逆向工程的现状及发展前景

合集下载

逆向工程技术的发展趋势

逆向工程技术的发展趋势

逆向工程技术的发展趋势逆向工程技术的发展趋势逆向工程技术是一种通过解析和研究产品或系统的工作原理、设计构造和制造工艺等,来获取相关技术信息的方法。

随着科技的不断进步和市场竞争的加剧,逆向工程技术正在迅速发展,并呈现出以下几个趋势。

首先,逆向工程技术将更加智能化和自动化。

借助人工智能、机器学习和大数据等先进技术,逆向工程过程中的数据采集、分析和重构将实现自动化和智能化。

例如,通过深度学习算法,逆向工程软件可以自动识别产品的不同组件和结构,从而加快数据采集和分析的速度。

此外,逆向工程软件还可以根据用户的需求,自动优化产品的设计和制造工艺,提高产品的性能和质量。

其次,逆向工程技术将更加多样化和综合化。

逆向工程不仅仅限于产品的解构和数据采集,还包括对产品的功能和性能进行分析和优化。

在逆向工程的过程中,还可以结合仿真分析、优化设计和制造工艺等多种技术手段,对产品进行全面的研究和改进。

例如,逆向工程技术可以通过仿真模拟和优化算法,对产品的结构和材料进行优化设计,提高产品的性能和可靠性。

此外,逆向工程技术还可以结合3D打印等先进制造技术,实现个性化和定制化生产。

第三,逆向工程技术将更加广泛应用于各个行业。

随着数字化和信息化的推进,逆向工程技术在汽车、航空航天、电子、医疗、消费品等各个行业的应用越来越广泛。

逆向工程技术可以帮助企业提高产品的竞争力和市场占有率,加强对竞争对手的监控和分析。

例如,在汽车行业,逆向工程技术可以帮助企业了解竞争对手的产品结构和制造工艺,从而优化自己的产品设计和制造流程。

最后,逆向工程技术将更加注重知识产权保护和法律法规遵守。

逆向工程技术的发展和应用,也带来了一些知识产权和技术泄露的问题。

为了保护企业的知识产权和合法权益,逆向工程技术必须遵守国家和地区的相关法律法规,确保合法的数据采集和使用,并采取有效的措施保护技术信息的安全性和机密性。

总之,逆向工程技术在智能化、多样化、广泛化和法律法规遵守方面的发展趋势,将为企业带来更多的机遇和挑战。

逆向工程的现状及发展前景

逆向工程的现状及发展前景

逆向工程也称反求工程或者反向工程,是根据已存在的产品或者零件原型构造产品或者零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计。

(1)设计前的准备工作。

设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。

(2)零件原形的数字化。

根据测量对象的特点确定扫描方法以及扫描设备,利用 3D 扫描测量设备来获取零件实物表面点的三维坐标值。

(3)提取零件的几何特征。

按测量数据的几何属性对其进行分割,分割方法普通可分为两类,一类是基于边界分割法,一类是基于区域分割法。

区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。

(4)零件 CAD 模型的重建。

将分割后的三维数据在 CAD 系统 中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的 CAD 模型。

(5)重建 CAD 模型的检验与修正。

由于测量得到的数据点往往 存在一些数字误差,所以需要对曲面或者曲线进行光顺处理,提高曲面 质量。

此外还要检验重建的 CAD 模型是否满足精度或者其他试验性能 指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件 的标准接触式三坐标测量机(Coordinate Measure Machine ,CMM)可 谓接触式测量的代表。

接触式三坐标测量机通常是基于受力变形的原 理,通过探头测取三维几何坐标数据。

操作者事先设计规划好测量途 径与方式,三坐标测量机便会按照所指定的路径测取三维几何坐标数 据。

普通来说,接触式三坐标测量机测量较稳定,易于定位,测量精 坐标测量机非接触式机械手 坐标测量机 光学测量机 声学测量机 磁学测量机结构光法 激光三角形法 激光测距法 干涉测量法 图象分析法接触式度高,对被测物体的材质和色泽没有特殊要求。

