北京市2016届高三数学一轮复习专题突破训练圆锥曲线文
北京市部分区2016届高三上学期期中期末考试数学文分类汇编:圆锥曲线 含答案

北京市部分区2016届高三上学期期末考试数学理试题分类汇编圆锥曲线一、选择题1、(朝阳区2016届高三上学期期末)设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且与y 轴交于点A ,若OAF ∆(O 为坐标原点)的面积为4,则抛物线方程为 A.24yx=± B 。
24y x= C 。
28yx=± D 。
28y x =2、(大兴区2016届高三上学期期末)抛物线2y x =的准线方程是(A ) 14y =- (B)12y =-(C ) 14x =-(D )12x =-3、(丰台区2016届高三上学期期末)如图,在圆224xy +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足。
当点P 在圆上运动时,线段PD 的中点M 的轨迹是椭圆,那么这个椭圆的离心率是 (A )12(B )14((D4、(海淀区2016届高三上学期期末)已知点(5,0)A ,抛物线2:4C yx=的焦点为F ,点P 在抛物线C 上,若点F 恰好在PA 的 垂直平分线上,则PA 的长度为A 。
2B. C. 3 D 。
45、(延庆区2016届高三3月一模)已知双曲线的离心率53e =,且焦点到渐近线的距离为4,则该双曲线实轴长为( )A 。
6B 。
5 C 。
4 D 。
3参考答案1、C2、A3、D4、D5、A二、填空题 1、(昌平区2016届高三上学期期末)若双曲线22149x y -=的左支上一点P 到右焦点的距离是6,则点P 到左焦点的距离为 。
2、(朝阳区2016届高三上学期期末)双曲线2213y x -=的渐近线方程为 . 3、(大兴区2016届高三上学期期末)双曲线2213y x -=的焦点到渐近线的距离等于 4、(东城区2016届高三上学期期末)双曲线221169x y -=的离心率是_________。
5、(海淀区2016届高三上学期期末)已知双曲线2221(0)y x b b-=>的一条渐近线通过点(1,2), 则___,b = 其离心率为__. 6、(顺义区2016届高三上学期期末)过椭圆22221(0)x y a b a b+=>>的焦点垂直于x 轴的弦长为a 。
高三数学一轮复习必备:圆锥曲线方程及性质

~高三数学(人教版A 版)第一轮复习资料第33讲 圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
北京历年高考文科圆锥曲线解答题汇总(2008年—2016年)

x2 y 2 1 相交于 A , C 两点, O 是坐标原 4
7. (2014 年北京第 19 题) 已知椭圆 C: x 2 y 4 .
2 2
(Ⅰ)求椭圆 C 的离心率; (Ⅱ)设 O 为原点,若点 A 在直线 y 2 ,点 B 在椭圆 C 上,且 OA OB ,求线段 AB 长 度的最小值. 8.(2015 年北京第 20 题)
北京历年高考文科数学圆锥曲线解答题汇总
说明:本人根据正规出版图书整理校对了北京 2008 年至 2016 年高考文科数学解析几何大 题,纠正了网上的高考试题中的个别错误,供北京考生及教师参考。 整理人:初、高中数学教师朱春光 1.(2008 年北京第 19 题) 已知 △ABC 的顶点 A ,B 在椭圆 x 2 3 y 2 4 上, C 在直线 l:y x 2 上,且 AB / /l . (Ⅰ)当 AB 边通过坐标原点 O 时,求 AB 的长及 △ABC 的面积; (Ⅱ)当 ABC 90 ,且斜边 AC 的长最大时,求 AB 所在直线的方程.
6 ,直线 y=t 与 3
6 x2 y 2 已知椭圆 G : 2 2 1(a b 0) 的离心率为 ,右焦点为( 2 2 ,0) ,斜率为 1 3 a b
的直线 l 与椭圆 G 交于 A、B 两点,以 AB 为底边作等腰三角形,顶点为 P(-3,2). (I)求椭圆 G 的方程; (II)求△PAB 的面积. 5. (2012 年北京第 19 题) 已知椭圆 C :
2 2
已知椭圆 C : x 3 y 3 , 过点 D 1, 0 且不过点 E 2,1 的直线与椭圆 C 交于 A, B 两
点,直线 AE 与直线 x 3 交于点 M . (Ⅰ)求椭圆 C 的离心率; (Ⅱ)若 AB 垂直于 x 轴,求直线 BM 的斜率; (Ⅲ)试判断直线 BM 与直线 DE 的位置关系,并说明理由. 9.(2016 年北京第 19 题) 已知椭圆 C:
高考数学一轮复习专题训练—圆锥曲线的定值问题

圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
北京市2016届高中三年级数学一轮复习 专题突破训练 圆锥曲线 理

北京市2016届高三数学理一轮复习专题突破训练圆锥曲线一、选择、填空题1、(2015年北京高考)已知双曲线()01222>=-a y ax 的一条渐近线为03=+y x ,则=a.2、(2014年北京高考)设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.3、(2013年北京高考)若双曲线22221x y a b-=,则其渐近线方程为( ).A .y =±2x B.y =C .12y x =±D.2y x =± 4、(朝阳区2015届高三一模)已知点A(1,y 0 )( y 0> 0) 为抛物线 y 2= 2px ( p > 0)上一点.若点A 到该抛物线焦点的距离为 3,则y 0 =AB . 2C .D . 45、(东城区2015届高三二模)若双曲线22221(0,0)x y a b a b-=>>截抛物线24y x =的准线所得线段长为b ,则a =6、(房山区2015届高三一模)双曲线221x my -=的实轴长是虚轴长的2倍,则m =( )A .4B .2C .12D .147、(丰台区2015届高三一模)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,它的一个焦点坐标为(2,0),则双曲线的方程为(A)22126x y -= (B)22162x y -= (C)2213y x -= (D) 2213x y -= 8、(海淀区2015届高三二模)若双曲线M 上存在四个点,,,A B C D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是 9、(石景山区2015届高三一模)如果双曲线的离心率215+=e ,则称此双曲线为黄金双曲线.