第六章-烃类热裂解

合集下载

烃类热裂解

烃类热裂解

◆热力学――烃类裂解规律◆
• 某烃在给定条件下裂解或脱氢反应能进行到什么程 度,需用下式来判断: 0
△GT=-RTln Kp
n m 0 0 △G0 = ν △ G - ν △ G T f,i,T f,i,T i i i=1 生成物 i=1 反应物
G º越是较大的负值,Kp值越大,此时为不可逆反应; G º越是较小的负值或正值,Kp值越小,此时为可逆反应, 反应受平衡的影响。
(三)芳香烃热裂解
• 芳香烃的热稳定性很高,在一般的裂解温度下不易
发生芳环开裂的反应,但可发生下列两类反应:
• 一类是烷基芳烃的侧链发生断裂生成苯、甲苯、 二甲苯等反应和脱氢反应; • 另一类是在较剧烈的裂解条件下,芳烃发生脱氢缩
合反应。如苯脱氢缩合成联苯和萘等多环芳烃,多
环芳烃还能继续脱氢缩合生成焦油直至结焦。
率,必须采用较高温度,乙烷的脱氢反应尤其如此。
• (3) 在断链反应中,低分子烷烃的C—C键在分子两端
断裂比在分子中央断裂在热力学上占优势,断链所得
的较小分子是烷烃,主要是甲烷;较大分子是烯烃。
随着烷烃的碳链增长,C-C键在两端断裂的趋势逐
渐减弱,在分子中央断裂的可能性逐渐增大。【在断 链反应中,热力学上,低分子烷烃的C—CC—H键能大于C—C键能, 故断链比脱氢容易。
(2) 烷烃的相对热稳定性随碳链的增长而降低,它们 的热稳定性顺序是:
CH4>C2H6>C3H8>……>高碳烷烃
越长的烃分子越容易断链。
(3) 烷烃的脱氢能力与烷烃的分子结构有关。叔氢最 易脱去、仲氢次之,伯氢又次之。 (4) 带支链烃的C-C键或C-H键的键能小,易断裂。 故有支链的烃容易裂解或脱氢。
Ar- CnH2n+1

烃类热裂解

烃类热裂解

§5 冷量的综合利用
获得相同的冷量,T↓,能耗↑。
冷剂选择:
>50℃,水冷 ~0℃,盐水冷(NH3冷换热) -30℃,直接NH3冷
C2 为冷剂
甲烷塔 乙烯塔 丙烯塔
操作温度:-100℃ 操作温度:-50℃ 操作温度:20℃
C3 为冷剂
NH3或冷冻盐水为冷剂
一.复迭制冷
2
5´′ -50º C
原料:重油
3、管式裂解炉
§4. 裂解气的分离
一.裂解气组成
目的物:烯烃、芳烃, 杂质:CO2、H2S、H2O、炔烃等。
聚合级烯烃对杂质(如C2≡、H2S、 H2O、CO2等)含量要求十分苛刻,需把烯 烃提纯。
二.裂解气分离过程 1.气体净化系统 碱洗除CO2、H2S(酸性气体)。
分子筛脱水(水会在深冷分离时冻结,堵塞管道)。 催化选择性加氢除C2≡、C3≡,丙二烯。 Cat.: Pd/Al2O3 ;Ni-Co/Al2O3 付反应: 乙炔聚合生成液体产物(绿油) 乙烯的进一步加H反应 乙炔分解生成C和H 加氢除CO(CO+3H2→CH4+H2O)→甲烷化法
五.冷箱 (P.330)
利用节流制冷,分离甲烷和氢气并回收乙烯的 一个装置,为防止散热,常装在一个绝热的方形 容器中,俗称冷箱。
提高裂解温度可增大链引发速率常数,产生 的自由基增多。β-断裂反应速率常数也增大,但 与前者相比增大的程度较小。对链终止反应, 温度升高则没有影响。链引发和β-断裂反应速率 常数的增大,都对增产乙烯有利。
(4)停留时间 裂解温度越高,允许停留的时间则越
短;反之,停留时间就要相应长一些。
目的:控制二次反应,让裂解反应停 留在适宜的裂解深度上。
2.压缩和冷冻系统 将裂解气加压、降温,为分离创造条件。

