)、仪表着陆系统(ILS)、甚高频全向信标(VOR)、测距器(DME),以及卫星导航系统及其增强系统。
卫星导航系统在民用航空中的应用包括航路(En-route)、终端区(Terminal)、进近(Approach)、着陆(Surface)和起飞(Departure)等环节,其中进近又可以细分为非精密进近(Non-precision approach,NPA)、一类垂直引导进近(approach with图16 完好性概念示意(HPL代表水平保护门限,HAL代表水平告警门限)图17 SBAS和GBAS系统引导民航起降vertical guidance-I,APV-I)、二类垂直引导进近(APV-II)、一类精密进近(CAT-I)、错误进近(Missed approach)、二类精密进近(CAT-II)和三类精密进近(CAT-III)。
SBAS

SBAS
一、
SBAS 即Satellite Based Augmentation Systems (DGNSS/DGPS/WAAS/EGNOS) 是利用地球静止轨道卫星建立的地区性广域差分增强系统。
目前全球发展的SBAS系统有:
欧空局接收卫星导航系统(EGNOS),覆盖欧洲大陆;
美国的DGPS(Differential GPS),美国雷声公司的广域增强系统(WAAS),覆盖美洲大陆;
日本的多功能卫星增强系统(MSAS),覆盖亚洲大陆;
印度的GPS辅助型静地轨道增强导航(GAGAN)。
三者具有完全兼容的互操作性。
其特点是:
1、通过地球静止卫星(GEO)发布包括GPS卫星星历误差改正、卫星钟差改正和电离层改的信息;
2、通过GEO卫星发播GPS和GEO卫星完整的数据;
3、GEO卫星的导航载荷发射GPS L1测距信号。
二、
SBAS即门店听觉系统,是Store Brand Auditory System的缩写。
SBAS主要包括:
1、品牌主题曲
这是品牌的精神内核以及门店听觉的灵魂。
2、品牌LOGO
品牌听觉标识,让陌生人认识品牌接近品牌的最好名片。
3、广告音乐
功用在于在发布门店信息的第一时间传到消费者的耳朵里,吸引火爆人气。
4、氛围音乐
营造购物氛围,强化消费者的购物欲。
SBAS的功能:
1、吸引门店人气。
2、完善品牌识别系统。
3、强化品牌特色。
4、发布促销信息。
5、提高消费者购物欲望。
6、营造购物氛围。
卫星导航增强系统SBAS课件

SBAS通过提供更高精度的位置信息,帮助改善导航、定位和授时服务,提高导 航系统的性能和可靠性。
Sbas系统的发展历程
初始阶段
20世纪90年代,美国建立了GPS 现代化计划,其中包括SBAS的发
展。
发展阶段
21世纪初,多个国家和地区开始研 究和建设SBAS系统,包括欧洲的 EGNOS、美国的WAAS和日本的 MSAS等。
实际测试
在实验场景下进行实际测试,收集Sbas系统的定位数据、信号质量数据等,以便 与性能评估指标进行比较。
性能评估结果
根据实际测试数据,对Sbas系统的性能进行评估,包括定位精度、信号质量、可 用性、可靠性等方面的评估结果,以便了解Sbas系统的性能状况。
06
总结与展望
Sbas系统的主要贡献及存在问题
成熟阶段
目前,SBAS系统已经广泛应用于民 航、军事等领域,提供高精度、高 可靠性的导航服务。
Sbas系统的应用场景
01
02
03
民航领域
SBAS被广泛应用于民航 领域,为飞机提供高精度 的位置和速度信息,帮助 实现精密进近和着陆。
军事领域
SBAS为军事用户提供了 更高精度的导航和定位服 务,帮助实现精准打击和 战场指挥。
Sbas系统的硬件部分设计
01
02
03
04
卫星接收机
SBAS系统使用多模态卫星接 收机来接收GPS、GLONASS 和Galileo等不同卫星系统的
信号。
传感器
SBAS系统使用多种传感器, 如陀螺仪、加速度计等,来提 供额外的位置和姿态信息。
数据存储设备
SBAS系统需要使用大容量数 据存储设备来存储采集和处理
加强Sbas系统的标准化和模块化设计,方便用户根据需 求进行定制和应用。
卫星导航差分系统和增强系统(一)