有以下几个命题:①双曲线115222=--y x 是黄金双曲线; ②双曲线115222=+-x y 是黄金双曲线;③在双曲线22221x y a b-=中, F 1为左焦点, A 2为右顶点, B 1(0,b ),若∠F 1 B 1 A 290=︒,则该双曲线是黄金双曲线;④在双曲线22221x y a b-=中,过焦点F 2作实轴的垂线交双曲线于M 、N 两点,O 为坐标原点,若∠MON 120=︒,则该双曲线是黄金双曲线. 其中正确命题的序号为( )A .①和② B.②和③ C.③和④ D.①和④10、(西城区2015届高三一模)已知双曲线()222210x y a b a b=>>0-,的一个焦点是抛物线 y 2= 8x的焦点,且双曲线C 的离心率为2,那么双曲线C 的方程为 .11、(东城区示范校2015届高三上学期综合能力测试)双曲线()301362222<<=--m my m x 的焦距为A. 6B. 12C. 36D. 22362m -12、(昌平区2015届高三上学期期末)已知双曲线221(0)y x m m-=>的离心率是2,则________,m =以该双曲线的右焦点为圆心且与其渐近线相切的圆的方程是13、(朝阳区2015届高三上学期期末)双曲线22:C x y λ-=(0λ>)的离心率是 ;渐近线方程是14、(东城区2015届高三上学期期末)若抛物线22(0)y px p =>的焦点到其准线的距离为1,则该抛物线的方程为15、(海淀区2015届高三上学期期末)若双曲线221y x m-=的一条渐近线的倾斜角为60︒, 则m =二、解答题1、(2015年北京高考)已知椭圆C : ()012222>>=+b a by a x 的离心率为22,点()1,0P 和点()()0,≠m n m A 都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得ONQ OQM ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.2、(2014年北京高考)已知椭圆22:24C x y +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.3、(2013年北京高考)已知A ,B ,C 是椭圆W :24x +y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.4、(朝阳区2015届高三一模)已知椭圆C :()22221x y a b a b+=>>0的一个焦点为F (2,0),离心率为3。
2016届高三数学一轮复习优题精练:圆锥曲线

江苏省2016年高考优题精练圆锥曲线一、填空题1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值为_____________。
2、(2013年江苏高考)双曲线191622=-y x 的两条渐近线的方程为 。
3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 。
4、(2015届南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C :yx42=的焦点为F ,定点)0,22(A ,若射线FA 与抛物线C 相交于点M ,与抛物线C 的准线相交于点N ,则FM :MN=5、(苏锡常镇四市2015届高三教学情况调研(二))已知双曲线22221(,0)x y a b a b-=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲6、(泰州市2015届高三第二次模拟考试)已知双曲线2214x y m -=的渐近线方程为2y x =±,则m = ▲ 7、(盐城市2015届高三第三次模拟考试)若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则n 的值为 ▲8、(2015届江苏南京高三9月调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±3x ,则该双曲线的离心率为 ▲9、(2015届江苏苏州高三9月调研)已知双曲线2215x y m -=的右焦点与抛物线212y x =的焦点相同,则此双曲线的渐近线方程为 ▲10、(南京市、盐城市2015届高三)若双曲线222(0)x y a a -=>的右焦点与抛物线24y x =的焦点重合,则a = ▲ .11、(南通市2015届高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物线24y x =焦点的双曲线的方程是12、(苏州市2015届高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为13、(泰州市2015届高三上期末)双曲线12222=-by a x 的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e = ▲14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线2219x y m-=的一个焦点为(5,0),则实数m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB的面积为2,则双曲线的离心率为 ▲ 二、解答题1、(2015年江苏高考)如图,在平面直角坐标系xoy 中,已知椭圆22221x y a b+=(0)a b >>的离心率为2,且右焦点F 到左准线l 的距离为3。
高三数学一轮复习章节练习:34圆锥曲线与方程