其主要缺点是测量效率低,测量探头的半径必须进行补偿,并且有可能会浮现探头测不到的盲区。

逆向工程技术的前景和发展趋势

逆向工程技术的前景和发展趋势

逆向工程技术的前景和发展趋势
逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的二次设计。

目前逆向工程应用的前景分为三个阶段
使用阶段
消化阶段
创新阶段
技术引进是吸收国外先进技术,促进民族经济高速快速增长的战略措施。

据有关统计资料表明,全国百分之七十以上的技术都是来自外国,要掌握这些技术,正常的途径都是通过逆向工程。

实际上任何产品的问世,不管是创新、改进还是仿制,都蕴含着对已有的科技的继承、应用和借鉴。

逆向工程流程图
逆向工程发展趋势展望
逆向工程的研究已经日益引人注目,在数据
处理、曲面片拟合、几何特征识别、商用专
业软件和坐标测量机的研究开发上已经取
得了很大的成绩。

但是在实际应用当中,整
个过程仍需要大量的人机交互工作,操作者
的经验和素质直接影响着产品的质量,自动
重建曲面的光顺性难以保证,下面一些关键
技术将是逆向工程主要发展方面:
(1)数据测量方面:发展面向逆向工程的
专用测量设备,能够高速、高精度的实现产
品几何形状的三维数字化,并能进行自动测
量和规划路径;
(2)数据的预处理方面:针对不同种类的
测量数据,开发研究一种通用的数据处理软
件,完善改进目前的数据处理算法;
(3)曲面拟合:能够控制曲面的光顺性和
能够进行光滑拼接;
(4)集成技术:发展包括测量技术、模型重建技术、基于网络的协同设计和数字化制造技术等的逆向工程技术。

