9 混频器仿真实验

合集下载

混频器实验

混频器实验

实验二混频器仿真实验一.无源混频器仿真实验二极管环形混频电路载频是f L=1kHz,调制频率为f R=100Hz,因此混频后会出现f L f Rf L- f R==900Hz ,f L+ f R=1100Hz,如图所示前两个峰值。

由于二级管的开关作用,还会产生组合频率,不过幅度会随次数的增加而减小,如图所示后两个峰值。

二.有源混频器仿真实验1.三极管单平衡混频电路直流分析傅里叶分析差模输出将直流分量抵消,组合频率分量也被抵消了,本振不会馈通。

但是由于射频信号是非平衡的,所以射频信号带入的直流分量与本振信号相乘后产生了较大幅值的本振频率分量,并且在频谱中还是会出现少量本振信号的奇次谐波与射频相混频的频率分量,单平衡混频电路有效地抑制了高频率分量,单节点输出存在低频分量过大的问题,但使用差分放大器的双点输出能够很好地解决这个缺陷。

但与无源混频器相比,出现了大量的杂波。

2.加入有源滤波器后混频后得到上下变频分量,通过一个带通滤波器,滤除上变频以及本振频率分量,只剩下下变频。

3.吉尔伯特单元混频电路由于射频信号差分输入,因此在输出的时候射频直流分量被抵消,本振不会馈通。

由于是双差分输入,频谱较为纯净。

但是由于吉尔伯特电路也是通过本振大信号作为开断信号对输出信号采样,因此也产生了本振信号的奇次谐波的分量与射频信号相混频产生的组合频率分量。

加入有源滤波器后本电路将作为接收机电路的前端。

与单平衡电路的频谱比较起来更加纯净,无用的频率分量更少,幅值更小。

思考题:1. 吉尔伯特电路是双平衡电路,而三极管是单平衡电路,它们的区别体现在射频信号是否是平衡的,吉尔伯特电路射频信号是平衡的,射频信号中蕴含的直流分量在输出时被抵消,因此不会产生本振信号馈通。

而三极管单平衡电路产生馈通和许多组合频率分量。

当频率增加后会更加明显,因为各个频点上的幅值都会降低,区别显得更加突出。

2.如图,该二阶带通有源滤波器的截止频率在1k 与1.4k 附近正好可以滤去不需要的分量。

射频实验报告: 混频器(单平衡)

射频实验报告: 混频器(单平衡)

课程实验报告
《集成电路设计实验》
2010- 2011学年第 1 学期
班级:
混频器(单平衡)实验名称:
指导教师:
姓名学号:
实验时间:2011年5月23日
一、实验目的:
1、了解基本射频电路的原理。

2、理解基本混频器的工作原理并设计参数。

3、掌握Cadence的运用,仿真。

二、实验内容:
1、画出混频器的原理图。

2、仿真电路:仿真出混频器的的输入、输出频谱,输出增益,1dB压缩点。

Gain=8dB,NF<8dB,IIp3=0dBm,IP1dB=-10dBm。

三、实验结果
1、混频器原理图为:
2、仿真平台的建立
3、混频管参数
设置差分管参数如下,漏端电阻R=600,隔直电容1pF,晶体管W=32u,L=400n,nr=4,m=2
4、仿真参数
设置端口初始化仿真参数frf=800MHz,prf=-40dBm,flo=850MHz,plo=20dBm,Vbias=1.5V,采用PSS和Pac仿真:
3、仿真结果
(1)增益
运行spacture,得到电压转换增益为8.8dB,在输入功率-8dBm以下保持不变,如下:
(2)线性度
1、查看PSS结果,得到输入1dB压缩点IP-1=-6.5dBm,
2、得到IIP3=3.8dBm
3、噪声
仿真Pnoise,得到输出变频DSB噪声在50MHz约为12.5dB,
4、心得体会
这次实验让我可以开始熟练的使用PSS、pnoise等仿真,同时也更为深刻的了解到了Cadence的运用。