高三数学章节训练题34《圆锥曲线与方程》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’) 一、选择题(本大题共6小题,每小题5分,满分30分) 1.若椭圆经过原点,且焦点为12(1,0),(3,0)F F ,则其离心率为 ( )A .34 B .23 C .12 D .142.设过点()y x P ,的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2=,且1=⋅AB OQ ,则P 点的轨迹方程是( )A .()0,0123322>>=+y x y x B .()0,0123322>>=-y x y x C .()0,0132322>>=-y x y xD .()0,0132322>>=+y x y x 3.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A .2B .332 C . 2 D .4 4.与y 轴相切且和半圆224(02)x y x +=≤≤内切的动圆圆心的轨迹方程是( )A .24(1)(01)y x x =--<≤ B .24(1)(01)y x x =-<≤ C .24(1)(01)y x x =+<≤D . 22(1)(01)y x x =--<≤5.直线2y k =与曲线2222918k x y kx += (,)k R ∈≠且k 0的公共点的个数为( )A . 1B . 2C . 3D . 46.曲线221(6)106x y m m m+=<--与曲线221(59)59x y m m m +=<<--的 ( ) A .焦距相等 B .离心率相等 C .焦点相同 D .准线相同 二、填空题:(本大题共4小题,每小题5分,满分20分)7.椭圆221123x y +=的两个焦点为12,F F ,点P 在椭圆上.如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的______________倍.8.如图把椭圆2212516x y +=的长轴AB 分成8等 分,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是椭圆的焦点,则|P 1F|+|P 2F|+…+|P 7F|= . 9.已知两点(5,0),(5,0)M N -,给出下列直线方程:①530x y -=;②53520x y --=;③40x y --=.则在直线上存在点P 满足||||6M P P N =+的所有直线方程是_______.(只填序号)10.以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,k PB PA =+||||,则动点P 的轨迹为椭圆;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③到定直线c a x 2-=和定点)0,(c F -的距离之比为)0(>>a c ca的点的轨迹是双曲线的左半支;④方程02722=+-x x 的两根可分别作为椭圆和双曲线的离心率; 其中真命题的序号为 (写出所有真命题的 三、解答题:(本大题共2小题,满分30分)11.(本小题满分14分)已知抛物线28y x =,是否存在过点(1,1)Q 的弦AB ,使AB 恰被Q平分.若存在,请求AB 所在直线的方程;若不存在,请说明理由.12.(本小题满分16分)设,x y R ∈,,i j为直角坐标平面内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++ ,(2)b xi y j =+- ,且||||8a b +=. (1)求点(,)M x y 的轨迹C 的方程;(2)过点(0,3)作直线l 与曲线C 交于,A B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,试说明理由.高三数学章节训练题34《圆锥曲线与方程》答案一、 选择题1、C2、D3、C4、A5、D6、A 2.D .由PABP 2=及,A B分别在x 轴的正半轴和y 轴的正半轴上知,3(,0),2A x (0,3)B y ,3(,3)2AB x y =- ,由点Q 与点P 关于y 轴对称知,(,)Q x y -,OQ =(,)x y -,则2233(,3)(,)31(0,0)22OQ AB x y x y x y x y ⋅=-⋅-=+=>>二、填空题7.7倍.由已知椭圆的方程得123,(3,0),(3,0)a b c F F ===-.由于焦点12F F 和关于y 轴对称,所以2PF 必垂直于x 轴.所以21||222P PF PF ===,所以21||7||PF PF =. 8.35. 设P 1(x 1,y 1),P 2(x 2,y 2),…,P 7(x 7,y 7),所以根据对称关系x 1+x 2+…+x 7=0,于是 |P 1F|+|P 2F|+…+|P 7F|=a+ex 1+a+ex 2+…+a+ex 7=7a+e(x 1+x 2+…+x 7)= 7a=35,所以应填35.9.②③. 由||||6MP PN -=可知点P 在双曲线221916x y -=的右支上,故只要判断直线与双曲线右支的交点个数.因为双曲线的渐近线方程为43y x =±,直线①过原点且斜率5433>,所以直线①与双曲线无交点;直线②与直线①平行,且在y 轴上的截距为523-故与双曲线的右支有两个交点;直线③的斜率413<,故与双曲线的右支有一个交点.10.④三、解答题11.假设存在这样的直线,则直线的斜率一定存在,设为k ,点1122(,),(,)A x y B x y 在抛物线上,所以21122288y x y x ⎧=⎪⎨=⎪⎩,两式作差得,121212()()8()y y y y x x +-=-,即121212()()8y y y y x x -+=-,解得4k =,故直线方程为14(1)y x -=-,即43y x =-.经验证,直线符合条件.12.(1)由||||8a b+=,84=>,设12(0,2),(0,2)F F -则动点M 满足1212||||84||M F M F F F +=>=,所以点M 在椭圆上,且椭圆的4,2,a c b ===所以轨迹C 的方程为2211612y x +=.(2)设直线的斜率为k ,则直线方程为3y kx =+,联立方程组22311612y kx y x =+⎧⎪⎨+=⎪⎩消去y得:22(43)18210k x kx ++-=,22(18)84(43)0k k ∆=++>恒成立,设1122(,),(,)A x y B x y ,则1212221821,4343k x x x x k k+=-=++.由AP OB = ,所以四边形OAPB 为平行四边形.若存在直线l ,使四边形OAPB 为矩形,则OA OB ⊥,即212121212(1)3()90OA OB x x y y k x x k x x ⋅=+=++++= ,解得4k =±,所以直线l的方程为34y x =±+,此时四边形OAPB 为矩形.。
