高二下学期定期期末考前测试试卷(四)_数学(文科)_word版有答案

合集下载

高二下学期期末考试数学(文)Word版含答案

高二下学期期末考试数学(文)Word版含答案

θ-高二第二学期期末考试文科数学试卷命题人:高三文科数学备课组—、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2,3A =-,{}230B x x x =-≥,则AB =( )A .{}1- B .{}1,0-C .{}1,3- D .{}1,0,3-2.若复数z 满足()1i 12i z -=+,则z =( )A .52B .32C 10D .63.已知α为锐角,5cos 5α=,则tan 4απ⎛⎫-= ⎪⎝⎭( )A .13B .3C .13-D .3- 4.设命题p :1x ∀< ,21x <,命题q :00x ∃> ,0012x x >( )A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()()p q ⌝∧⌝5.已知变量x ,y 满足202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,,,则2z x y =+的最大值为( )A .5B .4C .6D .06.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,直角三角形中较小的锐角.若在该大正方形区域内随机地取一点,则该点落在中间小正方形内的概率是( )A .232- B .32C .D .127.下面左图是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A 1,A 2,…,A 16,右图是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是( ) A .6 B .10 C .91 D .928. 已知等比数列{a n },且a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( )A. 4B. 6C. 8D. -99. 设曲线2()1cos ()f x m x m R =+∈上任一点(,)x y 处切线斜率为()g x ,则函数2()y x g x =的部分图象可以为( )10.将函数2sin cos 33y x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对 应的函数恰为奇函数,则ϕ的为最小值为( )A .12πB .6πC .4πD .3π11.已知正三棱锥P-ABC 的主视图和俯视图如图所示,则此三棱锥的外接球的表面积为( )A .4π B.12πC.316πD.364π12. 已知函数2(1)(0)()2x f f f x e x x e '=⋅+⋅-,若存在实数m 使得不等式 2()2f m n n ≤-成立,则实数n 的取值范围为( )A. [)1-,1,2⎛⎤∞-⋃+∞ ⎥⎝⎦ B. (]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭C. (]1,0,2⎡⎫-∞⋃+∞⎪⎢⎣⎭D. [)1-,0,2⎛⎤∞-⋃+∞ ⎥⎝⎦二、填空题:本大题共4小题,每小题5分,共20分aEDCAP13.已知向量(1,2),(,1)a b x ==,2,2u a b v a b =+=-,且u ∥v ,则实数x 的值是___.15. 已知点P (x ,y )在直线x+2y=3上移动,当2x+4y取得最小值时,过点P 引圆16.已知12,F F 分别是椭圆22221x y a b+=(0)a b >>的左、右焦点,P 是椭圆上一点(异于左、右顶点),过点P 作12F PF ∠的角平分线交x 轴于点M ,若2122PM PF PF =⋅,则该椭圆的离心率为.三、解答题:本大题共6小 题 ,共70分.解答应写出文字说明,证明过程或演算步骤 17. (本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足(1)求角C 的大小;(2)若bsin (π﹣A )=acosB ,且,求△ABC 的面积.18.(本小题满分12分)如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形,ABCD PA 底面⊥,ED PA ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ;(2) 若 o 60=∠ABC ,求三棱锥P ACE -的体积19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周总利润的平均值.附:相关系数公式∑∑∑===----=ni ini ini iiy yx x y yx x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20. (本小题满分12分)已知椭圆()2222:10x y E a b a b+=>>的离心率为2,且过点⎛ ⎝⎭.(1)求E 的方程; (2)是否存在直线:l y kx m =+与E 相交于,P Q 两点,且满足:①OP 与OQ (O 为坐标原点)的斜率之和为2;②直线l 与圆221x y +=相切,若存在,求出l 的方程;若不存在,请说明理由. 21(本小题满分12分)已知函数f (x )=x 2+1,g (x )=2alnx+1(a ∈R ) (1)求函数h (x )=f (x )-g (x )的极值;(2)当a=e 时,是否存在实数k ,m ,使得不等式g (x )≤kx+m ≤f (x )恒成立?若存 在,请求实数k ,m 的值;若不存在,请说明理由.请考生在22〜23三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy 中,已知直线l 的参数方程为1cos ,1sin x t y t αα=+⎧⎨=+⎩(t 为参数,α为倾斜角),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=. (1)求曲线C 的普通方程和参数方程;(2)设l 与曲线C 交于A ,B 两点,求线段||AB 的取值范围. 23. (本小题满分10分)选修4-5:不等式选讲 巳知函数f(x)=|x-2|+2|x-a|(a ∈R). (1)当a=1时,解不等式f(x)>3;(2)不等式1)(≥x f 在区间(-∞,+∞)上恒成立,求实数a 的取值范围.2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA 二、填空题13. 14.15. 16 .22三、 解答题17.解:(1)在△ABC 中,由,由余弦定理:a 2+b 2﹣c 2=2abcosC , 可得:2acsinB=2abcosC .由正弦定理:2sinCsinB=sinBcosC∵0<B <π,sinB ≠0, ∴2sinC=cosC ,即tanC=,∵0<C <π, ∴C=. (2)由bsin (π﹣A )=acosB , ∴sinBsinA=sinAcosB , ∵0<A <π,sinA ≠0, ∴sinB=cosB ,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分1233=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA 平面ABCD ,所以CM PA ⊥,又A AD PA = ,所以CM ⊥平面PADE ,所以CM 是三棱锥C PAE -的高.……………9分 因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分1233=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分20. 