逆向工程与组织器官再生技术的发展趋势

逆向工程与组织器官再生技术的发展趋势

逆向工程与组织器官再生技术的发展趋势近年来,逆向工程与组织器官再生技术正逐渐成为医学领域的研究热点。

逆向工程是指利用现代科技手段,对物体进行逆过程分析,然后利用数字化技术将其重新制造出来,这项技术的出现使得医学领域有了新的突破。

组织器官再生技术是一种新型生物医学技术,通过细胞、干细胞和材料等各种手段,合成或重建生物组织和器官。

在逆向工程和组织器官再生技术上的发展,可以望得到许多有益的进展。

一、逆向工程技术的发展趋势逆向工程技术在医学领域的应用前景广阔。

逆向工程技术主要包括三个方面:扫描成像、3D建模和快速成型技术。

扫描成像技术主要是对生物组织进行成像,利用CT、MRI、PET等技术对人体内部结构进行扫描,为3D建模提供了基础数据。

3D建模技术主要利用计算机将扫描数据进行数字化处理,生成三维模型。

与此同时,快速成型技术也得到了广泛的应用,包括光固化、激光束熔化和喷墨成型等技术。

这些技术的不断完善和可靠性的提高,为逆向工程技术在医学领域的应用开启了新的局面。

同时,逆向工程技术还可以实现个性化医疗的目标。

随着民众生活水平的不断提高,人们对个性化医疗的需求也日益增长。

逆向工程技术能够根据患者的具体情况,制造出符合其需要的定制产品。

例如,现在一些医院已经开始使用逆向工程技术制造出假肢、人工骨骼等产品。

逆向工程技术的发展可以为个性化医疗提供坚实的技术支持。

二、组织器官再生技术的发展趋势组织器官再生技术是医学领域的研究热点之一。

其主要目的是通过利用细胞或无细胞的生物材料,重建或替代遭受损坏或缺失的组织或器官。

目前,该领域的研究主要涉及心脏、肝、脾、肺等细胞较复杂的器官。

组织器官再生技术有望在未来取代传统的器官移植手术,成为一种更为安全、有效的治疗方法。

组织器官再生技术的发展趋势主要集中在以下方面。

首先,关注点将更多地放在生物材料的可控性上。

未来的研究将会更关注生物材料的生物学性质和合成方法,为组织器官再生提供更加理想的材料。

逆向工程技术研究进展

逆向工程技术研究进展

逆向工程技术研究进展逆向工程技术研究进展引言逆向工程技术作为一种分析和还原产品或系统的方法,在各个领域都得到了广泛的应用。

本文将探讨逆向工程技术的定义、发展历程,以及未来的研究趋势和应用前景。

一、逆向工程技术的定义和发展历程逆向工程是指通过分析和研究已有的产品或系统的设计和运作原理,推导出其中的技术细节和知识,以实现同类产品或系统的再制造或改进。

逆向工程技术的提出,源于对产业技术发展的迫切需求。

早在20世纪60年代,逆向工程技术已被广泛应用于军事领域,并随后在航空航天、汽车制造、电子产品等众多领域中得到了应用。

逆向工程技术的发展可以分为三个阶段。

第一阶段是从事逆向工程的初期,主要通过手工测量和分析,包括实物剖析、测绘等方式进行产品还原和技术解析。

然而,这种传统的逆向工程方法存在效率低、成本高等问题。

第二阶段是在计算机技术快速发展的背景下,逆向工程开始借助计算机辅助工具进行,基于图像处理、三维建模和虚拟现实等技术手段进行产品还原和技术解析。

这一阶段大大提高了工作效率和精度。

第三阶段是在大数据和人工智能等技术的驱动下,逆向工程技术开始向更高层次的发展。

它结合了计算机视觉、机器学习、深度学习等技术,实现了更加自动化和智能化的产品还原和技术分析。

二、逆向工程技术的研究进展目前,逆向工程技术已经取得了显著的研究进展。

在逆向工程的三个阶段中,技术手段、方法和工具都取得了重大突破。

以第三阶段的发展为例,以下是逆向工程技术研究的几个重要方向:1. 图像处理与模式识别逆向工程的第一步是通过图像处理技术对产品进行数字化还原。

当前,图像处理和模式识别技术已经非常成熟,包括图像分割、特征提取、目标检测等方法,可以高效、准确地从产品图像中提取所需的信息。

2. 三维建模与重建逆向工程的目标是从已有的产品中还原出其设计和结构,而三维建模是实现产品重建的重要手段。

基于点云数据、表面重建、体素模型等方法,可以实现对产品的三维建模和重建,进而进行产品的再设计和改善。

《2024年逆向工程技术的研究与工程应用》范文

《2024年逆向工程技术的研究与工程应用》范文

《逆向工程技术的研究与工程应用》篇一一、引言逆向工程技术是一种通过分析已有产品或系统的性能、结构、功能等,以获取其设计原理、制造工艺、技术参数等关键信息的技术手段。

随着科技的不断进步和市场竞争的日益激烈,逆向工程技术越来越受到关注和重视。

本文将对逆向工程技术的研究现状和工程应用进行深入探讨。

二、逆向工程技术的概述逆向工程技术是相对于正向工程技术而言的。

正向工程主要是根据产品的需求、功能等进行设计和制造,而逆向工程则是从已有产品出发,通过对产品的反求分析,了解其内部结构、设计原理、制造工艺等关键信息。

逆向工程技术的应用领域非常广泛,包括机械制造、电子设备、航空航天、生物医学等领域。

三、逆向工程技术的关键环节逆向工程技术的实施主要包括以下几个关键环节:1. 样品获取:通过购买、租赁、借阅等方式获取目标产品或系统。

2. 样品分析:运用各种手段对样品进行拆解、检测、分析等操作,以获取其内部结构、设计原理、制造工艺等关键信息。

3. 数据处理:将样品分析得到的数据进行整理、加工和提取,以形成可供分析和研究的数据集。

4. 建模与仿真:根据处理后的数据,建立样品的模型或仿真系统,以更好地了解其性能和特点。

5. 技术重现:在建模与仿真的基础上,重新设计和制造类似的产品或系统。

四、逆向工程技术的优点和挑战逆向工程技术的优点在于能够快速获取已有产品的关键信息,为新产品的设计和制造提供有力支持。

此外,逆向工程技术还可以帮助企业实现技术引进和消化吸收,提高企业的技术水平和创新能力。

然而,逆向工程技术也面临着一些挑战。

首先,样品分析需要专业的技术和设备支持,对操作人员的技能要求较高。

其次,由于不同产品的设计和制造工艺存在差异,逆向工程技术的应用需要针对具体情况进行具体分析。

最后,逆向工程技术的实施需要遵守相关法律法规和知识产权保护规定。

五、逆向工程技术在工程应用中的实例分析以汽车行业为例,逆向工程技术被广泛应用于汽车设计和制造过程中。

逆向工程的现状及发展前景(2)