高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市2016届高三数学文一轮复习专题突破训练圆锥曲线一、填空、选择题1、(2015年北京高考)已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b = .2、(2014年北京高考)设双曲线C 的两个焦点为(),),一个顶点式()1,0,则C 的方程为 .3、(2013年北京高考)若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________.4、(昌平区2015届高三上期末)双曲线13:22=-y x C 的离心率是_________;若抛物线mx y 22=与双曲线C 有相同的焦点,则=m _____________.5、(朝阳区2015届高三一模)若抛物线22(0)y px p =>的焦点与双曲线222x y -=的右焦点重合,则p 的值为A .2 C .4 D .6、(东城区2015届高三二模)已知抛物线22y x =上一点P (,2)m ,则m = ,点P 到抛物线的焦点F 的距离为 .7、(房山区2015届高三一模)双曲线22194x y -=的渐近线方程是( )A .23y x =±B .49y x =±C .32y x =±D .94y x =± 8、(丰台区2015届高三一模)双曲线22126x y -=的渐近线方程为 9、(丰台区2015届高三二模)设O 是坐标原点,F 是抛物线2y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为6π,则||AF =(A)12(B) 34(C) 1(D) 210、(海淀区2015届高三一模)抛物线2=4x y 的焦点到准线的距离为( ) (A )12(B ) 1 (C )2 (D )411、(海淀区2015届高三二模)以坐标原点为顶点,(1,0)-为焦点的抛物线的方程为12、(西城区2015届高三二模)抛物线24C y x =:的准线l 的方程是____;以C 的焦点为圆心,且与直线l 相切的圆的方程是____.13、已知抛物线22y px =的焦点F 到其准线的距离是8,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则AFK ∆的面积为 ( )A .32B .16C .8D .414、点P 是抛物线24y x =上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为( ) A .2B .3C .4D .515、已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 ( )A B .2C .115D .3二、解答题1、(2015年北京高考)已知椭圆C :2233x y +=,过点()D 1,0且不过点()2,1E 的直线与椭圆C 交于A ,B 两点,直线AE 与直线3x =交于点M . (Ⅰ)求椭圆C 的离心率;(Ⅱ)若AB 垂直于x 轴,求直线BM 的斜率;(Ⅲ)试判断直线BM 与直线D E 的位置关系,并说明理由.2、(2014年北京高考)已知椭圆C :2224x y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)设O 为原点,若点A 在直线2y =,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.3、(2013年北京高考)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.4、(昌平区2015届高三上期末)已知椭圆C :22221(0)y x a b a b +=>>,其四个顶点组成的菱形的面积是O 为坐标原点,若点A 在直线2=x 上,点B 在椭圆C 上,且OA OB ⊥.(I ) 求椭圆C 的方程; (II )求线段AB 长度的最小值; (III )试判断直线AB 与圆222x y +=的位置关系,并证明你的结论.5、(朝阳区2015届高三一模)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为12(2,0),(2,0)F F -2F 的直线l (斜率不为0)与椭圆C 交于,A B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于,M N 两点. (Ⅰ)求椭圆C 的方程;(Ⅱ)当四边形12MF NF 为矩形时,求直线l 的方程.6、(东城区2015届高三二模)已知椭圆2222:1(0)x y C a b a b +=>>上的左、右顶点分别为A ,B ,1F 为左焦点,且12AF =,又椭圆C 过点.(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 和Q 分别在椭圆C 和圆22+16x y =上(点,A B 除外),设直线PB ,QB 的斜率分别为1k ,2k ,若1234k k =,证明:A ,P ,Q 三点共线.7、(房山区2015届高三一模)已知椭圆W :12222=+by a x )0(>>b a 的离心率为21,Q 是椭圆上的任意一点,且点Q 到椭圆左右焦点1F ,2F 的距离和为4. (Ⅰ)求椭圆W 的标准方程;(Ⅱ)经过点()1,0且互相垂直的直线1l 、2l 分别与椭圆交于A 、B 和C 、D 两点(A 、B 、C 、D 都不与椭圆的顶点重合),E 、F 分别是线段AB 、CD 的中点,O 为坐标原点,若OE k 、OFk 分别是直线OE 、OF 的斜率,求证:OE OF k k ⋅为定值.8、(丰台区2015届高三一模)已知椭圆C :2236x y +=的右焦点为F .(Ⅰ)求点F 的坐标和椭圆C 的离心率;(Ⅱ)直线l :y kx m =+(0)k ≠过点F ,且与椭圆C 交于P ,Q 两点,如果点P 关于x 轴的对称点为P ',判断直线P Q '是否经过x 轴上的定点,如果经过,求出该定点坐标;如果不经过,说明理由.9、(丰台区2015届高三二模)已知椭圆C :22221x y a b+=(0)a b >>的右焦点为F ,上下两个顶点与点F 恰好是正三角形的三个顶点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过原点O 的直线l 与椭圆交于A ,B 两点,如果△FAB 为直角三角形,求直线l 的方程.10、(海淀区2015届高三一模)已知椭圆2222:1(0)x y M a b a b+=>>过点(0,1)A -,且离心率e =(Ⅰ)求椭圆M 的方程;(Ⅱ)若椭圆M 上存在点,B C 关于直线1y kx =-对称,求k 的所有取值构成的集合S ,并证明对于k S ∀∈,BC 的中点恒在一条定直线上.11、(海淀区2015届高三二模)已知椭圆22:14x C y +=,点D 为椭圆C 的左顶点. 