解:(1)由已知得221314c a a b=+=, 解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k ---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=,所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t , 所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分2017-2018学年度高二第二学期期末考试文科数学试卷答案一、选择题1-5 DCABB 6-10 ABADB 11-12 DA二、填空题13. 14.15. 16 .2 2三、解答题17.解:(1)在△ABC中,由,由余弦定理:a2+b2﹣c2=2abcosC,可得:2acsinB=2abcosC.由正弦定理:2sinCsinB=sinBcosC∵0<B<π,sinB≠0,∴2sinC=cosC,即tanC=,∵0<C<π,∴C=.(2)由bsin(π﹣A)=acosB,∴sinBsinA=sinAcosB,∵0<A<π,sinA≠0,∴sinB=cosB,∴,根据正弦定理,可得,解得c=118.(1)证明:连接BD,交AC于点O,设PC连接OF,EF.因为O,F分别为AC,PC的中点,所以OF PA,且12OF PA=,因为DE PA,且12DE PA=,所以OF DE,且OF DE=.………………1分所以四边形OFED为平行四边形,所以OD EF,即BD EF.…………2分因为PA⊥平面ABCD,BD⊂平面ABCD,所以PA BD⊥.因为ABCD是菱形,所以BD AC⊥.因为PA AC A=,所以BD⊥平面PAC.……………4分因为BD EF,所以EF⊥平面PAC.………………5分因为FE⊂平面PCE,所以平面PAC⊥平面PCE.……6分(2)解法1:因为60ABC∠=,所以△ABC是等边三角形,所以2AC=.……7分又因为PA⊥平面ABCD,AC⊂平面ABCD,所以PA AC⊥.所以.………8分因为面PAC,所以是三棱锥的高.……9分因为EF DO BO===10分所以13P ACE E PAC PACV V S EF--∆==⨯……11分123=⨯=.…12分解法2:因为底面ABCD为菱形,且︒=∠60ABC,所以△ACD为等边三角形.………7分取AD的中点M,连CM,则ADCM⊥,且3=CM.…8分因为⊥PA平面ABCD,所以CMPA⊥,又AADPA=,所以CM⊥平面PADE,所以CM是三棱锥C PAE-的高.……………9分因为122PAE S PA AD ∆=⨯=.……10分 所以三棱锥ACE P -的体积13P ACE C PAE PAE V V S CM --∆==⨯…………11分123=⨯=.………………12分 19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==. (1)分因为51()()(3)(1)000316iii x x yy =--=-⨯-++++⨯=∑,……2分,52310)1()3()(22222512=+++-+-=-∑=i ix x ……………………3分==…………………4分所以相关系数()()0.95nii xx y y r --===≈∑.………………5分因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.…………6分 (2)记商家周总利润为Y 元,由条件可得在过去50周里:当X >70时,共有10周,此时只有1台光照控制仪运行, 周总利润Y =1×3000-2×1000=1000元.……………………8分 当50≤X ≤70时,共有35周,此时有2台光照控制仪运行, 周总利润Y =2×3000-1×1000=5000元.………………………9分 当X<50时,共有5周,此时3台光照控制仪都运行, 周总利润Y =3×3000=9000元.………………10分 所以过去50周周总利润的平均值10001050003590005460050Y ⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………12分 20. 解:(1)由已知得221314c a a b=+=,解得224,1a b ==,∴椭圆E 的方程为2214x y +=; (2)把y kx m =+代入E 的方程得:()()222148410k xkmx m +++-=,设()()1122,,,P x y Q x y ,则()2121222418,1414m kmx x x x k k--+==++,① 由已知得()()12211212211212122OF OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()()1212210k x x m x x -++=,②把①代入②得()()2222811801414k m km k k---=++, 即21m k +=,③又()()2221641164k m k k ∆=-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤,由直线l 与圆221x y +=1=④③④联立得0k =(舍去)或1k =-,∴22m =, ∴直线l的方程为y x =-21.解:(1)h (x )=f (x )﹣g (x )=x 2﹣2alnx ,x >0所以 h′(x )=当a ≤0,h′(x )>0,此时h (x )在(0,+∞)上单调递增,无极值, 当a >0时,由h′(x )>0,即x 2﹣a >0,解得:a >或x <﹣,(舍去)由h′(x )<0,即x 2﹣a <0,解得:0<x <,∴h (x )在(0,)单调递减,在(,+∞)单调递增, ∴h (x )的极小值为h ()=a ﹣2aln=a ﹣alna ,无极大值;(2)当a=e 时,由(1)知min ()h x =h ()=h ()=e ﹣elne=0∴f (x )﹣g (x )≥0, 也即 f (x )≥g (x ),当且仅当x=时,取等号;以(1)e +为公共切点,f′()=g′()2e =所以y=f (x )与y=g (x )有公切线,切线方程y=2x+1﹣e ,构造函数 2()()1)(h x f x e x =--+=,显然()0h x ≥1()e f x ∴+-≤构造函数 ()1)()2ln k x e g x e x e =+--=--(0)x >()x k x x'=由()0k x '> 解得 x >()0k x '< 解得 0x <<所以()k x 在上递减,在)+∞上递增min ()0k x k ∴==,即有1)()e g x +-≥从而 ()1()g x e f x ≤+-≤,此时1k m e ==-22. 解:(Ⅰ)因为曲线C 的极坐标方程为24cos 6sin 40ρρθρθ--+=, 所以曲线C 的普通方程为224640x y x y +--+=, 即22(2)(3)9x y -+-=, 所以曲线C 的参数方程为23cos 33sin x y ϕϕ=+⎧⎨=+⎩(ϕ为参数).(Ⅱ)把代入1cos 1sin x t y t αα=+⎧⎨=+⎩代入22(2)(3)9x y -+-=,并整理得22(cos 2sin )40t t αα-+-=, 设A ,B 对应的参数分别为1t ,2t ,所以122(cos 2sin )t t αα+=+,124t t =-,所以1212||||||||AB t t t t =+=-=====设4cos 5ϕ=,3sin 5ϕ=,∴||AB =,∵1sin(2)1αϕ-≤-≤,∴1610sin(2)263αϕ≤-+≤,∴4||6AB ≤≤, ∴||AB 的取值范围为[]4,6.23. 解:(Ⅰ)解得解得解得…………………3分不等式的解集为………………5分(Ⅱ);;;的最小值为;………………8分则,解得或.………………10分。

