勾股定理逆定理的作用
勾股定理及逆定理的应用

勾股定理的逆定理及应用知识点1:互逆命题与互逆定理 知识点2:勾股定理的逆定理如果三角形的三边长度分别是,,a b c ,并且满足222a b c +=,那么这个三角形是直角三角形。
注意:(1)勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三条边长,且满足两条较小的边的平方和等于最长边的平方,才可判断此三角形是直角三角形,最长边所对的角为直角。
(2)在应用勾股定理的逆定理时,注意计算准确,要写计算过程。
知识点3:勾股数(1)满足222a b c +=的三个正整数,,a b c 就是一组勾股数(2)对于任意两个整数,(0)m n m n >>,2222,,2m n m n mn +-这三个数就是一组勾股数,可见勾股数有无数组。
(3)常见的勾股数有①3,4,5 ②6,8,10 ③8,15,17 ④7,24,25 ⑤5,12,13 ⑥9,12,15【知识点一】根据数量关系判断三角形是否直角三角形。
例题1:在下列线段中能组成直角三角形三边的是( )A 7,10,13B 2226,8,10111,,345例题2:已知a 、b 、c 是△ABC 的三边,且满足a 2+b 2+c 2+50 =6a+8b+10c ,试判断△ABC 的形状.【变式练习】1、判断:三边长分别为2222,21,221(0)n n n n n n ++++>的三角形是否是直角三角形2、在正方形ABCD 中,F 是DC 边中点,E 是BC 上的一点,且EC=14BC 。
求证∠EFA=90°。
【知识点二】利用勾股定理逆定理构造直角三角形求其边或角。
例题3、如图在△ABC 中,AB=5,AC=13,BC 上的中线AD=6,求BC 边的长。
【变式练习】1、如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BE=12,CF=5.求线段EF 的长2、如图,在△ABC 中,D 为BC 边上与B 、C 不重合的任意一点,且AB=AC 。
勾股定理的逆定理知识点

要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;。
人教版八年级下册 17.2 勾股定理的逆定理 课件 (共15张PPT)

知识点一:勾股定理逆定理的实际应用
学以致用
1.我国南宋著名数学家秦九韶的著作《数书九章》里记载有
这样一道题目:“问有沙田块,有三斜,其中小斜五里,中斜
十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一
块三角形沙田,三条边长分别为5里、12里13里,问这块沙
田面积有多大?题中的“里”是我国市制长度单位,1里=
7
• 解:设AD=x,则CD=10-x.
• 在 RtABD 中,
•
DB2 AB2 AD2
在RtCDQ中,
DB2 CQ2 CD2
62 x2 82 (10 x)2
解得: x 3.6
AD长为6.4n mile
8
知识点二:勾股定理逆定理在几何中的应用
3.如图,在四边形ABCD中,AB=8,BC=6,AC=10,
①若∠C- ∠B= ∠A,则△ABC是直角三角形;
②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;
③若(c+a)(c-a)=b2,则△ABC是直角三角形;
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三
角形.
以上命题中的假命题个数是( A )
A.1个
B.2个
C.3个
D.4个
4.已知a、b、c是△ABC三边的长,且满足关系式 c2 +a2 - b2 + c - a = 0 ,则△ABC的形状是
典例讲评
解:根据题意: PQ=16×1.5=24 PR=12×1.5=18 QR=30
∵242+182=302, 即 PQ2+PR2=QR2 ∴∠QPR=90°
由”远航“号沿东北方向航行可知,∠1=45°.所以∠2=45°,
勾股定理重点知识点

勾股定理重点知识点2017精选关于勾股定理重点知识点一、勾股定理与逆定理A.勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。
如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2。
1、勾股定理应用的前提条件是在直角三角形中。
2、勾股定理公式a2+b2=c2 的变形有:a2= c2—b2,b2=c2-a2及c2=a2+b2。
3、由于a2+b2=c2>a2 ,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边。
B.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。
说明:①勾股定理的逆定理验证利用了三角形的全等。
②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形。
必须满足较小两边平方的和等于最大边的平方才能做出判断。
(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角。
然后进一步结合其他已知条件来解决问题。
注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是。
面积分割法、构造直角三角形二、实数与数轴1、实数与数轴上的点是一一对应关系。
任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数。
数轴上的任一点表示的数,不是有理数,就是无理数。
2、在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离。
3、利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小。
三、矩形的性质1、矩形的定义:有一个角是直角的平行四边形是矩形。
2、矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。
17.1勾股定理的逆定理及其应用(教案)