对于正常数λ,如果存在过点00(,0)(22)M x x -<<的直线l 与椭圆C 交于,A B 两点,使得AOB AOD S S λ∆∆=,则称点M 为椭圆C 的“λ分点”.(Ⅰ)判断点1,0M ()是否为椭圆C 的“1分点”,并说明理由; (Ⅱ)证明:点10M (,)不是椭圆C 的“2分点”;(Ⅲ)如果点M 为椭圆C 的“2分点”,写出0x 的取值范围. (直接写出结果)12、(石景山区2015届高三一模)如图,已知椭圆C短轴的右端点为B , M (1,0)为线段OB 的中点. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点M 任意作一条直线与椭圆C 相交于两点P ,Q 试问在x 轴上是否存在定点N ,使得∠PNM =∠QNM ? 若存在,求出点N 的坐标;若不存在,说明理由.13、(西城区2015届高三二模)设1F ,2F 分别为椭圆2222 + 1(0)x y E a b a b=>>:的左、右焦点,点A 为椭圆E 的左顶点,点B 为椭圆E 的上顶点,且||2AB =. (Ⅰ)若椭圆E3E 的方程;(Ⅱ)设P 为椭圆E 上一点,且在第一象限内,直线2F P 与y 轴相交于点Q . 若以PQ 为直径的圆经过点1F ,证明:点P 在直线20x y +-=上.14、已知椭圆M :2221(0)3x y a a +=>的一个焦点为(1,0)F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆方程;(Ⅱ)当直线l 的倾斜角为45时,求线段CD 的长;(Ⅲ)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求12||S S -的最大值.15、已知椭圆的中心在原点O ,短半轴的端点到其右焦点()2,0F过焦点F 作直线l ,交椭圆于,A B 两点.(Ⅰ)求这个椭圆的标准方程;(Ⅱ)若椭圆上有一点C ,使四边形AOBC 恰好为平行四边形,求直线l 的斜率.参考答案一、填空、选择题1、【解析】试题分析:由题意知2,1c a ==,2223b c a =-=,所以b =2、【答案】122=-y x 【解析】由题意知:1,2==a c ,所以1222=-=a c b ,又因为双曲线的焦点在x 轴上,所以C的方程为122=-y x .3、2 x =-1 [解析] ∵抛物线y 2=2px 的焦点坐标为(1,0),∴p2=1,解得p =2,∴准线方程为x =-1.4、332; 4± 5、C 6、2,527、A8、y = 9、C 10、C 11、24y x =-12、1x =-, 22(1)4x y -+= 13、 【答案】A解:由题意知8p =,所以抛物线方程为216y x =,焦点(4,0)F ,准线方程4x =-,即(4,0)K -,设2(,)16y A y ,过A 做AM 垂直于准线于M,由抛物线的定义可知AM AF =,所以AK AF ==,即AM MK =,所以2(4)16y y --=,整理得216640y y -+=,即2(8)0y -=,所以8y =,所以11883222AFK S KF y ∆==⨯⨯=,选A. 14、 【答案】B解:抛物线的准线为1x =-,根据抛物线的对应可知,P 到该抛物线焦点的距离等于P 到该准线的距离,即(1)4x --=,所以3x =,即点P 的横坐标为3,选B. 15、【答案】B解:因为抛物线的方程为24y x =,所以焦点坐标(1,0)F ,准线方程为1x =-。
所以设P 到准线的距离为PB ,则PB PF =。
P 到直线1:4360l x y -+=的距离为PA ,所以P A P B P A P F FD +=+≥,其中FD 为焦点到直线4360x y -+=的距离,所以1025FD ===,所以距离之和最小值是2,选B.二、解答题1、【答案】(1)3(2)1;(3)直线BM 与直线DE 平行. 【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线的斜率、两直线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将椭圆方程化为标准方程,得到a ,b ,c 的值,再利用ce a=计算离心率;第二问,由直线AB 的特殊位置,设出A ,B 点坐标,设出直线AE 的方程,由于直线AE 与x=3相交于M 点,所以得到M 点坐标,利用点B 、点M 的坐标,求直线BM 的斜率;第三问,分直线AB 的斜率存在和不存在两种情况进行讨论,第一种情况,直接分析即可得出结论,第二种情况,先设出直线AB 和直线AE 的方程,将椭圆方程与直线AB 的方程联立,消参,得到12x x +和12x x ,代入到1BM k -中,只需计算出等于0即可证明BM DE k k =,即两直线平行.试题解析:(Ⅰ)椭圆C 的标准方程为2213x y +=.所以a =1b =,c =所以椭圆C的离心率c e a ==. (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--. 令3x =,得1(3,2)M y -. 所以直线BM 的斜率112131BM y y k -+==-.(Ⅲ)直线BM 与直线DE 平行.证明如下:当直线AB 的斜率不存在时,由(Ⅱ)可知1BM k =. 又因为直线DE 的斜率10121DE k -==-,所以//BM DE . 当直线AB 的斜率存在时,设其方程为(1)(1)y k x k =-≠. 设11(,)A x y ,22(,)B x y ,则直线AE 的方程为1111(2)2y y x x --=--.令3x =,得点1113(3,)2y x M x +--.由2233(1)x y y k x ⎧+=⎨=-⎩,得2222(13)6330k x k x k +-+-=. 