-三中考数学经典真题题库整式的乘除与因式分解(含答案)学生

合集下载

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案

中考数学复习《整式的乘法与因式分解》专项练习题--附带有答案一、选择题1.下列计算正确的是()A.(3a)2=6a2B.(a2)3=a5C.a6÷a2=a3D.a2⋅a=a32.若8x=21,2y=3,则23x−y的值是()A.7 B.18 C.24 D.633.计算(−2ab)(ab−3a2−1)的结果是()A.−2a2b2+6a3b B.−2a2b2−6a3b−2abC.−2a2b2+6a3b+2ab D.−2a2b2+6a3b−14.若(x−1)(x+4)=x2+ax+b,则a、b的值分别为().A.a=5,b=4 B.a=3,b=−4 C.a=3,b=4 D.a=55.下列变形中正确的是()A.(x+y)(−x−y)=x2−y2B.x2−4x−4=(x−2)2C.x4−25=(x2+5)(x2−5)D.(−2x+3y)2=4x2+12xy+9y26.下列分解因式正确的是()A.x2+2xy−y2=(x−y)2B.3ax2−6ax=3(ax2−2ax)C.m3−m=m(m−1)(m+1)D.a2−4=(a−2)27.图(1)是一个长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,小长方形的长为a,宽为b(a>b),然后按图(2)拼成一个正方形,通过计算,用拼接前后两个图形中阴影部分的面积可以验证的等式是()A.a2b2=(ab)2B.(a+b)2=(a−b)2+4abC.(a+b)2=a2+b2+2ab D.a2−b2=(a+b)(a−b)8.若x−y=−3,xy=5则代数式2x3y−4x2y2+2xy3的值为()A.90 B.45 C.-15 D.-30二、填空题9.若27×3x=39,则x的值等于10.计算:(√3−√2)(√3+√2)=.11.在实数范围内分解因式2x2+3x−1=.12.要使(y2−ky+2y)⋅(−y)的展开式中不含y2项,则k的值是.13.已知4y2−my+9是完全平方式,则m的值为.三、解答题14.计算:(2a−1)(a+2)−6a3b÷3ab.15.把下列多项式分解因式:(1)a4−8a2b2+16b4(2)x2(y2−1)+2x(y2−1)+(y2−1)16.已知a+b=5,ab=−6,求:(1)a2b+ab2的值;(2)a2+b2的值;(3)a-b的值.17.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的____(填序号).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2中所表示的数学等式;(2)根据整式乘法的运算法则,通过计算验证上述等式;(3)若a+b+c=10,ab+ac+bc=35利用得到的结论,求a2+b2+c2的值.参考答案1.D2.A3.C4.B5.C6.C7.B8.A9.610.111.2(x −−3+√174)(x −−3−√174)12.213.±1214.解:原式=2a 2+4a −a −2−2a 2=3a −2.15.(1)解:a 4−8a 2b 2+16b 4=(a 2−4b 2)2=(a +2b)2(a −2b)2(2)解:x 2(y 2−1)+2x(y 2−1)+(y 2−1)=(x 2+2x +1)(y 2−1)=(x +1)2(y +1)(y −1)16.(1)解:∵a +b =5,ab =−6∴a 2b +ab 2=ab(a +b)=−30(2)解: a 2+b 2=(a +b)2−2ab=25+12=37(3)解: (a −b)2=a 2+b 2−2ab=37+12=49故a−b=±7 .17.(1)C(2)否;(x−2)4(3)解:设x2−2x+1=y原式=(y−1)(y+1)+1=y2−1+1=y2=(x2−2x+1)2=[(x−1)2]2=(x−1)4.18.(1)解:∵边长为(a+b+c)的正方形的面积为:(a+b+c)2,分部分来看的面积为a2+b2+c2+2ab+ 2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)解:∵(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)解:∵a+b+c=10∴a2+b2+c2=(a+b+c)2−2ab−2bc−2ac=102−2×35=30∴a2+b2+c2的值为30.。

中考题整式的乘除与因式分解-(含答案)

中考题整式的乘除与因式分解-(含答案)

整式的乘除与因式分解中考题要点一:幂的运算性质 一、选择题1、(2010·义乌中考)28cm 接近于( )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高D .一张纸的厚度【解析】选C.28 cm=256cm 和姚明的身高接近 2、(2009 ·新疆中考)下列运算正确的是( ).A .2a a a =4a•46a a a = B .257()x x = C .23y y y ÷= D .22330ab a b -=答案:选A3、 (2009·东营中考)计算()4323b a --的结果是( ).(A)12881b a (B )7612b a (C )7612b a - (D )12881b a - 答案:选D4、(2010·杭州中考)1. 计算 (– 1)2 + (– 1)3= ( ).A.– 2B. – 1C. 0D. 2 【解析】选C.原式=1-1=05、(2009·南充中考)化简123()x x -⨯的结果是( )A .5xB .4xC .xD .1x答案:选C 6、(2009·哈尔滨中考)下列运算正确的是( ).A .3a 2-a 2=3B .(a 2)3=a 5C .a 3.a 6=a 9D .(2a )2=2a 2【解析】选C .A 中,合并同类项可得:2 a 2;B 中,根据幂的乘方的运算性质:底数不变,指数相乘,所以结果应该为:a 6;C 中,根据同底数幂相乘的性质:底数不变,指数相加,所以结果正确;D 考查了积的乘方的运算性质,本题中,2没有乘方,结果应该是4 a 2. 7、(2009·崇左中考)下列运算正确的是( )A .224236x x x =·B .22231x x -=-C .2222233x x x ÷=D .224235x x x += 【解析】选A.整式的运算法则。