逆向工程的现状及发展前景(2)

逆向工程的现状及发展前景(2)逆向工程的现状及发展前景现有的数据采集方法主要分为两大类:(1)接触式数据采集方法接触式数据采集方法包括使用基于力的击发原理的触发式数据采集和连续式扫描数据采集、磁场法、超声波法。

接触式数据采集通常使用三坐标测量机,测量时可根据实物的特征和测量的要求选择测头及其方向,确定测量点数及其分布,然后确定测量的路径,有时还要进行碰撞的检查。

触发式数据采集方法采用触发探头,触发探头又称为开关测头,当测头的探针接触到产品的表面时,由于探针受理变形触发采样开关,通过数据采集系统记下探针的当前坐标值,逐点移动探针就可以获得产品的表面轮廓的坐标据。

常用的接触式触发探头主要包括:机械式触发探头、应变片式触发探头、压电陶瓷触发探头。

采用触发式测头的优点在于:适用于空间箱体类工件及已知产品表面的测量;触发式探头的通用性较强,适用于尺寸测量和在线应用;体积小,易于在狭小的空间内应用;由于测量数据点时测量机处于匀速直线低速状态,测量机的动态性能对测量精度的影响较小。

但由于测头的限制,不能测量到被测零件的一些细节之处,不能测量一些易碎、易变形的零件。

另外接触式测量的测头与零件表面接触,测量速度慢,测量后还要进行测头补偿,数据量小,不能真实的反映实体的形状。

(2)非接触式数据采集方法非接触式数据采集方法主要运用光学原理进行数据的采集,主要包括:激光三角形法、激光测距法、结构光法以及图像分析法等。

非接触式数据采集速度快、精度高,排除了由测量摩擦力和接触压力造成的测量误差,避免了接触式测头与被测表面由于曲率干涉产生的伪劣点问题,获得的密集点云信息量大、精度高,测头产生的光斑也可以做得很小,可以探测到一般机械测头难以测量的部位,最大限度地反映被测表面的真实形状。

非接触式数据采集方法采用非接触式探头,由于没有力的作用,适用于测量柔软物体;非接触式探头取样率较高,在50 次/秒到23000 次/秒之间,适用于表面形状复杂,精度要求不特别高的未知曲面的测量,例如:汽车、家电的木模、泥模等。

逆向工程技术的发展现状

逆向工程技术的发展现状

逆向工程技术的发展现状关键词:逆向工程;三维测量;测量方法一、逆向工程(Reverse Engineering,RE)的概念逆向工程产生于20世纪80年代末至90年代初,广义上,逆向工程可以分为实物逆向、软件逆向和影像逆向三类。

目前,大多数关于逆向工程的研究主要集中在实物几何形状的逆向重构上,即产品实物的CAD模型重构和最终产品的制造,称为“实物逆向工程”。

逆向工程也称反求工程。

简单地说,逆向工程就是根据已经存在的产品模型,反向推出产品的设计数据的过程。

在产品设计时,如果客户给出的只是实物模型而没有产品原始图纸、文档或CAD模型数据,需要通过对已有产品实物进行分析与测量,重新得到制造产品所需的几何模型和特性数据,即对其进行数字化处理,使之能利用CAD、CAM、RPM、PDM及CIMS等先进技术进行处理,形成三维模型,并最终复制出已有产品。