所以2122613k x x k +=+,21223313k x x k-=+.2、解:(Ⅰ)由题意,椭圆C 的标准方程为22142x y +=.所以24a =,22b =,从而2222c a b =-=. 因此2a =,c =C的离心率c e a ==. (Ⅱ)设点A ,B 的坐标分别为()2t ,,()00x y ,,其中00x ≠. 因为OA OB ⊥, 所以0OA OB ⋅=, 即0020tx y +=,解得02y t x =-. 又22024x y +=,所以()()222002AB x t y =-+-()22000022y x y x ⎛⎫=++- ⎪⎝⎭22202044y x y x =+++()2202224442x x x x --=+++ ()22002084042x x x =++<≤. 因为()22002084042x x x +<≥≤,且当204x =时等号成立,所以28AB ≥. 故线段AB长度的最小值为3、解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A ⎝ ⎛⎭⎪⎫t ,12,代入椭圆方程得t 24+14=1,即t =± 3.所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k2. 所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2. 因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·⎝ ⎛⎭⎪⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.4、解:(I)由题意22c e a ab ⎧==⎪⎨⎪=⎩,解得224,2a b ==.故椭圆C 的标准方程为22142y x +=. ……………3分(II )设点A ,B 的坐标分别为00(2,),(,)t x y ,其中00≠y ,因为OA OB ⊥,所以0OA OB ⋅=uu r uu u r,即0020+=x ty , ……………4分解得02=-x t y ,又220024+=x y , 所以22200||(2)()=-+-AB x y t=2200002(2)()-++x x y y =2220002044+++x x y y=2220002042(4)42--+++y y y y =2200284(04)2++<≤y y y ,……………5分因为22002084(04)2+≥<≤y y y ,当且仅当204=y 时等号成立,所以2||8AB ≥,故线段AB长度的最小值为……………7分 (III )直线AB 与圆222x y +=相切. ……………8分 证明如下:设点A,B 的坐标分别为00(,)x y ,(2,)t ,其中00y ≠.因为OA OB ⊥,所以0OA OB ⋅=,即0020x ty +=,解得02x t y =-. ……………9分 直线AB 的方程为00(2)2y ty t x x --=--, 即0000()(2)20y t x x y y tx ----+=, ……………10分 圆心O 到直线AB的距离d =, ……………11分由220024y x +=,02x t y =-,故d ===,所以 直线AB 与圆222x y +=相切. ……………13分 5、解:(Ⅰ)由题意可得2222,,c c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩解得a =b =故椭圆的方程为22162x y +=. ……… 5分 (Ⅱ)由题意可知直线l 斜率存在,设其方程为(2)y k x =-,点11(,)A x y ,22(,)B x y ,33(,)M x y ,33(,)N x y --,由221,62(2),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(13)121260k x k x k +-+-=, 所以21221213k x x k+=+. 因为121224(4)13ky y k x x k -+=+-=+,所以AB 中点22262(,)1313k kD k k -++. 因此直线OD 方程为30x ky +=()0k ¹.由2230,1,62x ky x y +=⎧⎪⎨+=⎪⎩解得232213y k =+,333x ky =-. 因为四边形12MF NF 为矩形,所以220F M F N ⋅=, 即3333(2,)(2,)0x y x y -⋅---=. 所以223340x y --=.所以222(91)4013k k +-=+.解得3k =±.故直线l的方程为2)3y x =±-. ……… 14分 6、解:(Ⅰ)由已知可得2a c -=,b =22212b a c =-=,解得4a =.故所求椭圆C 的方程为2211612x y +=. …………………………5分 (Ⅱ)由(Ⅰ)知(4,0)A -,(4,0)B .设11(,)P x y ,22(,)Q x y ,所以2111121114416PA y y y k k x x x ⋅=⋅=+--. 因为11(,)P x y 在椭圆C 上,所以221111612x y +=,即22113124y x =-. 所以2112131234164PA x k k x -⋅==--. 又因为1234k k =, 所以21PA k k ⋅=-. (1)由已知点22(,)Q x y 在圆2216x y +=上,AB 为圆的直径, 所以QA QB ⊥.所以21QA k k ⋅=-. (2) 由(1)(2)可得PA QA k k =. 因为直线PA ,QA 有共同点A ,所以A ,P ,Q 三点共线. …………………………14分7、解:(Ⅰ)∵点Q 到椭圆左右焦点的距离和为4. ∴24a =,2a =.又12c e a ==,∴1c =,2223b a c =-=. ∴椭圆W 的标准方程为:22143x y +=…………………5分 (Ⅱ)∵直线1l 、2l 经过点(0,1)且互相垂直,又A 、B 、C 、D 都不与椭圆的顶点重合 ∴设1l :1y kx =+,2l :11y x k=-+;点11(,)A x y 、22(,)B x y 、(,)E E E x y 、(,)F F F x y 由221143y kx x y=+⎧⎪⎨+=⎪⎩得22(34)880k x kx ++-= ∵点(0,1)在椭圆内,∴△0>∴122834kx x k +=-+,∴1224234E x x kx k+==-+,23134E E y kx k =+=+ ∴34E OE E y k x k==- 同理33144()F OF Fy kk x K ==-=-∴916OE OF k k ⋅=-…………………14分8、解: (Ⅰ)因为椭圆C :22162x y +=所以焦点(2,0)F,离心率e =……………………4分(Ⅱ)直线l :y kx m =+(0)k ≠过点F ,所以2m k =-,所以l :(2)y k x =-.