一、教学内容
本节课选自八年级数学下册第十七章第一节《勾股定理的逆定理及其应用》。教学内容主要包括以下两部分:
1.勾股定理的逆定理:如果一个三角形的两边长的平方和等于第三边的平方,那么这个三角形是直角三角形。
2.勾股定理逆定理的应用:通过勾股定理的逆定理判断一个三角形是否为直角三角形,并解决实际问题。
五、教学反思
在本次教学过程中,我深刻地感受到了勾股定理逆定理这一章节的教学效果和学生的接受程度。通过这节课的教学,我发现以下几点值得反思和总结:
1.学生对勾股定理逆定理的理解程度:在授课过程中,我发现部分学生对逆定理的概念理解不够深入,需要我在讲解时更加注重逻辑推理和实际例子的运用。今后,我将在教学中增加对逆定理推导过程的演示,让学生更好地理解其内涵。
举例:重点讲解逆定理的发现过程,如通过构建具体的直角三角形模型,让学生观察并总结出两边平方和等于第三边平方的特征。
2.教学难点
-理解逆定理的逻辑推理过程:学生需要理解并掌握从勾股定理到逆定理的逻辑推理过程,这对于他们的逻辑思维能力是一个挑战。
-在复杂问题中运用逆定理:在实际问题中,学生可能难以识别出可以使用逆定理的情况,或者在应用时遇到计算上的困难。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理逆定理的基本概念。勾股定理逆定理是指如果一个三角形的两边长的平方和等于第三边的平方,那么这个三角形是直角三角形。它在几何学中具有重要地位,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个实际问题的解决过程,展示如何利用勾股定理逆定理来判断直角三角形。
2.教学方法的选择:为了激发学生的学习兴趣,我采用了小组讨论、实验操作等形式多样的教学方法。实践证明,这些方法能够有效提高学生的参与度和积极性。但在小组讨论环节,我也注意到部分学生存在依赖思想,未能充分发挥自身的主观能动性。因此,在今后的教学中,我将加强对学生的引导,提高他们的独立思考能力。
勾股定理的逆定理的应用