一、卫星导航系统性能的基本要素精度、完好性、连续性、可用性是评价一个卫星导航系统性能的基本要素,其中:1、精度是在给定时间内,接收机给出位置和速度的测量值与真值之间的一致性的度量。
当前卫星导航系统民用定位精度为10m (95%),授时精度为100ns(95%),10m 的定位精度可以满足大部分用户的使用要求。
例如,对于开阔海域的水面舰艇以及商用货轮的导航,以及从航线、航路到非精密进近阶段的飞机导航,数十米的水平精度就已经足够了。
但是在船舶进港、船舶靠岸、狭窄航道航行等特殊场景,定位精度要求到米级;飞机精密进近、大地测量、国土测绘等应用领域,10m的定位精度也远远不能满足应用要求;实时监测水库、高速公路、铁路等附近山体的三维形变,监测精度要求为毫米级;水库或水电站的大坝由于水负荷的重压而产生变形,危及坝体的安全,需要对大坝外观形变进行连续而精密的监测,监测精度则要求为亚毫米级。
如此高的定位精度要求,仅仅单独靠卫星导航系统的能力是无法实现的。
2、完好性是当系统出现异常、故障或精度不能满足设计指标要求时,系统向用户发出实时“不可用”告警的能力,一般用系统不能提供完好性服务的风险概率表示。
没有完好性保证的定位、授时和授时服务,就无法成为用户可以依靠的系统,尤其是那些涉及生命安全相关的应用领域,对卫星导航系统的完好性提出了较高要求,这些要求超出了卫星导航系统自身的服务能力。
涉及生命安全的交通运输领域利用卫星导航系统开展导航应用时,用户更加关注的是当系统处于95%服务可用性之外时,系统的完好性相关服务。
虽然卫星导航系统自身具有一定的完好性监测能力,地面运行控制系统通过接收导航信号和卫星自身健康状态来监测卫星的状态,然后将监测的告警信息上注给卫星并再由卫星以导航电文方式广播给用户,这个周期一般是一个小时,最短也需要15分钟。
卫星导航差分系统和增强系统(一)+刘天雄——什么是卫星导航系统的性能增强?——什么是卫星导航差分系统?——什么是卫星导航增强系统?——卫星导航增强系统分类及技术特点几何?不同应用领域对卫星导航系统完好性要求不同,例如:①船舶在远洋航路上航行时,对完好性要求相对较低,依靠卫星导航系统提供的完好性保障能力,以及用户接收机内部提供的自主完好性监视,就可满足使用要求;而对于船舶进港与靠岸来说,这个告警时间是不能满足用户需求的,需要建设专门系统在提高定位精度的同时增强卫星导航系统的完好性,保证船舶进港和靠岸的安全。
广域差分简介

SBAS 即Space Based Augmentation System,是利用地球静止轨道卫星建立的地区性广域差分增强系统。
目前全球发展的SBAS系统有:欧空局接收卫星导航系统(EGNOS),欧洲大陆美国雷声公司的广域增强系统(W AAS),美洲大陆日本的多功能卫星增强系统(MSAS),亚洲大陆三者具有完全兼容的互操作性。
其特点是:1、通过地球静止卫星(GEO)发布包括GPS卫星星历误差改正、卫星钟差改正和电离层改的信息;2、通过GEO卫星发播GPS和GEO卫星完整的数据;3、GEO卫星的导航载荷发射GPS L1测距信号。
SBAS覆盖图WAAS 这个名词、全名为Wide Area Augmentation System,即广域增强系统。
WAAS是美国联邦航空局(FAA)及美国交通部为提升飞行精确度而发展出来的,因为目前单独使用GPS 并无法达到联邦航空局针对精确飞行导航所设定的要求。
WAAS 包含了约25个地面参考站台,位置散布于美国境内,负责监控GPS 卫星的资料。
其中两个分别位于美国东西岸的主站台搜集其它站台传来的资料,并据此计算出GPS 卫星的轨道偏移量、电子钟误差,以及由大气层及电离层所造成的讯息延迟时间,汇整后经由两颗位在赤道上空之同步卫星的其中之一传播出去。
此W AAS 讯号的发送频率与GPS 讯号的频率相同,因此任何具备WAAS 功能的GPS 机台都可接收此讯号,并藉此修正定位信息。
WAAS 可以校正由电离层干扰、时序控制不正确以及卫星轨道错误等因素所造成的GPS 讯号误差,也能提供各卫星是否正常运转之信息。
虽然W AAS 目前尚未正式通过美国航空局的飞行使用认证,但此系统已开放给一般民众使用,例如从事航海或其它休闲活动的人们。
W AAS提供校正GPS讯号的功能,让您得到更精确的定位。
到底能提升多少精确度呢?官方给出的数据是,可以平均提升最多五倍的精确度!目前无W AAS功能的普通GPS接收机的正常精确度是15米,而一台具备W AAS功能的GPS接收机能在95%的情况下提供您误差小于三公尺的精准定位,而且您不必为了使用WAAS功能而支付任何使用费。
卫星导航 差分系统和增强系统(九)