2020年高二数学第二学期期末模拟试卷及答案(四)(文科)

2020年高二数学第二学期期末模拟试卷及答案(四)(文科)

2020年高二数学第二学期期末模拟试卷及答案(四)(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.已f(x)=xsinx,则f′(x)=()A.cosx B.﹣cosx C.sinx﹣xcosx D.sinx+xcosx3.对两个变量y与x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2)…,(x n,y n),则下列不正确的说法是()A.若求得相关系数r=﹣0.89,则y与x具备很强的线性相关关系,且为负相关B.同学甲根据这组数据得到的回归模型1的残差平方和E1=1.8,同学乙根据这组数据得到的回归模型2的残差平方和E2=2.4,则模型1的拟合效果更好C.用相关指数R2来刻画回归效果,模型1的相关指数R12=0.48,模型2的相关指数R22=0.91,则模型1的拟合效果更好D.该回归分析只对被调查样本的总体适用4.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,2 B.3,﹣2 C.3,﹣3 D.﹣1,45.已知x,y的取值如下表所示:x 2 3 4y 6 4 5如果y与x呈线性相关,且线性回归方程为,则b=()A. B.C.D.6.曲线y=﹣x3+3x2在点(1,2)处的切线方程为()A.y=﹣3x+5 B.y=3x﹣1 C.y=3x+5 D.y=2x7.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根8.若z=4+3i,则=()A.1 B.﹣1 C. +i D.﹣i9.曲线y=x3在点P处的切线斜率为3,则点P的坐标为()A.(2,8)B.(﹣2,﹣8)C.(1,1)或(﹣1,﹣1)D.10.设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点 D.x=﹣1为f(x)的极小值点11.已知数列{a n}满足a1=,a n+1=1﹣,则a2014的值为()A.﹣2 B.C.D.412.已知函数在区间[﹣,]上有f(x)>0恒成立,则a的取值范围为()A.(0,2]B.[2,+∞)C.(0,5)D.(2,5]二、填空题:本大题共4小题,每小题5分,共20分.13.函数f(x)=x3﹣4x+4在[0,3]上的最大值是.14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.354x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.15.i是虚数单位,若复数(x2﹣5x+6)+(x﹣3)i是纯虚数,则实数x的值为.16.观察下列不等式1+<,1++<,1+++<,…照此规律,第五个不等式为.三、解答题:本大题共6小题,共70分,解答应写出证明过程或演算步骤.17.在直角坐标系xOy 中,已知圆C的参数方程为(φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线l的极坐方程是,射线OM:θ=与圆的交点为O,P,与直线l的交点为Q,求线段PQ的长.18.已知函数f(x)=ax3+bx在x=2处取得极值为﹣16(1)求a,b的值;(2)若f(x)的单调区间.19.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x 3 4 5 6y 2.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据第2题求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)20.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2 [30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.20.2 0.1[120,150]总计优秀不优秀甲班乙班总计k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 P(K2≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0)(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?21.已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.22.设f(x)=lnx,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<对任意x>0成立.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i(2﹣i)=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则解答.【解答】解:原式=2i﹣i2=2i﹣(﹣1)=1+2i;故选:A.2.已f(x)=xsinx,则f′(x)=()A.cosx B.﹣cosx C.sinx﹣xcosx D.sinx+xcosx【考点】63:导数的运算.【分析】根据题意,由导数的乘法计算法则计算即可得答案.【解答】解:根据题意,f(x)=xsinx,则f′(x)=(x)′sinx+x(sinx)′=sinx+xcosx;故选:D.3.对两个变量y与x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2)…,(x n,y n),则下列不正确的说法是()A.若求得相关系数r=﹣0.89,则y与x具备很强的线性相关关系,且为负相关B.同学甲根据这组数据得到的回归模型1的残差平方和E1=1.8,同学乙根据这组数据得到的回归模型2的残差平方和E2=2.4,则模型1的拟合效果更好C.用相关指数R2来刻画回归效果,模型1的相关指数R12=0.48,模型2的相关指数R22=0.91,则模型1的拟合效果更好D.该回归分析只对被调查样本的总体适用【考点】BK:线性回归方程.【分析】根据r<0则y与x具备很强的线性相关关系,且为负相关;线性回归方程一定过样本中心点;在一组模型中残差平方和越小,拟合效果越好,相关指数表示拟合效果的好坏,指数越小,相关性越强;相关指数R2用来衡量两个变量之间线性关系的强弱R2越接近于1,说明相关性越强,相反,相关性越小,命题可做判断.【解答】解:对于A,r<0则y与x具备很强的线性相关关系,且为负相关,正确;对于B,残差平方和越小的模型,拟合效果越好,正确;对于C,相关指数R2用来衡量两个变量之间线性关系的强弱,R2越接近于1,说明相关性越强,相反,相关性越小,因此R2越大拟合效果越好,故不正确;对于D,回归分析只对被调查样本的总体适用,正确;故选:C.4.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,2 B.3,﹣2 C.3,﹣3 D.﹣1,4【考点】A5:复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,再由复数相等的充要条件计算得答案.【解答】解:∵(1+i)+(2﹣3i)=3﹣2i=a+bi,∴a=3,b=﹣2.则a,b的值分别等于3,﹣2.故选:B.5.已知x,y的取值如下表所示:x 2 3 4y 6 4 5如果y与x呈线性相关,且线性回归方程为,则b=()A. B.C.D.【考点】BK:线性回归方程.【分析】估计条件中所给的三组数据,求出样本中心点,因为所给的回归方程只有b需要求出,利用待定系数法求出b的值,得到结果.【解答】解:∵线性回归方程为,又∵线性回归方程过样本中心点,,∴回归方程过点(3,5)∴5=3b+,∴b=﹣故选A.6.曲线y=﹣x3+3x2在点(1,2)处的切线方程为()A.y=﹣3x+5 B.y=3x﹣1 C.y=3x+5 D.y=2x【考点】6H:利用导数研究曲线上某点切线方程.【分析】求出函数的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程.【解答】解:y=﹣x3+3x2的导数为y′=﹣3x2+6x,可得曲线y=﹣x3+3x2在点(1,2)处的切线斜率为k=﹣3+6=3,即有曲线y=﹣x3+3x2在点(1,2)处的切线方程为y﹣2=3(x﹣1),即为y=3x﹣1.故选:B.7.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是()A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根【考点】R9:反证法与放缩法.【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是方程x2+ax+b=0没有实根.故选:A.8.若z=4+3i,则=()A.1 B.﹣1 C. +i D.﹣i【考点】A5:复数代数形式的乘除运算.【分析】利用复数的除法以及复数的模化简求解即可.【解答】解:z=4+3i,则===﹣i.故选:D.9.曲线y=x3在点P处的切线斜率为3,则点P的坐标为()A.(2,8)B.(﹣2,﹣8)C.(1,1)或(﹣1,﹣1)D.【考点】6H:利用导数研究曲线上某点切线方程.【分析】设P(m,n),则n=m3,求出函数的导数,可得切线的斜率,解m的方程可得m,n,即可得到P的坐标.【解答】解:设P(m,n),则n=m3,y=x3的导数为y′=3x2,可得曲线y=x3在点P处的切线斜率为3m2,由题意可得3m2=3,解得m=±1,则m=1,n=1;m=﹣1,n=﹣1.即P(1,1),(﹣1,﹣1).故选:C.10.设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点 D.x=﹣1为f(x)的极小值点【考点】6D:利用导数研究函数的极值.【分析】由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点【解答】解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选D11.已知数列{a n}满足a1=,a n+1=1﹣,则a2014的值为()A.﹣2 B.C.D.4【考点】8H:数列递推式.【分析】根据数列的递推关系得到数列的规律,即可得到结论.【解答】解:∵a1=,a n+1=1﹣,∴a2=1﹣3=﹣2,a3=1+=,a4=1﹣=,…∴{a n}的取值具备周期性,周期性3,则a2014=a671×3+1=a1=,故选:B.12.已知函数在区间[﹣,]上有f(x)>0恒成立,则a的取值范围为()A.(0,2]B.[2,+∞)C.(0,5)D.(2,5]【考点】6E:利用导数求闭区间上函数的最值.