第六章_烃类热裂解

第六章_烃类热裂解

(2)、乙烷裂解反应的活化能
K E RT
可由速率常数K =A e
求得,故先求算速率常数K
从乙烷裂解反应的机理可知,其动力学方程:
d[C2 H 6 ] =K1[C2 H6 ] +K 2 [C 2 H 6 ][CH 3 ] dt

(K1、K 2、K 3、K 4、K 5 与基元反应有关)
自由基机理: 1934年美国F.O赖斯和K.F赫茨菲尔德首先提出。
1967年,美国S.B茨多尼克等人,对此作了较
详细的解释。虽然他们只能解释了C2-C6各种烃,在 低转化率裂解时所得到的产品的分布情况,但仍是
指导预见和关联裂解数据的有效工具。
(一)、烷烃裂解的自由基反应机理 1、乙烷裂解反应 (1)、乙烷裂解反应的类型 乙烷分子中 键能(kJ/mol) C-C 346 C-H 406
也叫石墨化过程。 结焦过程的△G0为一般是很大的负值,但是乙
烯生成苯的速度不大,所以乙烯结焦是可以避免的。
如何避免?是动力学问题。
==> 由1、2、3、4讨论可知,二次反应产物有小分
子烯烃和烷烃、二烯烃和炔烃、还有比原料更重的 烃,如单环芳烃、稠环芳烃甚至有焦炭生成。其中, 只有小分子烯烃是有利的。在二次反应中,只有较 大分子烯烃的裂解增产小分子烯烃(类型1),如乙 烯。其余二次反应,均消耗乙烯,使乙烯收率下 降。所以,应该防止二次反应的发生。
K1
E1=359.8,活化能(kJ/mol)
②、链传递 CH3· + C2H6
3
K2 CH4 + C2H5· ; E2=45.1
K 4H2 + C2H5· H· + C2H6
; E4=29.3
③、链终止

烃类热裂解

烃类热裂解

4.3裂解方法及裂解工艺过程
• 鲁姆斯SRT—Ⅲ型炉
裂解气 裂解气
裂解气
裂解原料
1
4
4
稀释蒸汽
2
3
3
辐射室左视图
图2 鲁姆斯SRT—Ⅲ型炉
1—对流室;2—辐射室;3—炉管组;4—急冷换热器
• 凯洛格毫秒裂解妒MSF炉型
去第二急冷器
原料烃
4
裂解气
1
5
4
3
3 2
6
原料烃
图3 凯洛格毫秒裂解妒MSF炉型
7
8
11
1
2
5
9
原料油
蒸汽 12
燃料油
10
裂解汽油
蒸汽
13
图5 鲁姆斯裂解工艺典型流程
1-原料预热器;2—裂解炉;3—急冷锅炉;4—汽包;5—油急冷器;6—汽油分馏塔;7—燃料油汽提塔; 8—水洗塔;9—油水分离器;10—水汽提塔;11—汽油分馏塔;12,13—交叉换热器
锅炉给水 原料烃
稀释蒸汽 过热
• 裂解气的预分馏: 裂解炉出口的高温裂解气经急冷换热器冷 却,温度降到200-300 ℃ ,进一步冷却至 常温,在冷却过程中分馏出重组分(如燃 料油、裂解汽油、水)叫预分馏。
裂解原料
(1)裂解汽油:
包括C5至沸点204 ℃以下的所有裂解副产物,作为乙烯装 置的副产品。 用途:可加氢为高辛烷值汽油成分,也可抽提芳烃等
1-对流室;2—辐射室;3—炉管组;4—第一急冷器;5—第二急冷器;6—尾管 流量分配器
• 斯通—韦勃斯特超选择性裂解炉USC
1
3 2
3 5
图4 斯通—韦勃斯特超选择性裂解炉USC
1—对流室;2—辐射室;3—炉管;4—第一急冷器;5—第二急冷器