卫星导航差分系统和增强系统(九)+刘天雄配备双频接收机的测距与完好性监视站(RIMS)测量可见星(仰角大于15°)的电离层延迟数据,获得的电离层延迟再转换为对应电离层穿透点(IPP)的垂直延迟。
所有RIMS站得到的垂直延迟送入主控中心(MCC),用于计算某一网格的4个网格点(IGP)的垂直电离层延迟。
计算电离层延迟改正数的算法有很多,例如,对于第k个IGP,MCC在计算垂直电离层延迟时,首先以第k个IGP为圆心,以R(一般为1000km)为半径画圆,使用处于圆内的电离层延迟采用距离倒数加权法计算该IGP的垂直电离层延迟。
主控站获得这些电离层校正数据经导航注入站注入GEO卫星,由卫星将校正数据播发给服务区内的用户。
SBAS能够测量出对流层的温度、压力和相对湿度等,因为这些量的空间相关距离很短,所以由MCC估算出该延迟发给用户没有太大意义。
SBAS电文不含对流层校正值,延迟补偿模型需要设置在接收机内,一般可以消除90%的对流层延迟。
SBAS通过对各类改正数误差的确定及验证来完成对广域差分改正数完好性的监测,广域差分改正数包括卫星星历改正、卫星钟差改正和电离层网格垂直延迟改正。
卫星星历改正和卫星星钟改正都是与卫星有关的误差改正,这两种改正数相应的误差综合给出,以用户差分距离误差(User Differential Range Error,UDRE)表示。
电离层网格垂直延迟改正相应的误差以GIVE表示。
用户差分距离误差(UDRE)指由经差分修正后的空间信号误差引起的用户误差。
因此它是经星历误差修正和卫星钟差修正后的真实用户级误差。
考虑完好性的概率要求,UDRE可以定义为在系统服务区内,可视卫星星历及钟差改正数误差相应的伪距误差的置信限值。
设置信度为99.9%,则有:Pr(UDRE > 卫星星历及钟差改正数) ≥99.9% (14.1)计算UDRE应考虑:直接计算:UDRE计算应直接基于接收到的轨道及钟差误差影响的伪距观测量,能够使用户得到更加严格的完好性保证,对系统所受到的异常影响会尽快做出反应;•置信度限制的完好性:UDRE应对系统服务区内的所有位置,以99.9%的置信度给出卫星轨道及钟差改正误差的置信限值;•告警时间:UDRE要能尽快对异常影响做出反应,且要尽快通过同步卫星广播给用户,处理及播发的总时间不应超过系统规定的6s告警时间;• 定位可用性:UDRE越小,可用性越高。
卫星导航增强系统:SBAS