中考题整式的乘除与因式分解_(含答案)

中考题整式的乘除与因式分解_(含答案)

3整式的乘除与因式分解中考题要点一:幕的运算性质 、选择题 1、 (2010义乌中考)28 cm 接近于( A .珠穆朗玛峰的高度 B .三层楼的高度 C .明的身高 D .一纸的厚度2、(2009新疆中考)下列运算正确的是( 3、4、 5、 6、 7、 9、A . aa ?g 4 aa 6B . (x 2)5 x 7C . (2009东营中考)计算 3a 2b 3 4的结果是 (A) 81a 8b 12 ( B ) 12a 6b 7(2010 中考)1.计算(T)2 + ( T)3 = A. -2 B. -11 2 3(2009中考)化简(x ) x 的结果是 A . x 5 B . x 4(2009中考)下列运算正确的是( A . 3a 2— a 2= 3 B . (a 2) 3= a 5 (2009崇左中考)下列运算正确的是( 2 2 4 A . 2x 2 • 3x 2 6x 4 B . 2x 2C 2x 2 3x 2 - x 2D 2x 23'(2009中考) (2009中考) A . a 2• a 3F 列运算中,正确的是(B. a a 23ab 2 3a 2b 0). 12a 6b 7C. 0 ).3x 2 3x 2a 2F 列计算中,结果正确的是 a 6B . 2a • 3a6a10. (2009襄樊中考)下列计算正确的是(A . a 2-a 3a 6 B . a 8 a 4 a 2 a 3. a 6= a 95x 4C . C .C . a 3 11、 (2009 中考)若 2x 3,4y 5,则2x-2y 的值为((2a)2 a 2 (D)81a 8b 12D. 2(2a ) 2= 2a 24a 2 D . (a 3)2 a 6 D .a 6 a 2 a 52a 2a 5a 3368a 63、填空题要点二、整式的运算、选择题3 A.-5B. -2C.3、56 D.-5(2007 中考)计算: (103) (2007 中考) 计算 [( x) 3]解答题(2010 中考) 计算:(3)(2009 中考) 计算:2(2008中考) 2 16、 2 17、18 19、2x 2 32I 111. (2010眉山中考)下列运算中正确的是2、 2A . 3a 2a 5a C . 2a 2 a 3 2a 6(2009中考)下列计算正确的是( A.2x+x=x 3 B.(3x) 2=6x 232(2009中考)计算2xX 的结果是(2 a (2 a b)(2a b) 4a 2 b 2 b)2 4a 2 b 2C.(x — 2)2=x 2- 4D.x 3^x=x 212、 (2009威海中考)计算(2 3) 1(、21)0的结果是13、 (2009中考) 已知 10m 2,0n 3,则 103m 2n 14、 (2008中考) 计算(a 3)215、20、 (2009 中考) 计算: .1621、 (2010 •中考)计算:22、 (2009中考)计算:1)2 31.45 6A . XB . 2xC . 2xD . 2x4、 ( 2009眉山中考)下列运算正确的是().2 X 35224A . (x )xB . 3x 4x 7xC . ( x)9 ( x)3 x 6D . x(x 2 x 1) x 3 x 2 x5、 ( 2009中考)下列运算正确的是 ( ). A . 3a 2a a 5 B . a 2 a 36aC . (a 2 2D . (a.、22 . 2b)(a b) a bb)a b【解析】选C.根据平方差公式得结论(2008中考)下列计算结果正确的是( )A . 2x2 33 4y 2xy 2x yB .3x 2y 5xy 2= 2x 2 y4 C . 28x 2 - 3,y 7x y 4xyD . (3a 2)( 3a 2) 9a 2 4答案:选C7、( 2008中考)下列各式计算正确的是()A . 2a 2 a 3 3a 5B . 3xy 2 xy 3xyC . 2b 2 3 8b 5D . 2x?3x 5 6x 6答案:选D 二、填空题8、( 2010中考)计算:a 3为2 = ___________【解析】a 3为2 =a 3 2=a 答案:a31 29、 (2009黄冈中考)计算: 3x ( -x )=9答案:一-x 5.— 16a 8.310、 ___________________________________________ (2009 中考) 计算(3a )2-a 5 =7答案:9a32, ab 1,化简(a 2)(b 2)的结果是(2a 2)4= ________11、 (2009中考)已知:a b答案:212、 (2008中考)当x 3,y1时,代数式(x y )(x y ) y 的值是 _____________ .答案:913、 (2007中考)利用图形中面积的等量关系可以得到某些数学公式•例如,根据图甲,我们可以得到两数和的平方公式:(a+b ) 2=a 2+2ab+b 2.你根据图乙能得到的数学公式是答案:(a b)2 a 2 2ab b 2 三、解答题14、(2009中考)先化简,再求值:2 21(a b)(a b) (a b)2 2a 2,其中 a 3, b -.2【解析】(a b)(a b) (a b)22a a 2 b 2 a 2 2abb 22a 22ab11 a 3,b 3时,2ab 231 3220082b2008 20092 2 22008 1 2008二 a<b .200715、(2009 中考)若 a, b20082008融,试不用将分数化小数的方法比较a 、b 的大小.