【分析】在区间[﹣,]上,f(x)>0恒成立等价于在区间[﹣,]上,f(x)min>0,由此利用导数性质能求出a的取值范围.【解答】解:∵函数f(x)=ax3﹣x2+1,(x∈R,a>0)∴f′(x)=3ax2﹣3x,由f′(x)=0,得x=0,或x=,①当≥,0<a≤2时,∵f(﹣)=﹣,f()=+,f(0)=1,∴在区间[﹣,]上,f(x)min=﹣,∵在区间[﹣,]上,f(x)>0恒成立,∴f(x)min=﹣>0,解得a<5,∴0<a≤2.②当<,a>2时,∵f(﹣)=﹣,f()=+,f(0)=1,f()=1﹣,∴在区间[﹣,]上,f(x)min=﹣,∵在区间[﹣,]上,f(x)>0恒成立,∴f(x)min=﹣>0,解得a<5,∴2<a<5.综上所述,a的取值范围是(0,5),故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.函数f(x)=x3﹣4x+4在[0,3]上的最大值是4.【考点】6E:利用导数求闭区间上函数的最值.【分析】求出函数的导数,求得导数为0的极值点,再求极值和端点处的函数值,比较即可得到最大值.【解答】解:函数f(x)=x3﹣4x+4的导数为f′(x)=x2﹣4,由f′(x)=0,可得x=2(﹣2舍去),由f(2)=﹣4=﹣,f(0)=4,f(3)=1,可得f(x)[0,3]上的最大值为4.故答案为:4.14.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.354x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加0.354万元.【考点】BK:线性回归方程.【分析】写出当自变量增加1时的预报值,用这个预报值去减去自变量x对应的值,得到家庭年收入每增加1万元,年饮食支出平均增加的数字,得到结果.【解答】解:∵对x的回归直线方程y=0.354x+0.321.∴当家庭年收入增加1万元时,y=0.234(x+1)+0.321,∵[0.354(x+1)+0.321]﹣[0.354x+0.321]=0.354.故年饮食支出平均增加0.354万元.故答案为:0.354.15.i是虚数单位,若复数(x2﹣5x+6)+(x﹣3)i是纯虚数,则实数x的值为2.【考点】A5:复数代数形式的乘除运算.【分析】由复数(x2﹣5x+6)+(x﹣3)i是纯虚数,得实部等于0且虚部不等于0,求解即可得答案.【解答】解:∵复数(x2﹣5x+6)+(x﹣3)i是纯虚数,∴,解得x=2.故答案为:2.16.观察下列不等式1+<,1++<,1+++<,…照此规律,第五个不等式为1+++++<.【考点】F1:归纳推理.【分析】由已知中不等式1+<,1++<,1+++<,…,分析不等式两边的变化规律,可得答案.【解答】解:由已知中:不等式:1+<,1++<,1+++<,…归纳可得:第n个不等式为:1+++…+<,当n=5时,第五个不等式为1+++++<,故答案为:1+++++<三、解答题:本大题共6小题,共70分,解答应写出证明过程或演算步骤.17.在直角坐标系xOy 中,已知圆C的参数方程为(φ为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)直线l的极坐方程是,射线OM:θ=与圆的交点为O,P,与直线l的交点为Q,求线段PQ的长.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)圆C的参数方程消去参数能求出圆的极坐标方程,把x=ρcosθ,y=ρsinθ代入化简能求出此圆的极坐标方程.(II)求出直线l:y+x=3,射线OM:y=x.联立,得Q(),联立,得P(,),由此能求出线段PQ的长.【解答】解:(1)圆C的参数方程为(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得此圆的极坐标方程为:ρ=2cosθ.(II)如图所示,直线l的极坐方程是,射线OM:θ=.可得普通方程:直线l:y+x=3,射线OM:y=x.联立,解得x=,y=,即Q().联立,解得或.∴P(,).∴|PQ|==2.∴线段PQ的长为2.18.已知函数f(x)=ax3+bx在x=2处取得极值为﹣16(1)求a,b的值;(2)若f(x)的单调区间.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【分析】(1)求得函数f(x)的导数,由题意可得f(2)=﹣16,且f′(2)=0,解a,b的方程组,即可得到a,b的值;(2)求出f(x)的导数,由导数大于0,可得增区间;导数小于0,可得减区间.【解答】解:(1)函数f(x)=ax3+bx的导数为f′(x)=3ax2+b,由于f(x)在x=2处取得极值为﹣16故有f(2)=﹣16,且f′(2)=0即12a+b=0且8a+2b=﹣16,解得a=1,b=﹣12;(2)由(1)知f(x)=x3﹣12x的导数为f′(x)=3x2﹣12,令f′(x0=0,得x1=﹣2,x2=2,当f′(x)>0,即x<﹣2或x>2时,函数f(x)为增函数;当f′(x)<0,即﹣2<x<2时,函数f(x)为减函数.则f(x)的增区间为(﹣∞,﹣2),(2,+∞),减区间为(﹣2,2).19.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x 3 4 5 6y 2.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据第2题求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)【考点】BK:线性回归方程.【分析】(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)根据所给的这组数据求出回归方程的系数,得到线性回归方程;(3)根据线性回归方程,计算x=100时的生产能耗,求出比技改前降低的标准煤.【解答】解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如下;(2)由对照数据,计算得=×(3+4+5+6)=4.5,=×(2.5+3+4+4.5)=3.5,=32+42+52+62=86,x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∴回归方程的系数为==0.7,=3.5﹣0.7×4.5=0.35,∴所求线性回归方程为=0.7x+0.35;(3)由(2)的线性回归方程,估计生产100吨甲产品的生产能耗为0.7×100+0.35=70.35(吨),∴90﹣70.35=19.65吨,预测比技改前降低了19.65吨标准煤.20.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.分数区间甲班频率乙班频率[0,30)0.1 0.2[30,60)0.2 0.2[60,90)0.3 0.3[90,120)0.2 0.2[120,150]0.2 0.1优秀不优秀总计甲班乙班总计k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 P(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?【考点】BL:独立性检验;CB:古典概型及其概率计算公式.【分析】(Ⅰ)由图表得到乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.然后利用枚举法得到从这六名学生随机抽取两名的基本事件个数,进一步得到恰有一位学生成绩优秀的事件个数,由古典概型概率计算公式得答案;(Ⅱ)直接由公式求出K的值,结合图表得答案.【解答】解:(Ⅰ)乙班参加测试的90分以上的同学有6人,记为A、B、C、D、E、F.成绩优秀的记为A、B.从这六名学生随机抽取两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示恰有一位学生成绩优秀,符合要求的事件有:{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个,∴;(Ⅱ)优秀不优总计秀甲班 4 16 20乙班 2 18 20总计 6 34 40.在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.21.已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值.【分析】(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x 的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k﹣1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值.【解答】解:(Ⅰ)f′(x)=(x﹣k+1)e x,令f′(x)=0,得x=k﹣1,f′(x)f(x)随x的变化情况如下:x (﹣∞,k﹣1)k﹣1 (k﹣1,+∞)f′(x)﹣0 +f(x)↓﹣e k﹣1↑∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);(Ⅱ)当k﹣1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣e k﹣1;当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;综上所述f(x)min=.22.设f(x)=lnx,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)求a的取值范围,使得g(a)﹣g(x)<对任意x>0成立.【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(I)求导,并判断导数的符号确定函数的单调区间和极值、最值,即可求得结果;(Ⅱ)通过函数的导数,利用函数的单调性,判断两个函数的大小关系即可.(Ⅲ)利用(Ⅰ)的结论,转化不等式,求解即可.【解答】解:(Ⅰ)由题设知f(x)=lnx,g(x)=lnx+,∴g'(x)=,令g′(x)=0得x=1,当x∈(0,1)时,g′(x)<0,故(0,1)是g(x)的单调减区间.当x∈(1,+∞)时,g′(x)>0,故(1,+∞)是g(x)的单调递增区间,因此,x=1是g(x)的唯一值点,且为极小值点,从而是最小值点,所以最小值为g(1)=1.(II)设,则h'(x)=﹣,当x=1时,h(1)=0,即,当x∈(0,1)∪(1,+∞)时,h′(1)<0,因此,h(x)在(0,+∞)内单调递减,当0<x<1时,h(x)>h(1)=0,即,当x>1时,h(x)<h(1)=0,即.(III)由(I)知g(x)的最小值为1,所以,g(a)﹣g(x)<,对任意x>0,成立⇔g(a)﹣1<,即Ina<1,从而得0<a<e.。