烃类热裂解名词解释

烃类热裂解名词解释

烃类热裂解名词解释嘿,朋友!咱们今天来聊聊烃类热裂解这回事儿。

你知道吗,烃类热裂解就像是一场奇妙的化学大冒险!它指的是在高温条件下,烃类分子发生分解和重组的过程。

这就好比一群小伙伴本来手拉手好好的,突然被一股神秘的力量给拆开,然后又重新组合成了新的小伙伴团队。

烃类,听起来是不是有点陌生?其实啊,咱们生活中常见的石油、天然气里就有好多烃类物质。

比如甲烷、乙烷、乙烯这些。

而热裂解呢,就是让它们在高温这个大熔炉里发生变化。

想象一下,高温就像一个厉害的魔法师,对着烃类施展魔法。

原本稳定的烃分子被这股魔法力量冲击得七零八落,化学键断裂,原子们重新排列组合。

这一过程可不简单,涉及到好多复杂的化学反应。

比如说,乙烷在热裂解的时候,它的化学键就像是脆弱的绳子,被高温一烤,“啪”地断了,然后变成了乙烯和氢气。

这是不是很神奇?就好像一个大拼图被打乱,又拼成了新的图案。

烃类热裂解可不是随便玩玩的,它在工业上有着超级重要的地位。

咱们用的好多化工产品,像塑料、橡胶、纤维等等,很多都是通过烃类热裂解得到的原料再进一步加工出来的。

你想想,如果没有烃类热裂解,咱们的生活得少了多少方便和乐趣呀?没有那些五颜六色的塑料制品,没有舒适的合成纤维衣服,那得多糟糕啊!而且,烃类热裂解的条件要求也很严格呢。

温度得恰到好处,高了不行,低了也不行,这就像炒菜,火候掌握不好,菜就不好吃啦。

还有压力、停留时间等等因素,都得精心控制,稍有差错,结果就大不一样。

所以说,烃类热裂解可真是一门高深的学问,是化学世界里的一场精彩大戏!它让那些看似普通的烃类物质焕发出新的生机,为我们的生活带来了无数的可能。

你说,这是不是很厉害?总之,烃类热裂解在化工领域中举足轻重,是创造丰富多样化学产品的关键魔法!。

烃类热裂解

烃类热裂解

7.1.1 热裂解过程的化学反应
• 结论:在二次反应中,除了较大分子量的烯烃裂解, 可增加乙烯收率外,其余的二次反应均消耗乙烯, 降低乙烯收率,导致结焦和生碳。
7.1.2 烃类热裂解反应的特点与规律
烃类裂解反应的特点
➢ 无论断链还是脱氢反应,都是热效应很高的吸热反应
➢ 断链反应可以视为不可逆反应,脱氢反应则为可逆反应 ➢ 存在复杂的二次反应 ➢ 反应产物是复杂的混合物
7.1.3烃类热裂解的主要工艺因素
➢压力不能改变反应速率常数,但降低压力能降低 反应物浓度。 ➢压力对高于一级的反应比一级反应的影响要大, 即降低压力可增大一次反应对于二次反应的相对速 率,提高一次反应选择性。 ➢降低压力可减少结焦的程度
7.1.3烃类热裂解的主要工艺因素
稀释剂
为什么要加稀释剂? 在高温下裂解,不宜用抽真空减压的方法降低烃分 压,因为高温密封不易,一旦空气漏入负压操作的裂 解系统,与烃气体形成爆炸混合物就有爆炸的危险。 稀释剂可用水蒸气、氢或任一种惰性气体,但常用 水蒸气作稀释剂。
7.1.2 烃类热裂解反应的特点与规律 烃类裂解的反应特点
7.1.2 烃类热裂解反应的特点与规律
烷烃的裂解反应规律: 同碳原子数的烷烃,C-H键能大于C-C键能,断链比脱氢容易
碳链的增长,分子热稳定性下降,碳链越长裂解反应越易进 行
脱氢能力与分子结构有关: 由易到难:叔碳氢>仲碳氢>伯碳氢
含有支链的烷烃容易发生裂解反应。乙烷生成乙烯。
④烯烃 大分子烯烃裂解为乙烯和丙烯; 脱氢生成炔烃、二烯烃,进而生成芳烃。
各类烃的热裂解反应的难易顺序: 正构烷烃>异构烷烃>环烷烃>芳烃
7.1.3烃类热裂解的主要工艺因素
裂解温度和停留时间 ➢裂解温度:温度高,有利生成乙烯。 ➢ 停留时间:指裂解原料经过辐射盘管的时间。 ➢裂解深度(转化率)取决于裂解温度和停留时间。 ➢相同裂解原料在相同转化率下,由于温度和停留时间