也可以在此基础上对已有的产品进行剖析、理解和改进,这样的过程就称为逆向工程。

逆向工程包括快速反求、快速成型、快速模具以及数控加工等多个环节。

其中快速反求是从实物原型到三维数字模型的转换,是反求工程技术实现的关键技术,它包括数据测量、数据处理、三维重建和模型评价四部分。

二、逆向工程的测量技术逆向工程的测量是指实物的数据采集,也称三维数据测量,是反求工程实现的第一步。

它是通过特定的测量设备和测量方法获取产品表面离散点的几何坐标数据,将产品的几何形状数字化。

该技术关系到对零部件(实物)描述的精确度和完整度,从而影响重构的CAD曲面和实体模型的质量,并最终决定加工出来的产品能否真实反映原始实物。

因此,测量是整个原型反求的基础。

1.测量方法及原理。

反求工程采用的测量方法主要分为两类:接触式和非接触式。

根据测量原理、设备结构的不同还可以进一步细分(见图1)。

接触式数据采集通常使用三坐标测量机,测量时将被测产品放置于三坐标测量机的测量空间内,可以获得被测产品上各个测量点的坐标位置,根据这些点的空间坐标值,经过计算机数据处理,拟合形成测量元素,经过数学计算的方法得出其形状、中国设备工程2008年02月表1主要测量方法的比较机械法光学法电气法三坐标测量法激光三角法投影光栅法断层扫描法工业CT和核磁共振法最高0.5!m高>1"m较低>10#m以上较低0.02mm低>1mm慢快快慢较慢不适于软质软硬皆可软硬皆可软硬皆可有要求测头微损无损无损破坏被测件无损高较高低较高最高精度速度被测材质破坏性成本不能过于光滑对表面粗糙度、漫反射率敏感,不能过于光滑对表面色泽、粗糙度敏感,不能过陡无无表面特性及形状要求最适合情况无复杂内部形面、硬质、特殊尺寸多及精度要求高的箱体工件表面形状复杂,精度要求不特别高的未知曲面适于测复杂的内部几何形状管理园地研究·探讨位置公差及其他几何量数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

逆向工程的现状及发展前景
逆向工程也称反求工程或反向工程,是根据已存在的产品或零件原型构造产品或零件的工程设计模型,并在此基础上对已有的产品进行剖析、理解和改进,是对已有设计的再设计。

逆向工程设计实施步骤如下:
(1)设计前的准备工作。

设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。

(2)零件原形的数字化。

根据测量对象的特点确定扫描方法以及扫描设备,利用3D扫描测量设备来获取零件实物表面点的三维坐标值。

(3)提取零件的几何特征。

按测量数据的几何属性对其进行分割,分割方法一般可分为两类,一类是基于边界分割法,一类是基于区域分割法。

区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。

(4)零件CAD模型的重建。

将分割后的三维数据在CAD系统
中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的
CAD模型。

(5)重建CAD模型的检验与修正。

由于测量得到的数据点往往
存在一些数字误差,所以需要对曲面或曲线进行光顺处理,提高曲面
质量。

另外还要检验重建的CAD模型是否满足精度或其他试验性能
指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件
的标准
坐标测量机
接触式非接触式
机械手坐标测量机光学测量机声学测量机磁学测量机结构光法激光三角形法激光测距法干涉测量法图像分析法
1.1接触式测量系统
接触式三坐标测量机(Coordinate Measure Machine,CMM)可
谓接触式测量的代表。

接触式三坐标测量机通常是基于受力变形的原
理,通过探头测取三维几何坐标数据。

操作者事先设计规划好测量途
径与方式,三坐标测量机便会按照所指定的路径测取三维几何坐标数
据。

一般来说,接触式三坐标测量机测量较稳定,易于定位,测量精
度高,对被测物体的材质和色泽没有特殊要求。

其主要缺点是测量效率低,测量探头的半径必须进行补偿,并且有可能会出现探头测不到的盲区。

使用自动测量还有较多的参数必须决定,包括探头形状和大小、扫瞄间隔、步进距离、误差容许量、扫瞄速度、扫瞄方向等,这些都过分依赖操作者的经验,特别是在测量复杂产品零件时,确定最优的采样策略和路径较困难。