(word版)高二下期末文科数学试题及答案,文档

(word版)高二下期末文科数学试题及答案,文档

哈师大附中高二下学期期末考试文科数学试题一.选择题〔本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕1.抛物线1y x2的焦点坐标为4(2,0)C.(0,1)D.(0,1)A.(1,0)B.816将两颗骰子各掷一次,设事件A为“两个点数相同〞那么概率P(A)等于A .1B.51D.511C.36116x2y21的两个焦点,那么F1,F2的坐标为3.点F1,F2为椭圆259A .(4,0),(4,0)B.(3,0),(3,0)C.(0,4),(0,4)D.(0,3),(0,3)4.命题P:x 0,x30,那么P是A.x 0,x30B.x,x3C.x0,x30D.x0,x305.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,那么分段间隔为A. 50B. 40C. 25D. 206.从甲乙等5名学生中随机选出 2人,那么甲被选中的概率A.1B.2C.8D.95525257.以下双曲线中,渐近线方程为2x的是A.xy21B.x21C.x2y2x214421D.28.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人那么该样本中的老年职工抽取人数为A.9B.18C.27D.369.集合Mx03,N x0x2,那么aM是aN的A. 充分不必要条件B. 必要不充分条件C.充要条件 D. 既不充分也不必要条件从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示〔如下列图〕,设甲乙两组数据的平均数分别为x甲,x乙,中位数分别为mm,那么甲,乙甲乙8840010282023373124484238A .甲乙,甲乙.xx,m甲m乙m m甲乙C .甲乙,m甲m乙D.甲乙,m甲m乙xx11.对具有线性相关关x,y,测得一组数系的变量据如下x2468y2040607080根据上表,利用最小二乘法得它们的回归直线方程为a,据此模型预测当x20时,的估计值为A. 210B. 210.5C. 211.5 D12.从区间0,1 随机抽取2n个数x1,x2,L,x n,y1,y2,L,y n,构成 n个数对x1,y1,x2,y2,L,x n,y n,其中两数的平方和小于1的数对共有m个,那么用随机模拟的方法得到的圆周率的近似值为A. mB. 2nC. 4mD. 2mn m n n二.填空题〔本大题共4小题,每题5分〕13.集合A 2,3,B 1,2,3从A,B中各任取一个数,那么这两数之和为4的概率.14.从区间0,1内任取两个数x,y,那么x y 1的概率为________________.15.以下4个命题:〔1〕假设xy=1,那么x,y互为倒数的逆命题;〔2〕面积相等的三角形全等的否命题;〔3〕假设m1,那么x22xm 0有实数解的逆否命题;〔4〕假设xy0,那么x0或y0的否认.其中真命题________.〔写出所有真命题的序号〕16.设A是双曲线x2y21(a0,b0)在第一象限内的点,F为其右焦点,点A关于原点Oa 2b 2的对称点为B,假设AFBF,设ABF,且,,那么双曲线离心率的取值范围126是.三.解答题〔解容许写出文字说明,证明过程或演算步骤〕17.〔此题总分值10分〕在新年联欢晚会上,游戏获胜者甲和乙各有一次抽奖时机,共有4个奖品,其中一等奖2个,二等奖2个,甲、乙二人依次各抽一次.〔Ⅰ〕求甲抽到一等奖,乙抽到二等奖的概率;〔Ⅱ〕求甲、乙二人中至少有一人抽到一等奖的概率.33cos18.〔此题总分值12分〕曲线C:(为参数〕,直线l:(cos3sin)12.3sin〔Ⅰ〕求直线l的直角坐标方程及曲线C的普通方程;〔Ⅱ〕设点P在曲线C上,求点P到直线l的距离的最小值.〔此题总分值12分〕一次考试中,5名学生的数学、物理成绩如下学生A1A2A3A4A5数学x〔分〕8991939597物理y〔分〕8789899293求y关于x的线性回归方程.n__(x i x)(y iy)_附:回归直线的斜率和截距的最小二乘估计公式分别为?i1,??n_b abx(x ix)2i120. 〔此题总分值12分〕在平面直角坐标系xOy中,直线l的参数方程为:x 2 3t,〔t为参数〕y24t.,它与曲线C:(y2)2x21交于A,B两点.5〔Ⅰ〕求AB的长;〔Ⅱ〕在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为22,3,求4点P到线段AB中点M的距离.21.〔此题总分值12分〕在长方体ABCD A1B1C1D1中,ADAA11,AB2,点F是AB边上动点,点E是棱B1B的中点.D1C1〔Ⅰ〕求证:D1F A1D;A1B1〔Ⅱ〕求多面体ABCDED1的体DC积.AB22.〔此题总分值12分〕抛物线C:y22px(p 0)的焦点为F,抛物线C上点M的横坐标为1,5且MF .4〔Ⅰ〕求抛物线 C的方程;〔Ⅱ〕过焦点F作两条相互垂直的直线,分别与抛物线C交于M、N和P、Q四点,求四边形 MPNQ面积的最小值.高二下学期期末考试文科数学答案一、选择题1234567891112D C C B C B A B B B C二、填空题11 4.115.(1)(2)(3)16.2,3113.2317.三、解答题18.〔此题总分值10分〕〔Ⅰ〕1〔Ⅱ〕53618.〔此题总分值12分〕〔Ⅰ〕直线l的直角坐标方程:x3y120,曲线C的普通方程x2y21.273〔Ⅱ〕点P到直线l的距离的最小值为3,此时P(9,3).2219.〔此题总分值12分〕yx.〔此题总分值12分〕107130〔Ⅰ〕AB=7〔Ⅱ〕点P到线段AB中点M的距离为.7〔此题总分值12分〕〔Ⅰ〕证明略〔Ⅱ〕多面体ABCDED1的体积为1.〔此题总分值12分〕〔Ⅰ〕抛物线C的方程y2x,〔Ⅱ〕四边形MPNQ面积的最小值2,此时k 1.。

高二下学期数学期末考试试卷(文科)

高二下学期数学期末考试试卷(文科)

1高二下学期数学期末考试试卷(文科)(时间:120分钟,分值:150分)一、单选题(每小题5分,共60分) 1.把十进制的23化成二进制数是( ) A. 00 110(2)B. 10 111(2)C. 10 110(2)D. 11 101(2)2.从数字,,,,中任取个,组成一个没有重复数字的两位数,则这个两位数大于的概率是( )A.B.C.D.3.已知命题p :“1a ∃<-,有260a a +≥成立”,则命题p ⌝为( )A. 1a ∀<-,有260a a +<成立B. 1a ∀≥-,有260a a +<成立C. 1a ∃<-,有260a a +≤成立D. 1a ∃<-,有260a a +<成立4.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2, 则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A. x ,s 2B. 5x +2,s 2C. 5x +2,25s 2D. x ,25s 25.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,2抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A. 15B. 18C. 21D. 226.按右图所示的程序框图,若输入81a =,则输出的i =( ) A. 14 B. 17 C. 19D. 217.若双曲线22221(,0)y x a b a b -=>的一条渐近线方程为34y x =,则该双曲线的离心率为( )A.43B.53C.169D.2598.已知()01,0,a a x >≠∈+∞且,命题P :若11a x >>且,则log 0a x >,在命题P 、P 的逆命题、P 的否命题、P 的逆否命题、P ⌝这5个命题中,真命题的个数为( )A. 1B. 2C. 3D. 49.函数f(x)=ln 2x xx-在点(1,-2)处的切线方程为( ) A. 2x -y -4=0B. 2x +y =0C. x -y -3=0D. x +y +1=010.椭圆221x my +=( ) A. 1B. 1或2C. 4D. 2或411.已知点P 在抛物线24x y =上,则当点P 到点()1,2Q 的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )3A. ()2,1B. ()2,1-C. 11,4⎛⎫- ⎪⎝⎭D. 11,4⎛⎫⎪⎝⎭12.已知函数()x x x f ln 1+=在区间()032,>⎪⎭⎫ ⎝⎛+a a a 上存在极值,则实数的取值范围是( )A. ⎪⎭⎫⎝⎛32,21 B. ⎪⎭⎫⎝⎛1,32 C. ⎪⎭⎫⎝⎛21,31 D. ⎪⎭⎫ ⎝⎛1,31二、填空题(每小题5分,共20分)13.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是__________.14.已知某校随机抽取了100名学生,将他们某次体育测试成绩制成如图所示的频率分布直方图.若该校有3000名学生,则在本次体育测试中,成绩不低于70分的学生人数约为__________.15.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NF F ∆的面积___________16.已知函数()ln mf x x x=+,若()()2,1f b f a b a b a ->><-时恒成立,则实数m 的取值范围是____________。

高二年级文科数学下册期末考试(4)

高二年级文科数学下册期末考试(4)

高二年级文科数学下册质量检测题数学试卷(文)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150 分。