烃类热裂解

烃类热裂解

烃类热裂解当今世界,⽯油化⼯产业已经成为全球经济发展的⽀柱产业之⼀,⽽烃类热裂解技术则是⽯油化⼯产业中不可或缺的重要技术。

本⽂将重点介绍烃类热裂解的基本概念、原理及其在⽯油化⼯产业中的应⽤。

烃类热裂解是⼀种重要的⼯业过程,可⽤于原油精制、⽯油化⼯等领域。

烷烃的热反应主要有两类:⼀是C-C键断裂⽣成较⼩分⼦的烷烃和烯烃;⼆是C-H键断裂⽣成碳原⼦数保持不变的烯烃及氢⽓。

在烷烃分⼦中,C-C键更易于断裂,因为键能相对较⼩;⽽异构烷烃中的C-C键及C-H键的键能都⼩于正构烷烃,因此,异构烷烃更易于断链和脱氢。

因此,在相同条件下,异构烷烃⽐正构烷烃更易产⽣烯烃。

这是因为C-H 键键⻓较短,键能⼤于C-C键。

在热裂解过程中,费托蜡4#可获得更⾼的单程转化率和α-烯烃收率,分别为65.0%和53.0%。

不同原料蜡液相产物分布及LAO碳数分布如图3所⽰。

五种原料都⽣成了极少量异构烯烃和芳烃等副产物,α-烯烃含量随原料碳数的增加⽽提⾼。

这些结果表明,选择适当的原料蜡和反应条件可以有效地提⾼烃类热裂解的转化率和选择性。

烃类热裂解是⼀项复杂的过程,需要深⼊了解其基本原理和⼯艺条件。

烃类热裂解的⼯业应⽤主要包括⽯油化⼯、⽣物质转化、液化煤、催化转化等领域。

这些应⽤领域对烃类热裂解的要求各不相同,需要针对不同的应⽤进⾏相应的⼯艺研究。

什么是烃类热裂解烃类热裂解是指在⾼温、⾼压、⽆氧或缺氧的条件下,将⾼分⼦烃类化合物分解成低分⼦烃类化合物的化学反应。

这种反应是烃类加⼯的基础,通过这种⽅法可以获得⼀系列的烃类产品,如⼄烯、丙烯、丁⼆烯等。

烃类热裂解的原理烃类热裂解的反应机理⾮常复杂,但可以归纳为以下三个阶段:1. 烷基⾃由基形成阶段:在⾼温下,⾼分⼦烃类化合物被加热并断裂,形成烷基⾃由基。

2. 反应中间体形成阶段:烷基⾃由基与⾼分⼦烃类化合物发⽣反应,形成各种反应中间体。

3. 产物⽣成阶段:反应中间体进⼀步发⽣反应,形成低分⼦烃类产物。

第6章 烃类裂解及裂解气分离

第6章 烃类裂解及裂解气分离

Ⅲ、芳烃→无侧链芳烃基本上不易裂解为烯烃有侧链的芳 烃主要是侧链逐步断裂及脱氢,芳环则倾向于脱氢缩合生 成稠环芳烃,直至结焦
Ⅳ、烯烃→大分子的烯烃能裂解为乙烯、丙烯等低级烯 烃,烯烃脱氢生成二烯烃能进一步反应生成芳烃以及焦 裂解易难顺序为: 异构烷烃>正构烷烃>环烷烃(C6>C5)>芳烃
2.烃类裂解二次反应
CH2CH2CH2CH=CH2 + C5H12 C长侧链先在侧链中央断裂, 有侧链的环烷烃比无侧链的环烷烃裂解能得到较多的烯烃
Ⅱ、环烷烃脱氢生成芳烃比开环生成烯烃容易 Ⅲ、五碳环比六碳环较难裂解 Ⅳ、环烷烃比链烷烃更易生成焦油、产生焦炭
⑶芳香烃裂解
裂解气
再生载气
去深冷
加热炉
5.脱炔
• 乙炔、甲基乙炔、丙二烯 • 危害:炔烃影响乙烯和丙烯衍生物生产过程 影响催化剂寿命 恶化产品质量 形成不安全因素 产生不希望的副产品 • 要求:乙炔<5×10-5 丙二烯<5×10-5 • 脱炔方法:溶剂吸收、催化加氢
溶剂吸收法
• 吸收裂解气中的乙炔 • 同时回收一定量的乙炔 • 常用溶剂 二甲基甲酰胺(DMF)(图3-25) N-甲基吡咯烷酮(NMP) 丙酮 主要根据沸点和熔点及溶解量选择溶剂
3
2.操作条件的影响
⑴常用裂解指标 ⑵操作条件影响 Ⅰ、裂解温度(一次反应产物分布及对二次反应的竞争)
Ⅱ、停留时间(减少二次反应的发生,增加乙烯收率)
Ⅲ、压力(有利于提高一次反应平衡转化率,抑制二次反应)
Ⅳ、稀释剂、烃分压(高温不宜真空操作)
稀释剂降压(惰性气、水蒸汽)
优点 一般采用水蒸汽: ①水蒸汽热容大,稳定炉温 ②水蒸汽易于分离、价廉易得,抑制原料中硫对炉的腐蚀 ③对炉管壁的铁、镍氧化形成氧化膜,抑制生炭反应 ④高温下能与裂解管中积炭、焦反应,有一定的清焦作用 适宜的稀释比
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热裂解工艺总流程
原 料 热裂解
反应部分 芳烃
预 分 裂解气 馏 ( 急 冷 ) 汽裂 油解
净 化
深分
( 冷离