由2236(2)x y y k x ⎧+=⎨=-⎩,得2222(31)121260.k x k x k +-+-=(依题意 0∆>). 设 11(,)P x y ,22(,)Q x y ,则21221231k x x k +=+,2122126.31k x x k -=+ . 因为点P 关于x 轴的对称点为P ',则11(,)P x y '-.所以,直线P Q '的方程可以设为211121()y y y y x x x x ++=--,令0y =,2111211211212x y x y x y x y x x y y y y -+=+=++211212(2)(2)(4)kx x kx x k x x -+-=+-12121222()(4)x x x x x x -+=+-2222221261222313112(4)31k k k k k k --++=-+ 3=. 所以直线P Q '过x 轴上定点(3,0). ……………………14分9、解:(Ⅰ)因为椭圆C的右焦点为F,则c =因为上下两个顶点与F 恰好是正三角形的三个顶点,所以1b =,2a =.所以椭圆C 的标准方程为2214x y +=. ……………………4分 (Ⅱ)依题意,当△FAB 为直角三角形时,显然直线l 斜率存在,可设直线l 方程为y kx =,设11(,)A x y ,22(,)B x y . (ⅰ)当FA FB ⊥时,11()FA x y =,22()FB x y =.2244y kx x y =⎧⎨+=⎩,消y 得22(41)40k x +-=. 所以120x x +=,122441x x k =-+.212121212((1))3FA FB x x y y k x x x x ⋅=+=+++224(1)3041k k -=+⋅+=+.解得4k =±. ……………………9分 此时直线l的方程为y x =. (ⅱ)当FA 与FB 不垂直时,根据椭圆的对称性,不妨设2FAB π∠=.也就是点A 既在椭圆上,又在以OF 为直径的圆上.所以22112221114(x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得1x =,1y =所以11y k x == 此时直线l的方程为y x =. 综上所述,直线l的方程为y x =或y =. ……………………14分 10、解:(Ⅰ)因为 椭圆M 过点(0,1)A -,所以 1b =. ………………1分 因为222 2c e a b c a ===+, 所以 2a =.所以 椭圆M 的方程为22 1.4x y += ………………3分(Ⅱ)方法一: 依题意得0k ≠.因为 椭圆M 上存在点,B C 关于直线1y kx =-对称,所以 直线BC 与直线1y kx =-垂直,且线段BC 的中点在直线1y kx =-上. 设直线BC 的方程为11221,(,),(,)y x t B x y C x y k=-+. 由221,44y x t k x y ⎧=-+⎪⎨⎪+=⎩得 22222(4)8440k x ktx k t k +-+-=. ………………5分由2222222222644(4)(44)16(4)0k t k k t k k k t k ∆=-+-=-+>, 得22240k t k --<.(*) 因为 12284ktx x k +=+, ………………7分所以 BC 的中点坐标为2224(,)44kt k tk k ++.又线段BC 的中点在直线1y kx =-上,所以 2224144k t ktk k k =-++.所以 22314k t k =+. ………………9分代入(*),得2k <-或2k >.所以 {|S k k k =<>或. ………………11分 因为 22143k t k =+,所以 对于k S ∀∈,线段BC 中点的纵坐标恒为13,即线段BC 的中点总在直线13y =上. ………………13分方法二:因为 点(0,1)A -在直线1y kx =-上,且,B C 关于直线1y kx =-对称, 所以 AB AC =,且0k ≠.设1122(,),(,)B x y C x y (12y y ≠),BC 的中点为000(,)(0)x y x ≠.则22221122(1)(1)x y x y ++=++. ………………6分 又,B C 在椭圆M 上,所以 2222112244,44x y x y =-=-.所以 2222112244(1)44(1)y y y y -++=-++. 化简,得 2212123()2()y y y y -=-. 所以 120123y y y +==. ………………9分 又因为 BC 的中点在直线1y kx =-上,所以 001y kx =-. 所以 043x k=. 由221,413x y y ⎧+=⎪⎪⎨⎪=⎪⎩可得x =±所以4033k <<,或4033k -<<,即2k <-,或2k >. 所以{|S k k k =<>或. ………………12分 所以 对于k S ∀∈,线段BC 中点的纵坐标恒为13,即线段BC 的中点总在直线13y =上. ………………13分11、(Ⅰ)解:点10M (,)是椭圆C 的“1分点”,理由如下: ………………1分当直线l 的方程为1x =时,由2114y +=可得(1,A B .(不妨假设点A 在x 轴的上方) 所以1=12AOB S ∆⨯,1=22AOD S ∆⨯所以AOB AOD S S ∆∆=,即点10M (,)是椭圆C 的“1分点”. ………………4分(Ⅱ)证明:假设点M 为椭圆C 的“2分点”,则存在过点M 的直线l 与椭圆C 交于,A B 两点,使得2AOB AOD S S ∆∆=.显然直线l 不与y 轴垂直,设:1l x my =+,1122(,),(,)A x y B x y .由221,41x y x my ⎧+=⎪⎨⎪=+⎩得 22(4)230m y my ++-=. 