【解析】 2007 2009a= 2008 2009(2008 1) (2008 1)2008 20092 22008 1 2008 20091要点三、因式分解、选择题【解析】a 2—ab =a(a —b) 答案:a (a —b )【解析】 选C.选项A 提取公因式不彻底,选项 B 提取公因式后符号处理不正确, D 不是因式分解.【解析】选C.利用完全平方公式因式分解16、(2008中考)先化简,再求值: (a b)(a b) b(b 2),其中 a【解析】原式 a 2 2 2b b 2ba 2 2b当a 1 , b 1时,原式 (1)217、(2008中考)先化简, 再求值:(2 a b)(2a b) b(2ab) 4a 2bb ,其中【解析】原式 4a 2 b 2 2ab b 2 4a 22ab1、 (2010中考)分解因式:a 2 —ab =2、 (2008中考)下列分解因式正确的是(2A . 2x xy x 2x(x y 1)2xy2xy 3y y(xy 2x 3)2C . x(x y) y(x y) (x y)D . X 2x 3 x(x 1)3选项3、 (2010眉山中考)把代数式 mx 2 6mx9m 分解因式,下列结果中正确的是(4、5、2A . m(x 3)B . m(x 3)(x 3)2 2C . m(x 4)D . m(x 3)【解析】:选Dmx 2 6mx 9m =m(x 2— 6x + 9)=m(x — 3)2(2009中考)将整式9 — x 2分解因式的结果是 A . (3 — x)2B . (3 + x)(3 — x)C . (9 — x)2D . (9 + x)(9 — x)【解析】选B.根据平方差公式因式分解(2009中考)把多项式x 2 一 4x+4分解因式,所得结果是(). A . x(x 一 4)+4B.(x 一 2)(x+2) C . (x 一 2)2 D . (z+2)23 2 26、(2009中考)把x 2x y xy分解因式,结果正确的是(2 c 2 2 2A. xxyxyB. xx 2xy y C xxy D xxy【解析】选D.先提取公因式,在利用完全平方公式因式分解7、(2009江中考)在边长为a的正方形中挖去一个边长为b的小正方形(a b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证A. (a b)2 2 a2ab b2B. (a 2 2b) a2ab b2D. (a2b)(a b)a2ab 2 bC.2 a b2(a b)(a b)【解析】选C.图甲中阴影部分的面积为a2—b2,图乙中阴影部分的面积为(a+b)(a—b),所以a2—b2=(a+b)(a 一b),故选C.8、(2008中考)下列多项式中,能用公式法分解因式的是()A.x2—xyB. x2+ xyC. x2—y2D. x2+ y2【解析】选C.选项C可以利用平方差公式因式分解.9、(2008中考)下列式子中是完全平方式的是()A. B .C. D.【解析】选D.完全平方式符合首平方、尾平方、2倍的首尾在中央.二、填空题10、 ______________________________________________ (2010 中考)分解因式:2a2 -4a + 2=【解析】2a2-4a + 2=2 (a2^a +1)=2 (a -1)211、 _____________________________________________ (2009中考)分解因式:x22x=答案:x (x —2)12、(2009中考)因式分解:2a24a ___________答案:2a(a 2)13、 ______________________________________________________ (2009威海中考)分解因式:(x+3)2—(x+3)____________________________________.答案:(x+3)(x+2)14、 ______________________________________ (2009中考)分解因式2x38x= .答案:2x(x+2)(x —2)15、(2009中考)在实数围因式分解x4 4 = ____________ •答案:(x22)( x ,2)(x .、2)三、解答题16、(2009中考)在三个整式x22xy,y22xy,x2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解【关键词】整式的运算、因式分解【解析】(x22xy)x22x22xy2x(x y);或(y22xy)x2(x y)2;或(x22xy)(y222xy) x2y(x y)(x y)或(y22xy)(x222xy) y 2 x(y x)(y x)1 2 1 2 1 217、(2009中考)给出三个多项式:一X 2x 1 , - x 4x 1 , - x 2x .请选择你最2 2 2喜欢的两个多项式进行加法运算,并把结果因式分解.【解析】情况一:12 2x2x1 21 x 4x21 =2=x6x =x(x 6)情况二: 1 2 x22x1 12 x22x =x21 =(x1)(x1).情况三: 1 2 x4x1 1 2 x2x = x22x1=(x1)2.2218、(2008中考)分解因式【解析】原式===。