勾股定理的逆定理的应用一、判断三角形是否是直角三角形例1:在△ABC 中,a=22n m -,b=2mn ,c=22n m +,其中m ,n 是正整数,且m >n ,试判断△ABC 是否是直角三角形.分析:本题中已给出三角形的三边长,判断该三角形是否是直角三角形,只需直接运用勾股定理的逆定理就可以了,但关键是确定最大边.解:∵m,n 是正整数,且m >n , ∴c >b,c >a .∴22422422222242)2()(n m n n m m mn n m b a ++-=+-=+ =42242n n m m ++.又∵=+=2222)(n m c 42242n n m m ++, ∴222c b a =+.∴△ABC 是直角三角形.说明:勾股定理的逆定理是直角三角形的判定方法之一,利用它判断一个三角形是否是直角三角形的步骤是:⑴确定最大边(不妨设为c );⑵计算2c 与22b a +的值;⑶比较2c 与22b a +是否相等,若相等,则此三角形是直角三角形.二、根据等式变形,确定三角形三边之间的关系,从而判断三角形的形状.例2:若△ABC 的三边长a,b,c 满足条件,201612200222c b a c b a ++=+++试判断的△ABC 形状.分析:由条件等式来判断三角形的形状,就是将已知的条件等式变形,再根据它的结构特点,得出a,b,c 的关系,从而判断三角形的形状.解:由已知得,0200201612222=+---++c b a c b a ∴,0)10020()6416()3612(222=+-++-++-c c b b a a ∴()()()01086222=-+-+-c b a .∵()()()010,08,06222≥-≥-≥-c b a∴a-6=0,b-8=0,c-10=0.∴a=6,b=8,c=10.∴22222210100643686c b a ===+=+=+. ∴△ABC 是直角三角形.说明:在此类题中,要判断的三角形一般都是特殊的三角形,如等边三角形、等腰三角形、直角三角形、等腰直角三角形,解这类题时,要善于把已知的条件等式变形(配方或因式分解等).三、与勾股定理的综合应用例3:如图1,已知:在正方形ABCD 中,E 是BC 中点,F 在AB 上,且BF=41AB . ⑴请你判断EF 与DE 的位置关系,与同学交流,并说明理由; ⑵若此正方形的面积为16,求DF 的长.分析:平面内两直线的位置关系有两种:平行和相交,EF 和DE 都过E 点,说明它们相交,如只考虑相交还不够,需考虑相交的特殊情况——垂直,从图中观察EF 与DE 是垂直的,故连接DF ,设正方形边长为a ,利用勾股定理,用2a 分别表示222,,DF EF DE ,再利用逆定理判断△DFE 为直角三角形,由此得到EF ⊥DE .解:(1)EF 与DE 垂直,即EF ⊥DE . 设正方形边长为a ,则AD=DC=a,AF=43a,BE=EC=21a . 在Rt △DAF 中,22222222162516943a a a a a AF AD DF =+=⎪⎭⎫⎝⎛+=+=.在Rt △CDE 中,22222222454121a a a a a CE CD DE =+=⎪⎭⎫⎝⎛+=+=.在Rt △EFB 中, 22222222165411612141a a a a a BE FB EF =+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=.∵,162516545222222DF a a a EF DE ==+=+ ∴△DFE 为直角三角形, ∴EF ⊥DE .(2)∵正方形的面积为16,∴2a =16. ∵,25161625162522=⨯==a DF ∴DF=5.说明:此题是勾股定理与逆定理的综合运用,解此题关键是:连接DF构造了一个三角图1形,因此解题时应灵活运用所学知识.例4:在四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,∠B=090,求四边形ABCD 的面积. 分析:由AB=3,BC=4, ∠B=090,想到连接AC,则Rt △ABC 的面积可求,且可求出AC 的长,因此在△ACD 中,三边长已知,欲求面积,想到它是不是直角三角形,因此用勾股定理的逆定理进行判断.解:连接AC, ∵AB=3,BC=4,∠B=090, ∴,25222=+=BC AB AC ∴AC=5. 在△ACD中,由勾股定理得169144251252222=+=+=+CD AC .而,1691322==AD ∴=+22CD AC 2AD .∴∠ACD=090,∴△ACD 是直角三角形. ∴.3012521,64321=⨯⨯==⨯⨯=∆∆ACD ABC S S ∴四边形ABCD 的面积为.36=+∆∆ACD ABC S S说明:本题综合运用了勾股定理及其逆定理,将不规则图形转化为规则图形是常用的数学方法,在这里,一方面要熟记常用的勾股数;另一方面要注意到:如果一个三角形的三边长已知或具有某些比例关系,那么就可以用勾股定理的逆定理去验证其是否是直角三角形.图2勾股定理的实际应用举例许多生活中的实际问题都可以转化为一个直角三角形问题,因此,勾股定理不仅在数学中,而且在其他自然科学中也被广泛的应用.下面我们举几例,供同学们复习时参考.例1 一艘轮船以每小时16海里的速度离开港口向南偏东450方向航行,另一艘轮船在同时以每小时12海里的速度向南偏西450方向航行,它们离开港口一个半小时后相距多远?分析:依据题意可画出如图1所示的示意图,可知∠AOB=900. 解:在Rt △AOB 中,因为OA=16×1.5=24,OB=12×1.5=18. 所以AB 2=OA 2+OB 2=242+182=900.所以AB=30.30海里.例2 如图2,美伊战争期间,美军运输车队计划沿由东向西延伸的公路L 向巴格达前线供应军用物资,一支先头小分队奉总部之命沿公路侦查敌情.当行至A 地时,测得一伊军炮兵阵地P 的方位是北偏西300,行至B 地时,测得P 地方位是北偏东300,继续前进到C 地,测得P 地方位是北偏东600,在C 地俘虏一名伊军士兵,得知C 、B 两地之间的距离不会超过10千米,并获得可靠情报:P 地伊方炮火的射程半径是9千米.根据以上数据,请问美侦察兵能否判断运输车队沿公路通行的安全性.分析:美军运输队沿公路行进的安全性决定于L 公路是否在P 地伊军炮火射程之内,即取决于P 地到L 公路的距离是多少,可以过P 作PD ⊥L ,垂足为D ,再将PD 放在直角三角形中球队,然后比较其与9千米的大小.解:(一)先按BC=10千米计算:连结PA 、PB 、PC ,作PD ⊥L ,垂足为D ,如图37,根据三次测得的方位角可知∠PAB=∠PBA=600,图1东北西南APB C60300 300图2L所以△PBA为等边三角形,∠PCB=300,所以△PBC为等腰三角形,从而AB=PB=BC=10(千米),进一步可得BD=210=5(千米).在Rt△PBD中,PD2=PB2-BD2=100-25=75,因为75<92=81,所以公路上点D在伊军炮火射程之内.(二)若BC<10(千米),则Rt△PBD中PB就小于10千米,BD就小于5千米,因而PD也相应缩小,致使D点更靠近伊军阵地.总之,美军运输车队沿L公路通行缺乏安全性.勾股定理与最短距离勾股定理的应用是非常广泛的,它可以帮助我们解决许多问题,在求几何体表面上两点之间的最短距离时,我们可以通过把立体图形展成平面图形,利用勾股定理求出几何体表面上两点之间的最短距离.下面举例说明勾股定理在解决这类问题时的应用.例1如图1,有一个“顽皮虫”想从点A沿棱长为1cm的正方体的表面爬到点B,求它所爬过的最短路程.析解:欲求正方体表面上点A与点B的最短路程,直接求解有困难,我们把以点A与点B为顶点的相邻的某两个正方形展开,得到一个长方形(如图2),由“两点之间线段最短”可知,“顽皮虫”在正方体表面上从点A爬到点B的最短路程是图2中线段AB的长.由勾股定理得,22215AB=+=cm).故“顽皮虫”5.例2如图3,有一圆柱,它的高等于12cm,底面半径等于6cm,在圆柱的下底面A图3ABCP600600300D点处有一只小蚂蚁,它想吃到上底面B 点(距D 点14圆处)处的食物,需要爬行的最短距离是多少?(π取3)析解:利用展开图将圆柱的侧面展开(如图4),易知蚂蚁在圆柱的表面上从A 点爬到B 点所经过的最短路程是图4中线段AB 的长.由条件知,底面圆的周长=2π×6=2×3×6=36(cm ),所以13694BD =⨯=(cm ).由勾股定理知,2212915AB =+=(cm ).故小蚂蚁需要爬行的最短距离是15cm .例3 如图5,圆柱形玻璃容器的高为18cm ,底面周长为60cm ,在外侧距下底1cm 的点S 处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点F 处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离.析解:将圆柱的侧面展开得到它的侧面展开图(如图6),CD ∥AB ,且AD =BC =12底面周长,BS =DF =1cm.则蜘蛛所走的最短路线的长度即为线段SF 的长度.过S 点作SM ⊥CD ,垂足为M 点,由条件知,SM =AD =12×60=30,MC =SB =DF =1cm ,所以MF =18-1-1=16cm ,在 Rt △MFS 中,由勾股定理得22163034SF =+=(cm ).故蜘蛛需要爬行的最短距离是34cm .评注:解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,然后再利用勾股定理求出最短距离.。
勾股定理逆定理及其应用