另外,由于存在测量力,接触式三坐标测量机无法在一些软质表面进行测量。

1.2非接触式测量系统
非接触式测量根据测量原理的不同,大致有光学测量、超声波测量、电磁测量等方式。

在逆向工程中最为常用是较为成熟的光学测量方法。

其可分为:①基于光学三角形原理的激光扫描法;②基于相位偏移测量原理的莫尔条纹法;③基于工业CT断层扫描图像法;
④立体视觉测量方法。

使用非接触测量产品零件测量速度快,不需要进行探头半径补偿。

由于不存在测量力,可对橡胶、油泥、人体头像或超薄形物体进行扫描。

但工件坐标定位较困难,测量精度较低,陡峭面不容易测量,另外被测产品零件表面特征(颜色、反光度、粗糙度、形状等)对测量的精度影响较大。

2逆向工程的数据处理及常用软件
数据处理是逆向工程的一个重要的技术环节,它决定了CAD 模型重建过程是否能够方便、准确地进行。

使用测量设备测取的三维几何坐标数据都是一些离散点的点云数据,其中存在着噪声点,所以还需要相应的软件来处理点云数据。

点云数据的处理包括噪声去除、多视对齐、数据精简、数据光顺、数据分割等诸多方面。

目前比较常用的逆向工程软件有:
(1)Geomagic。

美国RainDrop(雨点)公司的逆向工程CAD 软件,具有丰富的数据处理手段,可以根据测量数据快速构造出多张连续的曲面模型。

处理复杂形状或自由曲面形状时,效率比传统CAD 软件提高了10倍。

另外还可为新兴应用提供理想的选择,如定制设备大批量生产、即定即造的生产模式以及原始零部件的自动重造。

(2)Imageware。

作为UG NX中提供的逆向工程造型软件,ImageWare具有强大的测量数据处理、曲面造型、误差检测功能。

可以处理几万至几百万的点云数据。

根据这些点云数据构造的A曲
面(CLASS A)具有良好的品质和曲面连续性。

ImageWare的模型检测功能可以方便、直观地显示所构造的曲面模型与实际测量数据之间的误差以及平面度、真圆度等几何公差。

(3)CopyCAD。

英国DelCam公司系列CAD产品中的一个,主要处理测量数据的曲面造型。

作为一个系列产品的一部分,CopyCAD与系列中的其他软件可以很好地集成,为用户的使用提供方便。

(4)RapidForm。

韩国INUS公司开发的逆向工程CAD软件。

主要用于处理测量、扫描数据的曲面建模以及基于CT数据的医疗图像建模,还可以完成艺术品的测量建模以及高级图形生成。

RapidForm提供一整套模型分割、曲面生成、曲面检测的工具,用户可以方便地利用以前构造的曲线网格经过缩放处理后应用到新的模型重构过程中。

3 实施逆向工程的步骤
逆向工程设计实施步骤如下:
(1)设计前的准备工作。

设计之前应确定设计的整体思路,对实物模型进行系统的分析,划分出模型的特征区,确定模型的基本构成形状的曲面类型,这些关系到相关软件的选择和软件模块的确定。

(2)零件原形的数字化。

根据测量对象的特点确定扫描方法以及扫描设备,利用3D扫描测量设备来获取零件实物表面点的三维坐标值。

(3)提取零件的几何特征。

按测量数据的几何属性对其进行分割,分割方法一般可分为两类,一类是基于边界分割法,一类是基于区域分割法。

区域分割法将相似几何特征的点划为同一区域,具有明确的几何意义,是较为常用的分割方法。

(4)零件CAD模型的重建。

将分割后的三维数据在CAD系统中分别做表面模型的拟合,并通过表面片的拼接获取零件实物表面的CAD模型。

(5)重建CAD模型的检验与修正。

由于测量得到的数据点往往存在一些数字误差,所以需要对曲面或曲线进行光顺处理,提高曲面质量。

另外还要检验重建的CAD模型是否满足精度或其他试验性能指标的要求,对不满足要求的应进行适当的调整修改,直至达到零件的设计要求。

发展前景
逆向工程的研究已经日益引人注目,在数据处理、曲面片拟合、几何
特征识别、商用专业软件和坐标测量机的研究开发上已经取得了很大的成绩。

但是在实际应用当中,整个过程仍需要大量的人机交互工作,操作者的经验和素质直接影响着产品的质量,自动重建曲面的光顺性难以保证,下面一些关键技术将是逆向工程主要发展方面:
(1)数据测量方面:发展面向逆向工程的专用测量设备,能够高速、高精度的实现产品几何形状的三维数字化,并能进行自动测量和规划路径;
(2)数据的顶处理方面:针对不同种类的测量数据,开发研究一种通用的数据处理软件,完善改进目前的数据处理算法;
(3)曲面拟合:能够控制曲面的光顺性和能够进行光滑拼接;
(4)集成技术:发展包括测量技术、模型重建技术、基于网络的协同设计和数字化制造技术等的逆向工程技术。

相关文档
最新文档