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)

2023年中考数学《整式的运算与因式分解》专题知识回顾及练习题(含答案解析)1. 合并同类型:法则:“一相加,两不变”,即系数相加,字母与字母的指数不变照写。

2. 整式的加减的实质:合并同类项。

3. 整式的乘除运算:①单项式×单项式:系数相乘,同底数幂相乘,其中一个因式单独存在的字母连同它的指数作为积的一个因式。

②单项式×多项式:单项式乘以多项式的每一项,变成单项式乘以单项式。

③多项式×多项式:用其中一个多项式的每一项乘以另一个多项式的每一项,变成单项式乘以单项式。

④单项式÷单项式:系数相除,同底数幂相除,被除数中单独存在的字母连同它的指数作为商的一个因式。

4. 乘法公式:①平方差公式:()()22b a b a b a −=−+。

②完全平方公式:()2222b ab a b a +±=±。

5. 因式分解的方法:①提公因式法:()c b a m cm bm am ++=++;②公式法:平方差公式:()()b a b a b a −+=−22完全平方公式:()2222b a b ab a ±=+±。

③十字相乘法:在c bx x ++2中,若()均为整数,且n m b n m mn c =+=,则: ()()n x m x c bx x ++=++2。

31.(2022•湖北)先化简,再求值:4xy﹣2xy﹣(﹣3xy),其中x=2,y=﹣1.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:4xy﹣2xy﹣(﹣3xy)=4xy﹣2xy+3xy=5xy,当x=2,y=﹣1时,原式=5×2×(﹣1)=﹣10.32.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【分析】根据平方差公式、完全平方公式、合并同类项法则把原式化简,整体代入即可.【解答】解:原式=x2﹣16+x2﹣6x+9=2x2﹣6x﹣7,∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴2x2﹣6x=﹣2,∴原式=﹣2﹣7=﹣9.33.(2022•长春)先化简,再求值:2+a)(2﹣a)+a(a+1),其中a=2﹣4.【分析】先去括号,再合并同类项,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(2+a)(2﹣a)+a(a+1)=4﹣a2+a2+a=4+a,当a=﹣4时,原式=4+﹣4=.34.(2022•北京)已知x2+2x﹣2=0,求代数式x(x+2)+(x+1)2的值.【分析】先去括号,再合并同类项,然后把x2+2x=2代入化简后的式子进行计算即可解答.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x 2+2x ﹣2=0,∴x 2+2x =2,∴当x 2+2x =2时,原式=2(x 2+2x )+1=2×2+1=4+1=5.35.(2022•广西)先化简,再求值:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x ,其中x =1,y =21. 【分析】根据平方差公式和多项式除以单项式,可以将题目中的式子化简,然后将x 、y 的值代入化简后的式子计算即可.【解答】解:(x +y )(x ﹣y )+(xy 2﹣2xy )÷x=x 2﹣y 2+y 2﹣2y=x 2﹣2y ,当x =1,y =时,原式=12﹣2×=0.36.(2022•衡阳)先化简,再求值.(a +b )(a ﹣b )+b (2a +b ),其中a =1,b =﹣2.【分析】根据平方差公式以及单项式乘多项式的运算法则化简后,再把a =1,b =﹣2代入计算即可.【解答】解:(a +b )(a ﹣b )+2a +b )=a 2﹣b 2+2ab +b 2=a 2+2ab ,将a =1,b =﹣2代入上式得:原式=12+2×1×(﹣2)=1﹣4=﹣3.37.(2022•丽水)先化简,再求值:(1+x )(1﹣x )+x (x +2),其中x =21. 【分析】先根据平方差公式和单项式乘多项式的运算法则化简,再把x =代入计算即可.【解答】解:(1+x )(1﹣x )+x (x +2)=1﹣x 2+x 2+2x=1+2x ,当x =时,原式=1+=1+1=2.38.(2022•南充)先化简,再求值:(x +2)(3x ﹣2)﹣2x (x +2),其中x =3﹣1.【分析】提取公因式x +2,再利用平方差公式计算,再代入计算.【解答】解:原式=(x +2)(3x ﹣2﹣2x )=(x +2)(x ﹣2)=x 2﹣4,当x =﹣1时, 原式=(﹣1)2﹣4=﹣2.39.(2022•安顺)(1)计算:(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣3|﹣12.(2)先化简,再求值:(x +3)2+(x +3)(x ﹣3)﹣2x (x +1),其中x =21. 