酸 、
压精

缩馏

制分

冷离
脱 炔 )
系系 统统
分离部分
三烯
热裂解反应部分的学习内容
化学反应 反应规律、反应机理、热力学与动力学分析 工艺参数和操作指标 原料性质及评价、裂解温度、烃分压、停留时 间、裂解深度 工艺过程 管式裂解炉
第八章 烃类热裂解
北京燕山乙烯装置
内容简介
国内乙烯工业简介 §8.1 热裂解过程的化学反应 §8.2 裂解过程的工艺参数和操作指标 §8.3 管式裂解炉及裂解工艺过程 §8.4 裂解气的预分馏及净化 §8.5 压缩和制冷系统 §8.6 裂解气的精馏分离系统 §8.7 乙烯工业的发展趋势
乙烯工业现状与前景 ——乙烯产量常作为衡量一个国家基本有
(2)芳环侧链的断链或脱氢反应。
Ar-CnH2n+1
ArH+CnH2n Ar-CkH2k+1+CmH2m
(3)芳烃缩合,进一步生成焦的反应。
芳烃缩合反应
R1
R2
+
R3
+ R4H
特点:不宜做裂解原料
5. 裂解过程中结焦生碳反应
各种烃在高温下不稳定
900-1000℃以上乙烯经过乙炔中间阶段而生碳;
CH CH HCH CH HCH CH HCH C HC C
2
2
2
Cn
500-900℃经过芳烃中间阶段而结焦。
单环或少环芳烃 多环芳烃 稠环芳烃
液体焦油 固体沥青质 焦
典型的连串反应。
焦和碳的区别
形成过程不同:烯烃经过炔烃中间阶段 而生碳;经过芳烃中间阶段而结焦 。
氢含量不同:碳几乎不含氢,焦含有微 量氢(0.1-0.3%)。
6. 小结
各族烃裂解生成乙烯、丙烯能力的规律:
化学平衡组成
如使裂解反应进行到平衡,所得烯烃很 少,最后生成大量的氢和碳。
必须采用尽可能短的停留时间,以获 得尽可能多的烯烃。
中国石化化工板块产业链
聚丙烯
聚醚
环氧丙烷
腈纶
丙烯腈
聚碳
ABS 乙丙胶
环氧树脂 双酚A
丁醇 辛醇
丙酮 苯酚
环氧氯丙烷
异丙醇 异丙苯 丁醛 氯丙烯
丙烯酸酯 丁苯橡胶
丙烯酸
顺丁橡胶 ABS
(二)氢 含 量
➢ 适用于各种原料,用元素分析法测得。 ➢ 氢含量:烷烃>环烷烃>芳烃。含H↑,乙烯收率↑。 ➢ 目前技术水平, 氢含量易控制在高于13%(质量). ➢ 因此低碳烷烃是首选的裂解原料,国外轻烃(C4以
下和石脑油)占约90%,而目前国内重质油高达20%.
原料氢含量与乙烯收率的关系
乙烷的氢含量20% 丙烷为18.2% 石脑油为14.5%~15.5% 轻柴油为13.5%~14.5%
338.9 341.8
CH3CH2CH2CH2-H
393.2
H3C-C(CH3)3
314.6
CH3CH2CH(CH3)H
376.6
CH3CH2CH2-CH2CH2CH3
325.1
CH3-C(CH3)2H
364
CH3CH(CH3)-CH(CH3)CH3 310.9
正构烷烃一次反应的ΔGθ和ΔHθ(1000K)
C15.4H29.02
H2 CH4 C2H6 C2H4 C3H8 C3H6 C4H8 C4H6 CmHn
一次反应
H2
CH4 C2H6
C2H4
C3H8 C3H6
C4H8
C4H6
CmHn
(裂解油 芳烃等)
二次反应