在以后的实验中我会更努力的做好实验的。

RF&MW-9混频器设计

RF&MW-9混频器设计

(
)
可以看出,管芯结损耗随工作频率而增加,也随 Rs 和 Cj 而增加。 表示二极管损耗的另一个参数是截止频率 fc 为
图9-2 混频管 芯等效电路
fc =
通常,混频管的截止频率 fc 要足够高,希望达到 f c ≈ (10 ~ 20 ) f s 。比如 fc = 20fs 时,将有 αrmin = 0.4dB。 根据实际经验,硅混频二极管的结损耗最低点相应的本振功率大约为 1~2mW,砷化镓混频二极 管最小结损耗相应的本振功率约为 3~5mW。
微波混频器技术指标与特性分析 2
一、噪声系数和等效噪声温度比 噪声系数的基本定义已在第四章低噪声放大器中有过介绍。但 是混频器中存在多个频率,是多频率多端口网络。为适应多频 多端口网络噪声分析,噪声系数定义改为式(9-1),其理论基 础仍是式(6-1)的原始定义,但此处的表示方式不仅适用于单 频线性网络,也可适用于多频响应的外差电路系统,即
8
1 + R s + ω s2 C 2 R s R j (dB) α r (dB ) = 10 lg j Rj
混频器工作时,Cj 和 Rj 值都随本振激励功率 Pp 大小而变化。Pp 很小时, Rj 很大,Cj 的分流损耗大;随着 Pp 加强,Rj 减小,Cj 的分流减小,但 Rs 的分压损耗要增长。因此将存在一个最佳激励功率。当调整本振功率,使 Rj = l/ωsCj 时,可以获得最低结损耗,即 α r min (dB ) = 10 lg 1 + 2ω s C j R s (dB)
三、动态范围
11
(2)动态范围的上限受输出 中频功率饱和所限。通常是 指1dB压缩点的微波输入信号 功率Pmax,也有的产品给出的 是1dB压缩点输出中频功率。 二者差值是变频损耗。本振 功率增加时,1dB压缩点值也 随之增加。平衡混频器由2支 混频管组成,原则上1dB压缩 点功率比单管混频器时大3dB。 图9-4 混频器动态范围 对于同样结构的混频器,1dB 压缩点取决于本振功率大小和二极管特性。一般平衡混频器动 态范围的上限为2~10dBm。 混频器动态范围曲线如图9-4所示。

混频器的设计与仿真

混频器的设计与仿真

目录前言 (1)工程概况 (1)正文 (2)3.1设计的目的及意义 (2)3.2 目标及总体方案 (2)3.2.1课程设计的要求 (2)3.2.2 混频电路的基本组成模型及主要技术特点 (2)3.2.3 混频电路的组成模型及频谱分析 (2)3.3工具的选择—Multiusim 10 (3)3.3.1 Multiusim 10 简介 (3)3.3.2 Multisim 10的特点 (3)3.4 混频器 (3)3.4.1混频器的简介 (4)3.4.2混频器电路主要技术指标 (4)3.5 混频器的分类 (5)3.6详细设计 (5)3.6.1混频总电路图 (5)3.6.2 选频、放大电路 (5)3.6.3 仿真结果 (6)3.7调试分析 (9)致谢 (9)参考文献 (9)附录元件汇总表 (10)混频器的设计与仿真前言混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。

在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。

特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。

移动通信中一次中频和二次中频等。

在发射机中,为了提高发射频率的稳定度,采用多级式发射机。

用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。

由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。

工程概况混频的用途是广泛的,它一般用在接收机的前端。

除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。

混频器仿真实验报告

混频器仿真实验报告

混频器仿真实验报告一.实验目的(1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力;(2)掌握multisim实现混频器混频的方法和步骤;(3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。

二.实验原理以及实验电路原理图(一).晶体管混频器电路仿真本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。

电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。

(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。

(3)本振信号与基极偏压Eb共同构成时变工作点。

由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。

工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。

在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。

(二).模拟乘法器混频电路模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。

三.实验内容及记录(一).晶体管混频器电路仿真1、直流工作点分析使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。