【分析】(1)先化简各式,然后再进行计算即可解答;(2)先去括号,再合并同类项,然后把x 的值代入化简后的式子,进行计算即可解答.【解答】解:(1)(﹣1)2+(π﹣3.14)0+2sin60°+|1﹣|﹣ =1+1+2×+﹣1﹣2 =2++﹣1﹣2=1;(2)(x +3)2+(x +3)(x ﹣3)﹣2x (x +1)=x 2+6x +9+x 2﹣9﹣2x 2﹣2x=4x ,当x =时,原式=4×=2.40.(2022•岳阳)已知a 2﹣2a +1=0,求代数式a (a ﹣4)+(a +1)(a ﹣1)+1的值.【分析】先化简所求的式子,再结合已知求解即可.【解答】解:a (a ﹣4)+(a +1)(a ﹣1)+1=a 2﹣4a +a 2﹣1+1=2a 2﹣4a=2(a 2﹣2a ),∵a 2﹣2a +1=0,∴a 2﹣2a =﹣1,∴原式=2×(﹣1)=﹣2.41.(2022•苏州)已知3x 2﹣2x ﹣3=0,求(x ﹣1)2+x (x +32)的值. 【分析】直接利用整式的混合运算法则化简,进而合并同类项,再结合已知代入得出答案.【解答】解:原式=x 2﹣2x +1+x 2+x=2x 2﹣x +1,∵3x 2﹣2x ﹣3=0,∴x 2﹣x =1,∴原式=2(x 2﹣x )+1=2×1+1=3.42.(2022•荆门)已知x +x1=3,求下列各式的值: (1)(x ﹣x 1)2; (2)x 4+41x. 【分析】(1)利用完全平方公式的特征得到:(a ﹣b )2=(a +b )2﹣4ab ,用上述关系式解答即可;(2)将式子用完全平方公式的特征变形后,利用整体代入的方法解答即可.【解答】解:(1)∵=, ∴= = =﹣4x • =32﹣4=5;(2)∵=,∴=+2 =5+2=7,∵=,∴=﹣2=49﹣2=47.43.(2022•无锡)计算:(1)|﹣21|×(﹣3)2﹣cos60°; (2)a (a +2)﹣(a +b )(a ﹣b )﹣b (b ﹣3).【分析】(1(2)根据单项式乘多项式,平方差公式化简,去括号,合并同类项即可.【解答】解:(1)原式=×3﹣=﹣=1;(2)原式=a 2+2a ﹣(a 2﹣b 2)﹣b 2+3b=a 2+2a ﹣a 2+b 2﹣b 2+3b=2a +3b .44.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.【分析】(1)根据题目中等式的特点,可以写出第5个等式;(2)根据题目中等式的特点,可以写出猜想,然后将等式左边和右边展开,看是否相等,即可证明猜想.【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2,故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n个等式:(2n+1)2=[(n+1)×2n+1]2﹣[(n+1)×2n]2,证明:左边=4n2+4n+1,右边=[(n+1)×2n]2+2×(n+1)×2n+12﹣[(n+1)×2n]2=4n2+4n+1,∴左边=右边.∴等式成立.45.(2022•西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将2a﹣3ab﹣4+6b因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式=(2a﹣3ab)﹣(4﹣6b)=a(2﹣3b)﹣2(2﹣3b)=(2﹣3b)(a﹣2)解法二:原式=(2a﹣4)﹣(3ab﹣6b)=2(a﹣2)﹣3b(a﹣2)=(a﹣2)(2﹣3b)【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将x2﹣a2+x+a因式分解;【挑战】(2)请用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1.根据以上信息,先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值.【分析】(1)用分组分解法将x2﹣a2+x+a因式分解即可;(2)用分组分解法将ax+a2﹣2ab﹣bx+b2因式分解即可;(3)先将a4﹣2a3b+2a2b2﹣2ab3+b4因式分解,再求值即可.【解答】解:(1)原式=(x2﹣a2)+(x+a)=(x+a)(x﹣a)+(x+a)=(x+a)(x﹣a+1);(2)原式=(ax﹣bx)+(a2﹣2ab+b2)=x(a﹣b)+(a﹣b)2=(a﹣b)(x+a﹣b);(3)原式=(a4+2a2b2+b4)﹣(2ab3+2a3b)=(a2+b2)2﹣2ab(a2+b2)=(a2+b2)(a2+b2﹣2ab)=(a2+b2)(a﹣b)2,∵直角三角形的两条直角边长分别是a和b(a>b),斜边长是3,小正方形的面积是1,∴a2+b2=32=9,(a﹣b)2=1,∴原式=9.。

(完整版)整式的乘除与因式分解复习(附练习含答案)

(完整版)整式的乘除与因式分解复习(附练习含答案)