轻柴油裂解反应的一次和二次反应
8.1.3 裂解原料性质及评价
(一)族组成
(二)氢含量 (三)特性因数 (四)关联指数 (五)几种原料裂解结果比较
(3)歧化反应
2C3 H 6 C2 H 4 C4 H8 2C3 H 6 C2 H 6 C4 H 6

2. 烯烃的裂解反应
(5)双烯合成反应
+
(6)芳构化反应
R
R
特点:除了大分子烯烃裂解能增加乙烯外,其余的 反应都消耗乙烯,并结焦。
3. 环烷烃的裂解反应
裂解反应包括:
断链开环反应 脱氢反应 侧链断裂 开环脱氢
( C2=/C3= = 3:2,600℃; 3:1.7,800℃ )
链终止:
CH3·+ C3H7 · CH3·+ CH3·
CH4 + C3H6 C2H6
一次反应和二次反应
➢ 一次反应(目的) 原料烃经热裂解生成乙烯和丙烯等低碳烯烃
的反应。(有利) ➢ 二次反应(应避免)
一次反应的产物乙烯、丙烯等低级烯烃进一 步发生反应生成多种产物,直至生焦和结炭。 (不利)如 裂解成较小分子烯烃、加氢生成饱和烷 烃、 裂解生成炭、聚合、环化、缩合和生焦反应
不同温度下乙烷裂解反应的化学平衡常数
T/K Kp1 1100 1.675 1200 6.234 1300 18.89 1400 48.86 1500 111.98
Kp1a 60.97 83.72 108.74 136.24 165.87
Kp2 0.01495 0.08053 0.3350 1.134 3.248
趋向两端断裂,生成分子量较大的烯烃。
正构烷烃 特点: 是 生产乙烯、丙烯的理想原料。
异构烷烃 特点:
• 裂解所得乙烯、丙烯收率远较正构烷裂解 所得收率低,而氢、甲烷、C4及C4以上烯 烃收率较高。
2. 烯烃的裂解反应
(1)断链反应 Cm+nH2(m+n)
CmH2m+CnH2n
(2)脱氢反应
C4H8 C4H6 H 2
几种参数的比较
参数名称
适用于评价 何种原料
族组成 PONA值
石脑油、轻柴油等
氢含量或 碳氢比
各种原料都适用
何种原料可获得 较高乙烯产率
烷烃含量高、芳 烃含量低
氢含量高的或 碳氢比低的
获得 方法
分析 测定
分析 测定
特性因素 主要用于液体原料 特性因素高
计算
关联指数 BMCI
柴油等重质油
关联指数小
计算
(一)族 组 成-PONA值
PONA值:各族烃的质量百分数含量。
烷烃P (paraffin)
烯烃O (olefin)
环烷烃N (naphthene) 芳烃A (aromatics)
若原料P含量越高, (N+A)量愈小乙烯收 率越大。
适用于表征石脑油、轻柴油等轻质馏分油。
我国常压轻柴油馏分族组成
芳烃——芳环不易裂解,主要发生侧链的断链和脱氢反 应,有结焦倾向。
几种烃原料的裂解结果比较(单程)
8.1.2 烃类裂解的反应机理
自由基反应举例(丙烷裂解)
链引发:
链增长: 得到两个自由基
途径A:
和 ,通过两个途径进行链的传递.
正丙基自由基
生成的正丙基自由基进一步分解
反应结果是: 途径B:
异丙基自由基
➢ 主要用于柴油等重质馏分油。
➢ BMCI值表示油品芳烃的含量。
BMCI