考试时间120 分钟。

第 I 卷(选择题,共60 分)注意事项:1.答第I 卷前,考生务势必自己的姓名、准考据号、考场号、座号、考试科目用铅笔涂写在答题卡上。

2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案,不可以答在试题卷上。

3.考试结束,将第Ⅱ卷的答卷和答题卡一并交回。

一、选择题:此题共12个小题,每题5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1.以下命题正确的选项是A.若a2b2,则a b B.若1 1,则a b a bC.若ac bc, 则a b D.若a b, 则a b 2.抛物线y2x2的准线方程A.y 1B.y1C.x11 848D.x43.3C n132 C n233 C n3L 3n C n n等于A.4n 1B.4n1C.4n D.3n 4. m、 n 是不一样的直线,、是不重合的平面,以下命题为真命题的是A.若m // , m // n,则n //B.若m, n, 则n m C.若m,m //, 则D.若,m, 则 m5.5 个人分4 张相同的公园门票,每人至多分一张,并且票一定分完,那么不一样的分法种数是A.54B.45C.A54D.C546.已知 m 是平面的一条斜线,点A,l 为过点A的一条动直线,那么以下状况可能出现的是A.l // m, l B.l m,l C.l m, l //D.l // m, l //7.在(1 2x)6的睁开式中,x3的系数是A.— 160B. 25C.— 20D. 1608.正四周体 S—ABC 中, E 为 SA 的中点, F 为△ ABC的中心,则直线EF 与平面 ABC 所成角的正切值为A.2 2B. 1C.22 D.29.在今年我市牡丹花会时期,四名志愿者和他们帮助的两名老人排成一排照相,要求老人一定站在一同且不可以站在两头,则不一样的排法种数为A. 240B.144C.120D. 60x y010.已知实数 x,y 知足x y10 ,若点 P(x, y) 在圆 x2( y 1)2a(a 0) 的内部或圆y10上,则 a 的最小值为1B.8C. 5D.4A.211.在正方体上任取三个极点连成三角形,则所得三角形是等腰三角形的概率是1134A.B.C.D.14714712.假如椭圆上存在一点,使该点到左准线的距离与它到右焦点的距离相等,那么椭圆的离心率的范围是A.(0, 2 1)B.[ 2 1,1)C.(0, 3 1]D.[31,1)洛阳市 2008 一 2009 学年高二年级质量检测数学试卷(文)第Ⅱ卷(非选择题,共90 分)注意事项:1.第Ⅱ卷共 6 页,用钢笔或圆珠笔挺接答在试卷上。

高二文科数学第二学期期末考试试题及答案

高二文科数学第二学期期末考试试题及答案

复习试卷答案一、选择题1-5 6-10 11-12二、填空题13.丁 14.充分15.(n +1)(n +2) …(n +n)=2n ×1×3×…×(2n -1)16.2ΔABC ΔBOC ΔBDC S =S S ⋅三、解答题17.证明:由(1tan )(1tan )2A B ++= 可得tantan 21tan 4tan 1tan()1tan 1tan 41tan tan 4A A B A A A A π--π=-===-π+++…………………5分 ()4B A k k π=-+π∈Z 即()4A B k k π+=+π∈Z因为都是钝角,即2A B π<+<π, 所以54A B π+=.…………………………10分 18.解:(Ⅰ)22列联表如下:………………6分(Ⅱ)222()80(4241636)9.6()()()()40402060n ad bc K a b c d a c b d -⨯⨯-⨯===++++⨯⨯⨯ 由2(7.879)0.005P K ≥≈,所以有99.5%的把握认为“成绩与班级有关系”. …………………12分19.解:(Ⅰ)…………………2分(Ⅱ)()12456855x =++++=,()13040605070505y =++++=,…………4分213805550 6.514555b -⨯⨯==-⨯,50 6.5517.5a y bx =-=-⨯=,…………………8分 ∴回归直线方程为 6.517.5y x =+.…………………10分(Ⅲ)当10x =时,预报y 的值为10 6.517.582.5y =⨯+=.…………………12分20.(1)几何证明选讲解析:(Ⅰ)证明:连接,则△为直角三角形,因为∠=∠=90,∠=∠,所以△∽△,则=,即=.又=,所以=. …………………6分(Ⅱ)因为是⊙O 的切线,所以2=.又=4,=6,则=9,=-=5.因为∠=∠,又∠=∠,所以△∽△,则=,即==.…………………12分20.(2)坐标系与参数方程解析:(Ⅰ)直线参数方程可以化为根据直线参数方程的意义,这是一条经过点,倾斜角为60的直线.…………………6分(Ⅱ)直线l 的直角坐标方程为y =x +,即x -y +=0,极坐标方程ρ=2的直角坐标方程为2+2=1,所以圆心到直线l 的距离d ==,所以=2=.…………………12分20.(3)不等式选讲解:(Ⅰ)由()3f x ≤得,||3x a ≤-,解得33a x a ≤≤-+.又已知不等式()3f x ≤的解集为{|15}x x ≤≤-,所以31,35,a a -=-⎧⎨+=⎩解得2a =.…………………6分(Ⅱ)当2a =时,()|2|f x x =-,设()()(5)g x f x f x =++,于是()21,3,|2||3|5,32,21,2,x x g x x x x x x --<-⎧⎪-≤≤⎨⎪+>⎩=-++=所以当3x <-时,()5g x >;当32x ≤≤-时,()5g x =;当2x >时,()5g x >. 综上可得,()g x 的最小值为5.从而若()(5)f x f x m ≥++,即()g x m ≥对一切实数x 恒成立,则m 的取值范围为(-∞,5].…………………12分21.(1)几何证明选讲解析:(Ⅰ)证明:由已知条件,可得∠=∠.因为∠与∠是同弧上的圆周角,所以∠=∠.故△∽△. …………………6分(Ⅱ)因为△∽△,所以=,即=.又S = ∠,且S =,故 ∠=.则 ∠=1,又∠为三角形内角,所以∠=90. …………………12分21.(2)坐标系与参数方程(Ⅰ)2sin ρθ=可得22sin ρρθ=,即222x y y +=所以曲线C 的直角坐标方程为222x y y +=.…………………6分 (Ⅱ)直线l 的普通方程为4(2)3y x =--, 令0y =可得2x =,即(2,0)M ,又曲线C 为圆,圆C 的圆心坐标为(0,1), 半径1r =,则5MC =.51MN MC r ∴≤+=+.…………………12分21.(3)不等式选讲解 (Ⅰ)由|21|1x <-得1211x <<--,解得01x <<. 所以{}M |01x x <<=.…………………6分 (Ⅱ)由(Ⅰ)和M a b ∈,可知01a <<,01b <<. 所以(1)()(1)(1)0ab a b a b >+-+=--.故1ab a b >++.…………………12分22.(1)几何证明选讲解析:(Ⅰ)延长交圆E 于点M ,连接,则∠=90,又=2=4,∠=30,∴ =2,又∵ =,∴ ==.由切割线定理知2==3=9.∴ =3. …………………6分(Ⅱ)证明:过点E 作⊥于点H ,则△与△相似, 从而有==,因此=3. …………………12分22.(2)坐标系与参数方程(I )由2cos 2sin x y ϕϕ=⎧⎨=⎩可得224x y +=, 由4sin()3πρθ=+得24(sin cos cos sin )33ππρρθθ=+, 即22223x y y x +=+,整理得22(3)(1)4x y -+-=.…………………6分 ()圆1C 表示圆心在原点,半径为2的圆,圆2C 表示圆心为(3,1),半径为2的圆, 又圆2C 的圆心(3,1)在圆1C 上,由几何性质可知,两圆相交.…………………12分22.(3)不等式选讲解:(I )当2a =时,|2||4|4x x -+-≥,当2x ≤时,得264x -+≥,解得1x ≤;高二文科数学第二学期期末考试试题与答案11 / 11 当24x <<时,得24≥,无解;当4x ≥时,得264x -≥,解得5x ≥;故不等式的解集为{| 15}x x x ≤≥或.…………………6分()2||x a a -≤可解得22{|}x a a x a a -≤≤+, 因为22{|}{|26}x a a x a a x x -≤≤+⊆-≤≤, 所以2226a a a a ⎧-≤-⎪⎨+≤⎪⎩解得1232a a -≤≤⎧⎨-≤≤⎩即12a -≤≤,又因为1a >,所以12a <≤.…………………12分。