整式的乘除与因式分解考点归纳知识网络归纳22222()(,,)()()()():()()()2m n m n m n mn n n n a a a a a m n a b ab a b m a b ma mb m n a b ma mb na nb a b a b a b a b a ab b +⎧⎫⋅⎪⎪=⎨⎬⎪⎪=⋅⎩⎭⨯⎧⎪⨯+=+⨯++=+++⎨⎧+-=-⎪−−−→⎨±=±+⎪⎩特殊的=幂的运算法则为正整数,可为一个单项式或一个式项式单项式单项式单项式多项式:多项式多项式:整式的乘法平方差公式 乘法公式完全平方公式:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩互逆22222()():2()a b a b a b a ab b a b⎧⎪⎪⎪⎧-=+-⎨⎨⎪⎨⎪⎪±+=±⎪⎩⎩⎪⎪⎩因式分解的意义提公因式法因式分解因式分解的方法平方差公式:运用公式法完全平方公式因式分解的步骤 专题归纳专题一:基础计算【例1】 完成下列各题:1.计算:2x 3·(-3x )2__________. 2.下列运算正确的是( )A. x 3·x 4=x 12B. (-6x 6)÷(-2x 2)=3x 3C. 2a -3a =-aD. (x -2)2=x 2-43.把多项式2mx 2-4mxy +2my 2分解因式的结果是__________.4分解因式:(2a -b )2+8ab =____________.专题二:利用幂的有关运算性质和因式分解可使运算简化 【例2】用简便方法计算.(1)0. 252009×42009-8100×0. 5300. (2)4292-1712.整式的乘法专题三:简捷计算法的运用【例3】设m 2+m -2=0,求m 3+3m 2+2000的值. .专题四:化简求值【例4】化简求值:5(m+n )(m-n )–2(m+n)2–3(m-n)2,其中m=-2,n= 15.专题五:完全平方公式的运用【例5】已知()211a b +=,()25a b -=,求(1)22a b +;(2)ab例题精讲基础题【例1】填空:1. (-a b)3·(a b 2)2= ; (3x 3+3x)÷(x 2+1)= . 2. (a +b)(a -2b)= ;(a +4b)(m+n)= . 3. (-a +b+c)(a +b-c)=[b-( )][b+( )].4. 多项式x 2+kx+25是另一个多项式的平方,则k= .5. 如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为 . 【例2】选择:6.从左到右的变形,是因式分解的为 ( )A.m a +mb-c=m(a +b)-cB.(a -b)(a 2+a b+b 2)=a 3-b 3C.a 2-4a b+4b 2-1=a (a -4b)+(2b+1)(2b-1) D.4x 2-25y 2=(2x+5y)(2x-5y) 7.下列多项式中能用平方差公式分解因式的是( )(A )22)(b a -+ (B )mn m 2052- (C )22y x -- (D )92+-x8. 如图是用4个相同的小矩形与1个小正方形镶嵌而成的 正方形图案,已知该图案的面积为49,小正方形的面积 为4,若用x ,y 表示小矩形的两边长(x >y),请观察 图案,指出以下关系式中,不正确的是 ( ) A.x+y=7 B.x-y=2C.4xy+4=49D.x 2+y 2=25【例3】9计算:(1)(-3xy 2)3·(61x 3y )2; (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(3)(9)(9)x y x y -++- (4)2[(34)3(34)](4)x y x x y y +-+÷-(5)22)1)2)(2(x x x x x +-+--( (6) [(x+y )2-(x -y )2]÷(2xy)中档题【例1】10.因式分解:21(1)4x x -+ (2)22(32)(23)a b a b --+(3)2x2y-8xy+8y (4)a2(x-y)-4b2(x-y)(5)2222x xy y z-+- (6)1(1)x x x+++(7)9a2(x-y)+4b2(y-x);(8)(x+y)2+2(x+y)+1 【例2】11.化简求值:(1).2)3)(3()2)(3(2-=-+-+-aaaxx其中,x=1【例3】12若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q值.【例4】13对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由能力题【例1】14下面是对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程.解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步) =(x 2-4x +4)2 (第四步) 回答下列问题:(1)第二步到第三步运用了因式分解的_______. A .提取公因式 B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)这次因式分解的结果是否彻底?________.(填“彻底”或“不彻底”) 若不彻底,请直接写出因式分解的最后结果_________.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.【例2】已知a 、b 、c 为△ABC 的三边,且满足2220a b c ab bc ac ++---= (1)说明△ABC 的形状;(2)如图①以A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,D 是y 轴上一点,连DB 、DC ,若∠ODB=60°,猜想线段 DO 、DC 、DB 之间有何数量关系,并证明你的猜想。

整式的乘除与因式分解(基础篇)含答案

整式的乘除与因式分解(基础篇)含答案

整式的乘除与因式分解一、复习目标:1.掌握与整式有关的概念;2.掌握同底数幂、幂的乘法法则,同底数幂的除法法则,积的乘方法则;3.掌握单项式、多项式的相关计算;4.掌握乘法公式:平方差公式,完全平方公式。

5..掌握因式分解的常用方法。

二、知识点分析:1. 同底数幂、幂的运算:a m ·a n =a m+n (m ,n 都是正整数).(a m )n =a mn (m ,n 都是正整数).1、 若6422=-a ,则a= 8 ;若8)3(327-=⨯n ,则n= 5 .()[]()[]m n x y y x 2322--= (x-2y)3n+2m .32=n a ,则n a 6= 27 .点评:考察公式的逆用,一般底不同时,化底相同,或化指数相同。