48640 TV

473 d1155..66

456.8
➢ 芳烃的BMCI最大(苯为99.8);正构烷烃BMCI最小。
中东轻柴油的BMCI典型值为25左右,中国大庆轻柴油
约为20。 ➢ 故:原料中
BMCI ↑,乙烯收率↓,且易结焦 BMCI↓,乙烯收率↑
8.1.4 裂解反应的化学热力学和动力学
1. 裂解反应的热效应
强吸热过程
原料及组成复杂,用生成热数据,难以计算。 常用烃的氢含量或相对分子质量估算生成热,计算
裂解反应的热效应。 用烃(液体)的含氢量估算生成热
用分子量M估算反应热
2. 裂解反应系统的化学平衡组成
乙烷裂解过程主要由以下四个反应组成:
y*(C2H6) + y*(C2H4) + y*(C2H2) + y*(H2) + y*(CH4)=1
乙烷裂解系统在不同温度下的平衡组成(常压)
T/K 1100 1200 1300 1400 1500
y*(H2) 0.9657 0.9844 0.9922 0.9957 0.9974
y*(C2H2) 1.473×10-8 1.137×10-7 6.320×10-7 2.731×10-6 9.667×10-6
生成的异丙基自由基进一步分解


i C3 H7 C3H6 H
反应结果是:
C30裂解产物中含H2、CH4、C2H4、C2H6、C3H6等
低温下,易夺取仲C-H,生成i-C3H7·,即生成H2和C3H6 高温下,易夺取伯C-H,生成n-C3H7·,即生成C2H4和CH4
因此随着反应温度的升高,C2=/C3= 增加,
α-烯烃 3.0%
聚氯乙烯 14.0%
醋酸乙烯 1.0%
聚乙烯 57.0%
丙烯
2013年产能达2082万吨/年
动手查资料:
了解中国现有乙烯装置有多少? 生产能力和技术水平如何?
福建炼油乙烯一体化合资项目新厂区
❖ 裂解的目的
C2 、C3 、C4 等低级烯烃分子中具有双键,化学性质活
泼,能与许多物质发生加成、共聚、自聚等反应,生成 一系列产品。但自然界没有烯烃的存在,只能将烃类原 料经高温作用,使烃类分子发生C-C断裂或脱氢反应, 使分子量较大的烃成为低级烯烃,同时联产丁二烯、苯 、甲苯、二甲苯,满足化学工业的需要。
相关文档
最新文档