差分校准和监测站
中央处理设施 用来中继差分校正信息的地球静止轨道卫星。
GPS理论与应用 20.卫星导航增强系统:SBAS
•
1.3欧洲地球静止导航重叠服务
欧洲地球静止导航重叠服务(EGNOS)是欧 洲自主开发建设的星基导航增强系统,它通过 增强GPS和GLONASS卫星导航系统的定位精度, 来满足高安全用户的需求。它是欧洲GNSS计划 的第一步,是欧洲开发的Galileo卫星导航系统计 划的前奏。
GPS理论与应用 20.卫星导航增强系统:SBAS
•
MSAS系统的地面段包括:
2个主控站分别位于神户和常陆太田, 4个地面监测站(GMS)分别位于福冈、札幌、东京 和那霸, 2个监测测距站(MRS)分别位于夏威夷和澳大利亚。
GPS理论与应用 20.卫星导航增强系统:SBAS
MSAS系统构成
星导航增强系统是卫星导航系统建设中的一项重要内容, 堪称卫星导航系统的“能力倍增器”。目前的卫星导航系 统尽管已经在各个民商用领域应用广泛,并且成为各大强 国发展所不可或缺的一环,但由于技术和系统的局限性, 在某些领域如航空精密进近等仍无法满足需求,需要增强 系统将其能力加以提升。
目前,国外卫星导航增强系统主要分为
GPS理论与应用 20.卫星导航增强系统:SBAS
•
EGNOS系统空间段覆盖范围见下图:
EGNOS系统空间段覆盖
GPS理论与应用 20.卫星导航增强系统:SBAS
目前,欧洲具备EGNOS能力的飞机场已经超过了50 个,以法国和德国为主,而未来计划配备EGNOS能 力的飞机场还将超过50个。这样来看,未来在欧洲将 至少有100个机场具备EGNOS能力。
GPS理论与应用 20.卫星导航增强系统:SBAS
卫星导航增强系统50页PPT

60、人民的幸福是至高无个的法。— —西塞 罗
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
载波相位差分
• 1.单差观测方程
• 单差:即不同接收机(也称不同测站)同步观 测相同卫星所得观测量之差,单差又称一次 差,是相对定位中观测量的最基本线形组合 形式。
• 当测站在短距离内求差后,星历误差对测距 的影响只有原来的千分之一。
• 测站间求单差的模拟观测模型具有以下优势:
卫星导航增强系统SBAS_图文.pptx
• 这些系统综合使用了各种不同增强效果的导航增强技术,最终实现了其 增强卫星导航服务性能的目的。从增强效果上看,这些增强系统所使用 的卫星导航增强技术主要包括精度增强技术、完好性增强技术、连续性 和可用性增强技术。其中,精度增强技术主要运用差分原理,进一步可 分为广域差分技术、局域差分技术、广域精密定位技术和局域精密定位 技术;完好性增强技术主要运用完好性监测原理,进一步可分为系统完 好性监测技术、广域差分完好性监测技术等等。连续性和可用性增强技 术主要是增加导航信号源,进一步可分为天基卫星增强技术、地基伪卫 星增强技术等。当前卫星导航增强系统所采用的各种增强技术分类见下 表。
– (1)消除了卫星钟误差的影响; – (2)大大削弱了卫星星历误差的影响; – (3)大大削弱了对流层和电离层折射的影响,短距离内几乎可以
完全消除其影响。
当前卫星导航增强系统所采用的增强技术分类
WAAS发展阶段部署与 GEO卫星时间表
EGNOS系统空间段覆盖
具备EGNOSt-1R卫星
SBAS系统原理示意图
差分定位系统结构
差分定位
• 3.3 相位平滑伪距差分
• 现在很多接收机都能够提供原始观测量,即除了位置信息外,还有 伪距值和载波相位值。载波相位值的测量精度比码相位值的测量精 度高出2个数量级。如果能知道载波频率的整周数,那么就获得了 近乎无噪声的伪距值。一般情况下,无法获得载波相位整周数,但 能获得载波多普勒频率计数。实际上,载波多普勒计数测量反映了 载波相位变化信息,即反映了伪距变化率。在接收机中,一般利用 这一信息作为用户的速度估计。考虑到载波相位测量的高精度,并 且精确反映了伪距的变化,利用这一信息来辅助码伪距测量,就可 以获得比单独采用码伪距测量更高的精度。这一思想称为相位平滑 伪距测量,又可将其分为载频多普勒计数平滑伪距和载波相位平滑 伪距。这是由观测量的量纲不同而分类的。前者是以频率周数为单 位,后者是以载波波长为单位。两者利用平滑技术进行伪距差分的 方法是相同的。