如:2a -2 = 64,因为64 = 26,所以a -2 = 6,a = 8如:a 2n = 3,那么a 6n = (a 2n )3 = 33 = 272.积的乘方(a b)n =a n b n (n 为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 计算:=()[]()()[]43p p m n n m m n -⋅-⋅- = (n-m)3p+4+4p = (n-m)7p+4点评:积的乘方,同底数幂公式的应用,可以先确定符号,“奇出偶不出”3.乘法公式平方差公式:()()22b a b a b a -=-+ 完全平方和公式:()2222b ab a b a ++=+ 完全平方差公式:()2222b ab a b a +-=- 1.利用平方差公式计算:2009×2007-20082=___-1___2. (a -2b +3c -d )(a +2b -3c -d )=___a 2-2ad+d 2-4b 2+12bc-9c 2___点评:套用公式时,需不拘于样式。

将符号不变的看作一个整体,符号变化的看作另一个整体。

如:(a -2b +3c -d )( a +2b -3c -d )= [(a-d ) - (2b-3c )]·[(a-d ) +(2b-3c )] ,于是就可以应用平方差公式。

第15章 整式的乘除与因式分解测试卷(含答案)

第15章 整式的乘除与因式分解测试卷(含答案)

第15章 整式的乘除与因式分解 测试卷注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.若32144mnx y x y x ÷=,则m 、n 满足条件的取值为 ( ). A .m =6,n =1 B .m =5,n =1 C .m =5,n =0 D .m =6,n =0 2.下列各式可以用平方差公式的是( ).A .(4)(4)a c a c -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D . 11()()22x y x y --+ 3.下列各式中是完全平方公式的是( ).A .224a x + B .2244x ax a +-- C .2444x x ++ D . 2412x x ++-4.在(1)623[()]a a -⋅-;(2)34)(a a -⋅;(3)2332)()(a a ⋅-;(4)43()a --中,计算结果为12a -的有( ).A .(1)和(3)B .(1)和(2)C .(2)和(3)D .(3)和(4)5.为了应用平方差公式计算()()a b c a b c -++-,必须先适当变形,下列各变形中,正确的是( ).A .()()a c b a c b +--+⎡⎤⎡⎤⎣⎦⎣⎦B .()()a b c a b c -++-⎡⎤⎡⎤⎣⎦⎣⎦C .()()b c a b c a +--+⎡⎤⎡⎤⎣⎦⎣⎦D .()()a b c a b c --+-⎡⎤⎡⎤⎣⎦⎣⎦ 6.下列多项式相乘的结果为1242--x x 的是( ).A .)4)(3(-+x xB .)6)(2(-+x xC .)4)(3(+-x xD .)2)(6(-+x x 7.计算24(1)(1)(1)(1)x x x x -++-+的结果是( ).A .0B .2C .-2D .-5 8. 下列多项式中,含有因式)1(+y 的多项式是( ). A .2232x xy y --B .22)1()1(--+y yC .)1()1(22--+y yD .1)1(2)1(2++++y y9.如图:(如图①)在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( ).图 ① 图 ② A . a 2-b 2 =(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .(a +2b )(a -b )= a 2+ab -2b 210.观察下列等式:170=,771=,4972=,34373=,240174=,…,由此可判断1007的个位数字是( ).A .3B .7C .1D .9二、填空题(本题共4小题,每小题5分,满分20分)11.不等式22(21)(21)x x --+≤2(3)x -的解集是_______________.12.已知2ma =,16nb =,则382m n+=____________.13.已知)3)(8(22q x x px x +-++的展开式中不含2x 项和3x 项,则q p +的值=______.14.如图,从直径是2x y +的圆中挖去一个直径为x 的圆和两个直径为y 的圆,则剩余部分的面积是_______________. 三、(本题共2小题,每小题8分,满分16分) 15.化简:(1)82()()mn mn ÷ (2) )9()15()3(24322y x xy y x -⋅-÷16.用乘法公式计算:(1)49.850.2⨯; (2)2298.四、(本题共2小题,每小题8分,共16分)17.已知x 是有理数,y 是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:2()(2)x y y x y -+-.18.利用简便方法计算:222111(1)(1)(1)234--- (22)11(1)(1)910--五、(本大题共2小题,每小题10分,满分20分) 19.因式分解:(1)x x x 2718323+- (2)()222164x x -+20.先化简,再求值:22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦;其中3,2a b 4==-3.13-,, 121.223,,, 1.50-,六、(本题满分12分)21.一个正方形的一边增加3cm ,另一边减少3cm ,所得到的长方形与这个正方形的每一边减少1cm 所得到的正方形的面积相等,求原来正方形的面积. 七、(本题满分12分)22.如图,图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除与因式分解
1、28 cm 接近于()
A .珠穆朗玛峰的高度
B .三层楼的高度
C .姚明的身高
D .一张纸的厚度
2、下列运算正确的是().
A .2a a a =4a ∙46a a a =
B .257()x x =
C .23y y y ÷=
D .22330ab a b -=
3、计算()4
323b a --的结果是( ).