注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。

因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。

高频实验九电容耦合相位鉴频器实验报告

高频实验九电容耦合相位鉴频器实验报告

高频实验九电容耦合相位鉴频器实验报告
本文将报告高频实验中九电容耦合相位鉴频器的实验过程。

该实验通过搭建含九电容耦合相位鉴频器的运算放大器电路,调试该放大器电路,运行放大器电路,然后改变其中电容耦合相位鉴频器参数,最后比较实验结果与理论结果。

实验采用模拟电路调试仪、多波段电阻实验排、三角正弦无载谐振电路、以及带内抵消的9电容耦合相位鉴别器等实验器件。

由此可以搭建出含九电容耦合相位鉴频器的运算放大器电路。

在实验中将三角正弦无载谐振电路连接,做为放大器电路的输入,利用模拟电路调试仪重复检测,调整多波段电阻实验排,完成放大器电路的调试。

接着保持多波段电阻的调节值,运行放大器电路,比较实验结果与计算所得理论值,表明该电路的放大比在较低的频率段较高,而在较高的频率段则会逐渐降低。

另外,九电容耦合相位鉴频器的位相角度较小,这表明该放大器电路具有较好的稳定性。

随着电容大小和容量值的改变,该放大器电路的跟踪频率随之改变,而鉴频电路的改变对高频段的增益影响较小。

实验中九电容耦合相位鉴频器可以使得运算放大器电路具有良好的特性和稳定性,可以应用于实际工程中。

电容耦合相位鉴频实验使我们更加清楚熟悉了放大器电路的设计理论。

因此,本实验对于掌握放大器电路的设计技术具有较大的实践意义。

multisim仿真教程混频器电路

multisim仿真教程混频器电路

03
混频器电路设计
电路设计流程
确定设计目标
明确混频器的性能指标,如输入频率、输出 频率、增益等。
选择合适的元件
根据设计目标,选择合适的电阻、电容、电 感等元件。
电路原理图设计
根据混频器的工作原理,使用Multisim软件 绘制电路原理图。
参数设置与优化
根据元件规格和性能指标,设置元件参数并 进行优化。
元件பைடு நூலகம்择与参数设置
元件选择
根据设计需求选择合适的电阻、电容、电感等元件, 确保元件的精度和稳定性。
参数设置
根据元件规格和电路性能要求,设置元件参数,如电 阻值、电容值、电感值等。
参数优化
通过调整元件参数,优化电路性能,提高混频器的性 能指标。
电路仿真与调试
电路仿真
使用Multisim软件进行电路仿真,模拟电路的 实际工作情况。
用于绘制电路图,可随意缩放和平 移。
03
02
元件库
提供各种电路元件,方便用户选择 和放置。
仿真面板
提供仿真参数设置和仿真运行控制。
04
元件库与虚拟仪器
元件库
包含各种电子元件,如电阻、电容、电感、 晶体管等。
虚拟仪器
可设置元件的参数和属性,模拟实际元件的 行为。
元件属性
提供各种测量仪器,如示波器、信号发生器 、频谱分析仪等。
干扰与欺骗
电子战系统中的干扰机使用混频器生成干扰信号,对敌方通 信和雷达系统进行干扰和欺骗。混频器在此过程中起到关键 作用,能够生成具有特定频率和功率的干扰信号,有效降低 敌方系统的性能。
06
总结与展望
混频器电路的重要性和发展趋势
混频器电路在通信、雷达、电子对抗等领域具有广泛应用,是现代电子系统中的 重要组成部分。随着技术的发展,混频器电路的性能要求不断提高,具有更高的 频率、更低的噪声、更小的体积和更低的功耗等发展趋势。

混合仿真实验报告(3篇)

混合仿真实验报告(3篇)

第1篇一、实验背景随着科技的飞速发展,仿真技术在各个领域得到了广泛应用。

混合仿真作为一种将不同仿真方法结合的综合性仿真手段,能够更加全面、准确地模拟复杂系统的行为和性能。

本实验旨在通过混合仿真方法,对某交通信号控制系统进行性能评估,以期为实际工程应用提供参考。

二、实验目的1. 掌握混合仿真的基本原理和方法。

2. 建立交通信号控制系统的混合仿真模型。

3. 评估交通信号控制系统的性能,并提出改进措施。

三、实验内容1. 仿真模型建立(1)交通流模型:采用VISSIM软件建立交通流模型,模拟实际道路上的车辆行驶情况。

(2)信号控制系统模型:采用MATLAB/Simulink软件建立信号控制系统模型,包括控制器、执行器等模块。

(3)混合仿真模型:将交通流模型和信号控制系统模型进行集成,实现混合仿真。

2. 仿真参数设置(1)道路参数:根据实际道路情况设置道路长度、车道数、信号灯数量等参数。

(2)交通流参数:根据实际交通流量设置车辆到达率、车辆速度等参数。

(3)信号控制系统参数:根据实际信号灯控制策略设置绿灯时间、红灯时间、黄灯时间等参数。

3. 仿真运行与分析(1)运行混合仿真模型,观察交通流和信号控制系统的运行情况。

(2)分析仿真结果,评估交通信号控制系统的性能,包括交通流量、延误、停车次数等指标。

(3)根据仿真结果,提出改进措施,如优化信号灯控制策略、调整道路参数等。

四、实验结果与分析1. 交通流量分析通过仿真实验,发现交通流量在信号灯控制下呈现周期性变化。

在绿灯时间较长的情况下,交通流量较大;在红灯时间较长的情况下,交通流量较小。

2. 延误分析仿真结果显示,信号灯控制对车辆延误有显著影响。

在绿灯时间较短的情况下,车辆延误较大;在绿灯时间较长的情况下,车辆延误较小。

3. 停车次数分析仿真结果显示,信号灯控制对车辆停车次数有显著影响。

在绿灯时间较短的情况下,车辆停车次数较多;在绿灯时间较长的情况下,车辆停车次数较少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

混频器仿真实验
混频器的作用是在保持已调信号的调制规律不变的前提下,使信号的载波频率升高(上变频)或下降(下变频)到另一个频率。

一、晶体管混频器电路仿真
本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。

电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。

(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。

(3)本振信号与基极偏压Eb共同构成时变工作点。

由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。

工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波
器取出该项,即获得混频输出。

在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。

1、直流工作点分析
使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。

注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。

因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。

若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。

2、混频器输出信号“傅里叶分析”
选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为:
基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。

在图中指出465KHz中频信号频谱点及其它谐波成分。

注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

二、模拟乘法器混频电路
模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),
然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。

1、混频输入输出波形测试
在仿真软件中构建如下模拟乘法器混频电路,启动仿真,观察示波器显示波形,分析实验结果。

2、混频器输出信号“傅里叶分析”
选取电路节点6作为输出端,“傅里叶分析”参数设置为:
基频10KHz,谐波数为60,采用终止时间为0.001S,线性纵坐标从输出频谱中找出最高频谱点500KHz中频信号成分,同时观察电路中较弱的其它谐波成分。

实验小结:
本次混频器模拟电路实验加深了对混频器的理解,为了便于理解原理,没有作出电路的本振部分,但是弄懂了混频器实现了频谱的线性搬移,在现代电子产品实际的运用中也可以常见,特别是接收装置中。

到达了实验目的。

相关文档
最新文档