高二下学期期末考试数学(文)试卷 Word版含答案

高二下学期期末考试数学(文)试卷 Word版含答案

高二数学试题(文科)试卷说明:(1)命题范围:人教版选修1-2,必修1 (2)试卷共两卷(3)时间:120分钟 总分:150分第Ⅰ卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题的四个选项中,只有一项是符合题目要求的.1.如果{}5,4,3,2,1=S ,{}3,2,1=M ,{}5,3,2=N ,那么()()N C M C S S 等于( ). A.φ B.{}3,1 C.{}4 D.{}5,2 2.下列函数中,是奇函数,又在定义域内为减函数的是( ).A.xy ⎪⎭⎫⎝⎛=21 B.x y 1= C.)(log 3x y -= D.3x y -=3. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则A .a=2,b=2B .a = 2 ,b=2C .a=2,b=1D .a= 2 ,b= 2 4. 对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是A .①与③B .①与④C .②与③D .②与④5、若函数的图象经过第二且)10(1)(≠>-+=a a b a x f x、三、四象限,则一定有 A .010><<b a 且 B .01>>b a 且C .010<<<b a 且D .01<>b a 且6、已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若A .21 B .-21 C .2D .-27.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a=A.42 B.22 C.41 D.218、函数1(1)y x =≥的反函数是A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y9.在映射:f A B →中,(){},|,A B x y x y R ==∈,且()():,,f x y x y x y →-+,则与A 中的元素()1,2-对应的B 中的元素为()A .()3.1-B .()1,3C .()1,3--D .()3,110.设复数2121),(2,1z z R b bi z i z 若∈+=+=为实数,则b = ( )A.2B.1C.-1D.-211.函数34x y =的图象是( )A .B .C .D .12、在复平面内,复数1i i++(1+3i )2对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D.第四象限第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题纸中对应横线上. 13.已知复数122,13z i z i =-=-,则复数215z i z + =14.lg25+32lg8+lg5·lg20+lg 22= 15.若关于x 的方程04)73(32=+-+x t tx 的两实根21,x x ,满足21021<<<<x x ,则实数t 的取值范围是16.函数2()ln()f x x x =-的单调递增区间为三、解答题:本大题共6小题,共74分.前五题各12分,最后一题14分. 17.(本小题12分)计算 ()20251002i 1i 1i 1i i 21⎪⎭⎫⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-++18.(本小题12分) 在数列{a n }中,)(22,111++∈+==N n a a a a nnn ,试猜想这个数列的通项公式。

高二下期期末考试文科数学

高二下期期末考试文科数学

高二学年下学期期末考试数学(文)试题试题说明:1、本试题满分 150分,答题时间 120分钟。

2、请将答案填写在答题卡上,考试结束后只交答题卡。

第Ⅰ卷 选择题部分(共60分)一、选择题(每小题只有一个选项正确,每小题5分,共60分)1.已知集合{}52≤∈=x N x P ,{}1ln ->∈=x R x Q ,则Q P 的真子集个数为 ( )A 2B 3C 4D 72.在ABC ∆中,“B A >”是“B A sin sin >”的 ( )A 充分不必要条件B 必要不充分条件C 充要条件D 非充分也非必要条件 3.已知命题p :()1-=xx f 在其定义域内是减函数;命题q :()x x g tan =的图象关于2π=x 对称。

则下列命题中真命题是( )A q p ∨B q p ∧C ()q p ∧⌝D ()q p ∨⌝4.设方程022=-+x x的根为1x ,方程021log 2=+-x x的根为2x ,则1x +2x = ( )A 1B 2C 3D 45.设23ln =a ,()523ln =b ,075sin =c 则( )A c b a <<B c a b <<C b c a <<D b a c << 6.已知函数()()⎩⎨⎧≥<-=-0,20,1log 122x x x x f x ,则()()()()=+-03f f f f ( )A 7B 3ln 7+C 8D 97.欲得到函数()x x f 2sin 2=的图象,只需将函数()⎪⎭⎫⎝⎛-=42cos 2πx x g 的图象 ( ) A 向右平移8π个单位 B 向右平移4π个单位 C 向左平移8π个单位 D 向左平移4π个单位8.函数()xx xx x f cos sin 2++=在[]ππ,-的图象大致是( )9. 命题“R x ∈∃0,使02≤x ”的否定是( )A 不存在R x ∈0,02>x B 存在R x ∈0,020≥xC R x ∈∀,02≤xD R x ∈∀,02>x10.设b a ,为正数,且bab a2log 142=+--- ,则( )A b a 2<B b a 2>C b a 2=D 12=+b a11.定义在R 上的函数()x f y =是奇函数,()x f y -=2为偶函数,若()11=f ,则()()()=++202120202019f f f ( )A 2-B 0C 2D 312. 函数()x f 是定义在R 上的函数,其导函数记为()x f ',()()b a x f x g +-=的图象关于()b a P ,对称,当0>x 时,()()x x f x f <'恒成立,若()02=f ,则不等式()01>-x x f 的解集为( )A ()()2,10,2 -B ()()2,10,2 -C ()()2,2,1-∞-D ()()+∞-,20,2第II 卷 非选择题部分(共90分)二、填空题(每小题5分,共20分)13.若函数()a ax x x x f ++-=2331在()1,0上不单调,则实数a 的取值范围是______. 14.已知钝角ABC ∆的三边都是正整数,且成等差,公差为偶数,则满足条件的ABC ∆的外接圆的面积的最小值为______.15.设0>a ,()ax x f 22=,()23-=x e x g (e 是自然对数的底),若对⎥⎦⎤⎢⎣⎡∈∀2,211x ,⎥⎦⎤⎢⎣⎡∈∃2,212x ,使得()()()()2121x g x g x f x f =成立,则正数=a ______.16.关于函数xx x f sin 1sin )(+=有如下四个命题: ①)(x f 的图像关于y 轴对称;②)(x f 的图像关于原点对称; ③)(x f 在)2,0(π上单调递减;④)(x f 的最小值为2;⑤)(x f 的最小正周期为π.其中所有真命题的序号是__________.三、解答题(共70分)17.(本题满分10分)已知()x x x f 2sin -=,(1)求()x f y =在0=x 处的切线方程;(2)求()x f y =在⎥⎦⎤⎢⎣⎡2,0π上的最值.18.(本题满分12分)已知βα,为锐角,34tan =α,()55cos -=+βα,(1)求αα2sin 2cos +的值; (2)求()αβ-tan 的值.19.(本题满分12分)已知()()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-=4cos 4cos 22sin sin 2ππππx x x x x f(1)求()x f 的最小正周期;(2)若()()a x f x g -=(a 为常数)在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的零点1x 和2x ,求1x +2x .20.(本题满分12分)ABC ∆的三个内角C B A ,,所对的边分别为c b a ,,,三个内角C B A ,,满足1sin sin sin sin sin sin sin 2=-+C B AB C C B , (1)求A ;(2)若2=a ,ABC ∆的内角平分线935=AE ,求ABC ∆的周长.21. (本题满分12分)已知椭圆C :()012222>>=+b a b y a x 的离心率为22,且经过点()2,2.(1)求椭圆C 的方程;(2)不过坐标原点也不平行于坐标轴的直线l 与椭圆C 交于A 、B 两点,设线段AB 的中点为M ,求证:直线OM 的斜率与直线l 的斜率之积为定值.22.(本题满分12分)已知函数1()e ln ln x f x a x a -=-+(e 是自然对数的底). (1)当1=a 时,求函数)(x f y =的单调区间;(2)若1)(≥x f 在),0(+∞上恒成立,求正数a 的取值范围.高二学年下学期期末考试数学(文)试题答案一、1-5 :BCDBC 6-10:DAADC 11-12:BA二、填空题(每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下学期定期期末考前测试试卷(四)_数学(文科)_word
版有答案
本试卷分第Ⅰ卷(选择题,共36分)和第Ⅱ卷(非选择题,共64分)两部分。