(A)12881b a (B )7612b a (C )7612b a -(D )12881b a - 4、1. 计算 (– 1)2 + (– 1)3 = ().
A.– 2
B. – 1
C. 0
D. 2
5、化简123()x x -⨯的结果是()
A .5x
B .4x
C .x
D .1x
6、下列运算正确的是().
A .3a 2-a 2=3
B .(a 2)3=a 5
C .a 3.a 6=a 9
D .(2a )2=2a 2
7、下列运算正确的是()
A .224236x x x =·
B .22231x x -=-
C .2222233
x x x ÷= D .224235x x x += 8、下列运算中,正确的是()
A .2a a a +=
B .22a a a ⨯=
C .22
(2)4a a = D .325()a a = 9、下列计算中,结果正确的是()
A .236a a a =·
B .()()26a a a =·3
C .()326a a =
D .623a a a ÷=
10.下列计算正确的是()
A .236a a a =·
B .842a a a ÷=
C .325a a a +=
D .()32628a a =
11、若的值为则2y -x 2,54,32==y x ().A.53 B.-2 C. 5
53 D.56
12
、计算10(23)1)---的结果是_________.
13、已知102103m n ==,,
则3210m n +=____________. 14、计算32()a -=15、()3
22x -= ___________.
16、计算:(103)2=17、计算32[()]x -= 18、计算:92|2
1|)3(12-+----19
、计算:1
1023--+-⎛⎫ ⎪⎝⎭
20
、计算:0133⎛⎫ ⎪⎝⎭.21、计算:()013112223-⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭
22
、计算:201(1)π3--++
1.下列运算中正确的是()
A .2325a a a +=
B .22(2)(2)4a b a b a b +-=-
C .23622a a a ⋅=
D .222(2)4a b a b +=+
2、下列计算正确的是() .
A.2x+x=x 3
B.(3x)2=6x 2
C.(x -2)2=x 2-4
D.x 3÷x=x 2
3、计算232x x ÷的结果是().A .x B .x 2C .52x D .62x
4、下列运算正确的是( ) .
A .235()x x =
B .224347x x x +=
C .936()()x x x -÷-=
D .232(1)x x x x x x --+=--- 5、下列运算正确的是( ).
A .523a a a =+
B .632a a a =⋅
C .22))((b a b a b a -=-+D.222)(b a b a +=+
6、下列计算结果正确的是()
A .4332222y x xy y x -=⋅-
B .2253xy y x -=y x 22-
C .xy y x y x 4728324=÷
D .49)23)(23(2-=---a a a
7、下列各式计算正确的是()
A .53232a a a =+
B .()()xy xy xy 332=÷
C .()532
82b b = D .65632x x x =∙
二、填空题
8、计算:a 3 ÷ a 2 = __________.
9、计算:3213()9x x ⨯-=________;24(2)a --=________. 10、计算25(3)a a ·=.
11、已知:32
a b +=,1ab =,化简(2)(2)a b --的结果是. 12、当3,1x y ==时,代数式2()()x y x y y +-+的值是.
13、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b )2=a 2+2ab+b 2.你根据图乙能得到的数学公式是_________________
三、解答题
14、先化简,再求值:
22()()()2a b a b a b a +-++-,其中133
a b ==-,. 15、先化简,再求值:()()(2)a b a b b b +-+-,其中1a =-,1b =.
16、先化简,再求值:2(2)(2)(2)4a b a b b a b a b b +-++-÷,其中12
a =-
,2b =. 1、分解因式:a 2 ─ a b = ______________.
2、下列分解因式正确的是() A .)1(222--=--y x x x xy x B .)32(322---=-+-x xy y y xy xy
C .2)()()(y x y x y y x x -=---
D .3)1(32--=--x x x x
3、把代数式269mx mx m -+分解因式,下列结果中正确的是()
A .2(3)m x +
B .(3)(3)m x x +-
C .2(4)m x -
D .2(3)m x -
4、将整式9-x 2分解因式的结果是()
A .(3-x )2
B .(3+x )(3-x )
C .(9-x )2
D .(9+x )(9-x )
5、把多项式x 2一4x+4分解因式,所得结果是( ).
A .x(x 一4)+4 B.(x 一2)(x+2) C .(x 一2)2 D .(z+2)2
6、把3222x x y xy -+分解因式,结果正确的是()
A.()()x x y x y +-
B.()222x x xy y -+ C ()2x x y + D ()2x x y - 7、在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()
A .222()2a b a ab b +=++
B .222()2a b a ab b -=-+
C .22()()a b a b a b -=+-
D .22(2)()2a b a b a ab b +-=+-
8、下列多项式中,能用公式法分解因式的是()
A.x 2-xy
B. x 2+xy
C. x 2-y 2
D. x 2+y 2 9、下列式子中是完全平方式的是()
A .
B .
C .
D . 10.分解因式:2a 2– 4a + 2= 11、分解因式:22x x -=
12、因式分解:224a a -=.13、分解因式:(x+3)2-(x+3) ___________. 14、分解因式x x 823-=______.15、在实数范围内因式分解44-x = _____________. 16、分解因式。

相关文档
最新文档