一、教材分析:(一)本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
课标要求学生必须掌握。
(二)学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键以及教法等。
(三)教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
教学目标知识技能1、了解勾股定理的逆定理的证明方法和证明过程;2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;3、会运用勾股定理的逆定理解决相关实际问题。
数学思考1、通过“创设情景—建立模型—实验探究—理论释意—拓展应用”的勾股定理的逆定理的探索过程,经历知识的发生、发展、形成和应用的过程;2、通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用。
解决问题通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度1、通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辨证关系;2、在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
重点勾股定理的逆定理及其应用。
勾股定理及勾股定理的逆定理

勾股定理及勾股定理的逆定理
勾股定理:重点是准确掌握勾股定理,难点是能熟练地运用勾股定理.
知识点精析与应用
1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a²+b²=c².
(1)注意:由于直角三角形斜边最长,故运用勾股定理时,一定要抓住直角三角形最长边(即斜边)的平方等于两短边(两直角边)的平方和.不能写成
a²+c²=b²,除非b为斜边才能这样写.
(2)定理的作用:勾股定理揭示了直角三角形的三边关系.其作用有:①已知两边求第三边;②证明三角形中的某些线段的平方关系;③作长为根号n的线段.
2.勾股定理的证明
勾股定理的证明方法很多,课本里是用面积法证明的,这种证明方法同学们一定要掌握好.
[解题方法指导]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 、如图四边形ABCD各边的长度分别为:3,4,12,13, ∠ABC=90°。 求四边形的面积。
4 、已知:如图,在△ABC中,AB =15,BC =14,AC =13. (1)求△ABC的面积. (2)求AB边上的高.
3.列举常见的勾股数。
( 1) 3 , 4 , 5 (3)7 ,24, ,25
(2)5 ,12 ,13 (4)8 ,15 ,17
4.一个直角三角形斜边长为15,两直角边 之比为3:4,求两直角边的长。
9,12
方法总结:
1.勾股定理作用:
求边长,周长,面积
2.勾股定理逆定理的作用:
判断三角形的形状
学习过程
一 复习知识点 二 例题分析,巩固知识的应用 三 角边长分别 为3,4,则正方形ABEF的面积为 25 。
变式:在Rt△ABC中, 两边长分别为3,4,则 第三边长为 。
2.如果一个三角形三边分别为5,12, 13,那么这个三角形的面积为 30 。
典型例题: 例1: 如图,在△ABC中,∠ACB=90º , CD⊥AB, D为垂足,AC=6cm,BC=8cm. 求① △ABC的面积; ②斜边AB的长;③斜 边AB上的高CD的长。
A
D
例 2: 如右图,已知 AB⊥BC,AB=4,BC=3,CD=13,AD=12;求四 边形ABCD的面积.
D A
B
C
例3: 如图所示,有一个圆柱,它的高等于12厘米,底面半 径等于3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到 上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最 短路程是多少?(π的值取3) B C B
A
A
例4:
小结与反思
通过本节课的学习,你有什么收获?与大家分享。
练习 1、在Rt△ABC中,已知两边长为5、12,则第三边的长 为 。