考试时间为60分钟。

满分为100分。

第Ⅰ卷(选择题 共36分)
一、选择题(每小题6分,共36分。

在每小题给出的四个选项中,只有一项是符合题目
要求的。


1、记[]x 为不大于x 的最大整数,例如[][]1.62,1.31,-=-=设有集合
[]{}2|2,A x x x =-={}|||2,B x x =<则A
B =
()
.2,2A - [].2,2B - }.
1C - {}
.D
2、已知a 为实数,方程()2
440x i x ai ++++=的一个实根是b (i 是虚数单位),
则||a bi +的值为
.2A B 2
C D 3、下列四个命中是真命的是
(1)存在()0,,x ∈+∞使不等式23x x <成立; (2)不存在()0,1,x ∈使不等式23log log x x <成立; (3)任意的()0,,x ∈+∞使不等式2log 2x x <成立; (4)任意的()0,,x ∈+∞使不等式21
log x x
<
成立. .A (1)(3) .B (1)(4) .C (2)(3) .D (2)(4)
4、已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是
.A ()2,+∞ .B ()1,+∞ .C (),2-∞- .D (),1-∞-
5、已知函数c bx ax x x f +++=22
13)(2
3的两个极值分别为)(1x f 和)(2x f ,若1x 和
2x 分别在区间()0,1与()1,2内,则
1
2
--a b 的取值范围为 .A ⎪⎭

⎝⎛1,41 .B ⎥⎦

⎢⎣⎡1,41 .C ()+∞⋃⎪⎭⎫ ⎝⎛∞-,141, .D [)∞+⋃⎥⎦⎤ ⎝⎛∞-,141, 6、已知R 上连续不断的函数)(x g 满足:①当0>x 时,0)(>x g '恒成立()(x g '为
函数)(x g 的导函数);②对任意的R x ∈都有)()(x g x g -=,又函数)(x f 满足:对任意的R x ∈,都有)3()3(-=+x f x f 成立.当[]
3,3-∈x 时,3)(3-=x x f .
若关于x 的不等式[])2()(2+-≤a a g x f g 对⎥⎦

⎢⎣⎡+--∈3223,32
23x 恒成立,则a

取值范围是
.A R a ∈ .B 10≤≤a
.C 1122a -≤≤-.D 10≥≤a a 或
第Ⅱ卷(非选择题 共64分)
二、填空题(每题6分,共24分,请把答案填在答题卡内横线上)。

7、命题“2,10x R x ax ∃∈-+=”是假命题,则实数a 的取值范围是 . 8、已知曲线存在垂直于轴的切线,函数在上单调递减,则的范围为 . 9、科拉茨是德国数学家,他在1937年提出一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即
2
n
);如果n 是奇数,则将它乘3加1(即31n +),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们可以得到一个
数列:6,3,10,5,16,8,4,2,1.
(1)如果2n =,则按照上述规则施行变换后的第8项为 ; (2)如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现)
,则n 的所有不同值的个数为 . 10、已知定义在R 上的函数)(x f y =存在零点,且对任意,m n R ∈都满足
()()f mf m f n +⎡⎤⎣⎦
n m f +=)(2
若关于x 的方程[])1,0(log 13)(≠>-=-a a x x f f a 恰有三个不同的根,则实数a 的取值范围是 .
三、解答题(11题15分,12题25分,共40分,解答应写出文字文明、证明过程或推演步骤)。

、(15分)
现有如下两个命题:
命题:p 函数()32f x x ax ax a =++-既有极大值又有极小值; 命题:q 直线3420x y +-=与曲线222210x ax y a -++-=有公共点. 若命题“p 或q ”为真,且命题“p 且q ”为假,试求实数a 的取值范围.
、(25分)
设函数()22ln .f x x mx x =+-
(1)若曲线()y f x =在点()()1,1f 处的切线方程为2,y x n =+求实数,m n 的值; (2)若4,m >-求证:当0a b >>时,有
()()
22
2;f a f b a b
->-- (3)若函数()f x 有两个零点()1212,,x x x x <且12
0,2
x x x +=求证()0:0.f x '<
文科数学参考答案及评分意见
一、选择题:
二、填空题:
7. ()2,2- 8. ⎪⎭

⎢⎣⎡3,49 9. (1)1 (2)6 10. 3a >
三、解答题
11.解:命题p 为真时,必有()2
320f x x ax a '=++=有两不等根解,
即24120,a a ∆=->即 0a <或3;a >
命题q 为真时,直线3420x y +-=与圆 ()
2
21x a y -+=有公共点,从而圆心()
,0a 到直线的距离不大于半径1,即
|32|1,5a -≤解得7
1.3
a -≤≤ 由命题“p 或q ”为真,且命题“p 且q ”为假知,p q 中必有一假一真,
若p 真q 假,则实数a 的取值范围是:
0313,713a ora a ora a ora <>⎧⎪
⇒<->⎨
<->⎪⎩
若p 假q 真,则实数a 的取值范围是: 03
70,7313a a a ≤≤⎧⎪
⇒≤≤⎨
-≤≤⎪⎩
综上知实数a 的取值范围是()()7,10,3,.3⎡⎤
-∞-+∞⎢⎥
⎣⎦
12.解:(1)由()2
2ln f x x mx x =+-得()2
2,f x m x x
'=+- 故由题意可得()2
12,1
f m '=+
-即 2.m = 从而()12ln121,f =+-又知()121,f n =⨯+所以21,1,n n +=∴=- 所以实数,m n 的值分别为2,1;m n ==-
(2)由于0,a b >>设函数()()2
2
22ln ,g x f x x x mx x =+=++
则有()22,g x x m x
'=
++
由于()20,4,2440,
x m g
x x m m m x
'>>-∴=+++=+> 故()g x 在()0,+∞上单调递增,()(),g a g b ∴> ()()()()
2
2
22
22,2;f a f b f a a f b b a b
-∴+>+∴
>-- (3)由()1212,x x x x <是()f x 的零点可得2
1112
2222ln 0
,2ln 0
x mx x x mx x ⎧+-=⎪⎨+-=⎪⎩ 故12
1212
ln ln 2.x x m x x x x -=+-⋅-
又()1
202
2,,2
x x f x m x x x +'=+-=可得: ()()120121212
12ln ln 4
22,x x f x m x x x x x x x x ⎛⎫-'=+-+=- ⎪++-⎝⎭进而可得:
()()()12012121222ln ln ,x x f x x x x x x x -⎛⎫'=-- ⎪-+⎝⎭
现令12
,x
t x =由题意可知:210,x x >>则()0,1.t ∈
进而可得
()()()
121212221ln ln ln ,1x x t x x t x x t ----=-++
设函数()()
()21ln ,0,1,1
t h t t t t -=
-∈+
则有()()()
()
2
22
14
10,11t h t t t t t -'=
-=-<++ 故函数()h t 在区间()0,1上递减,从而可得()()10.h t h >=
于是有()()121212
2ln ln 0,x x x x x x --->+而1220,x x <-
因此()00.
f x '<。

相关文档
最新文档