所以 12224m y y m -+=+, ① 12234y y m -=+. ② ………………6分 因为 2AOB AOD S S ∆∆=,所以 12111(||||)22||22y y y +=⋅⋅,即21||3||y y =. ………………8分由②可知120y y <,所以213y y =-. ③将③代入①中得 124my m =+, ④ 将③代入②中得21214y m =+, ⑤将④代入⑤中得 2214m m =+,无解. 所以 点10M (,)不是椭圆C 的“2分点”. ………………10分(Ⅲ)0x 的取值范围为(2,1)(1,2)--. ………………14分12、(Ⅰ)由题意知, 2b = …………………1分由e =a = …………………3分 椭圆方程为22148x y +=. …………………4分 (Ⅱ)若存在满足条件的点N ,坐标为(t ,0),其中t 为常数. 由题意直线PQ 的斜率不为0,直线PQ 的方程可设为:1x my =+,()m R ∈ …………………5分 设1122(,),(,)P x y Q x y ,联立221,148x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:22(12)460m y my ++-=, …………………7分221624(12)0m m ∆=++>恒成立,所以12122246,1212m y +y =y y =m m --++ ……8分 由PNM QNM ∠=∠知:+0PN QN k k = …………………9分1212,PN QN y yk k x t x t==--, 即12120y y x t x t +=--,即121211y y my t my t=-+-+-, …………………10分 展开整理得12122(1)()0my y t y y +-+=,即222(6)4(1)0,1212m m t m m ---+=++ …………………12分即(4)0m t -=,又m 不恒为0,=4t ∴.故满足条件的点N 存在,坐标为(40),……14分 13、(Ⅰ)解:设c由题意,得224a b +=,且c a = ………………2分解得a =1b =,c =………………4分所以椭圆E 的方程为2213x y +=. ………………5分(Ⅱ)解:由题意,得224a b +=,所以椭圆E 的方程为222214x y a a +=-,则1(,0)F c -,2(,0)F c,c =. 设00(,)P x y ,由题意,知0x c ≠,则直线1F P 的斜率10F P y k x c=+, ………………6分 直线2F P 的斜率200F P y k x c=-, 所以直线2F P 的方程为00()y y x c x c=--, 当0x =时,00y cy x c -=-,即点00(0,)Q y c x c--, 所以直线1F Q 的斜率为1F Q y k c x =-, ………………8分 因为以PQ 为直径的圆经过点1F , 所以11PF FQ ⊥.所以1100001F P F Q y yk k x c c x ⨯=⨯=-+-, ………………10分 化简,得22200(24)y x a =--, ○1 又因为P 为椭圆E 上一点,且在第一象限内,所以22002214x y a a +=-,00x >,00y >, ○2由○1○2,解得202a x =,20122y a =-, ………………12分所以002x y +=,即点P 在直线20x y +-=上. ………………14分14、解:(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y += ………………3分(Ⅱ)因为直线的倾斜角为45,所以直线的斜率为1,所以直线方程为1y x =+,和椭圆方程联立得到221431x y y x ⎧+=⎪⎨⎪=+⎩,消掉y ,得到27880x x +-= ………………5分 所以121288288,,77x x x x ∆=+=-=所以1224||||7CD x x =-= ………………7分(Ⅲ)当直线l 无斜率时,直线方程为1x =-, 此时33(1,),(1,)22D C ---, ,ABD ABC ∆∆面积相等,12||0S S -= ………………8分当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠,设1122(,),(,)C x y D x y 和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k+++-=显然0∆>,方程有根,且221212228412,3434k k x x x x k k -+=-=++ ………………10分此时122121|||2||||||2||S S y y y y -=-=+212|(1)(1)|k x k x =+++21212||2|()2|34k k x x k k =++=+ ………………12分因为0k ≠,上式1234||||k k =≤==+k = 所以12||S S -………………14分15、解: (Ⅰ)由已知,可设椭圆方程为()222210x y a b a b+=>>,…………………… 1分 则a =2c =. …………………………………………2分所以b == …………………………………3分所以 椭圆方程为221106x y +=. …………………………………………4分 (Ⅱ)若直线l x ⊥轴,则平行四边形AOBC 中,点C 与点O 关于直线l 对称,此时点C 坐标为()2,0c .因为2c a > ,所以点C 在椭圆外,所以直线l 与x 轴不垂直. …………………………………………6分于是,设直线l 的方程为()2y k x =-,点()11,A x y ,()22,B x y , …7分 则()221,1062,x y y k x ⎧+=⎪⎨⎪=-⎩整理得,()2222352020300k x k x k +-+-= … 8分21222035k x x k+=+, ………………………………………… 9分 所以 1221235k y y k+=-+. ……………………………………… 10分 因为 四边形AOBC 为平行四边形, 所以 OA OB OC +=, ……………………………………… 11分所以 点C 的坐标为2222012,3535k k kk ⎛⎫- ⎪++⎝⎭, ……………………………12分 所以 22222201235351106k k k k ⎛⎫⎛⎫- ⎪ ⎪++⎝⎭⎝⎭+=, ……………………………13分 解得21k =,所以1k =±. ………………………………14分。