第五章 定积分的性质
同济大学高等数学第六版上册第五章第一节定积分的概念与性质

三、存在定理
定理1
当函数 f ( x ) 在区间 a , b] 上连续时, [
[ 称 f ( x ) 在区间 a , b] 上可积.
定理2
[ 设函数 f ( x ) 在区间 a , b] 上有界,
且只有有限个间断点, 则 f ( x ) 在
区间[a , b ]上可积.
证
b
b
b
a [ f ( x ) g( x )]dx
n
b
lim [ f ( i ) g ( i )]xi
0 i 1
n
n
lim f ( i )xi lim g( i )xi
a f ( x )dx g( x )dx. a
b
0 i 1 b
注意:
被 积 表 达 式
积 分 变 量
[a , b] 积分区间
(1) 积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.
a f ( x )dx a f (t )dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
b
b
b
[ (3)当函数 f ( x ) 在区间 a , b] 上的定积分存在时,
难点
定义及换元法和分部法的运用
基本要求
①正确理解定积分的概念及其实际背景 ②记住定积分的性质并能正确地运用 ③掌握变上限定积分概念,微积分基本定理, 并会用N-L公式计算定积分, ④能正确熟练地运用换元法和分部积分法 计 算定积分 ⑤正确理解两类广义积分概念, 并会用定义 计算一些较简单的广义积分。
定积分的概念
前一章我们从导数的逆运算引出了不定积 分,系统地介绍了积分法,这是积分学的第一类 基本问题。本章先从实例出发,引出积分学的第 二类基本问题——定积分,它是微分(求局部量 )的逆运算(微分的无限求和——求总量),然 后着重介绍定积分的计算方法,它在科学技术领 域中有着极其广泛的应用。 重点 定积分的概念和性质,微积分基本公 式,定积分的换元法和分部积分法
上交大微积分教学课件 第五章定积分及其应用

最小值, 则
•性质9(定积分中值定理) 如果函数f(x)在闭区间[a, b]上连
续, 则在积分区间[a, b]上至少存在一个点 , 使下式成立:
·性质10设函数f(x)在区间[a, b]上连续,则
a
f
(x)dx
0,
a
a
2 0 f (x)dx,
(f (x)是奇函数); (f (x)是偶函数).
第二节 微积分基本定理
则该曲线弧长L为
L r2( ) r2( ) d
注意:弧长计算公式中的下限一定要小于上限.
*三、定积分在物理上的应用
1.变力沿直线做功
由物理学知道,如果物体在作直线运动的
过程中有一个不变的力F 作用在这物体上,且
这力的方向与物体的运动方向一致,那么,在
Oa
A(x) bx
y c, y dV π d 2 ( y)dy. c
y
平行截面面积已知的立体体积
❖ 有一立体被垂直于x轴的平面相截,被截体积 位于 x a和 x b的两平面之间,而且它被垂 直于x轴的平面所截的截面积是x的已知连续 函数 A(x) ,其立体的体积为
b
V a A(x) d x
(1)分割: T1t0<t1<t2< <tn1<tnT2, tititi1;
(2)近似: 物体在时间段[ti1, ti]内所经过的路程近似为
Siv(i)ti ( ti1< i<ti );
(3)求和: 物体在时间段[T1, T2]内所经过的路程近似为
n
S v( i )ti ;
i 1
(4)取极限: 记max{t1, t2,, tn}, 物体所经过的路程为
取 ε 0 ,如果极限 lim b f (x)dx 存在,则称此极限为函 ε0 a
高等数学-高等数学-第5章定积分

教学过程教学思路、主要环节、主要内容我们先来看一个实际问题———求曲边梯形的面积。
设曲边梯形是有连续曲线y=f(x)、x轴与直线x=a、x=b所围成。
现在计算它的面积A.我们知道矩形面积的求法,但是此图形有一边是一条曲线,该如何求呢?我们知道曲边梯形在底边上各点处的高f(x)在区间[a,b]上变动,而且它的高是连续变化的,因此在很小的一段区间的变化很小,近似于不变,并且当区间的长度无限缩小时,高的变化也无限减小。
因此,如果把区间[a,b]分成许多小区间,在每个小区间上,用其中某一点的高来近似代替同一个小区间上的窄曲变梯形的变高,我们再根据矩形的面积公式,即可求出相应窄曲边梯形面积的近似值,从而求出整个曲边梯形的近似值。
显然:把区间[a,b]分的越细,所求出的面积值越接近于精确值。
为此我们产生了定积分的概念。
定积分的概念:设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点a=x0<x1<...<x n-1<x n=b 把区间[a,b]分成n个小区间[x0,x1],...[x n-1,x n], 在每个小区间[x i-1,x i]上任取一点ξi(x i-1≤ξi≤x i),作函数值f(ξi)与小区间长度的乘积f(ξi)△x i并作出和,如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分,记作。
即:定理(1):设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积。
(2):设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
如果我们对面积赋以正负号,在x轴上方的图形面积赋以正号,在x轴下方的图形面积赋以负号,则在一般情形下,定积分的几何意义为:它是介于x轴、函数f(x)的图形及两条直线x = a、x = b之间的各部分面积的代数和。
高等数学 第五章定积分习题课

∫
b
a
f ( x )dx ≤ ∫ g ( x )dx
a
b
⑧估值定理:设M 和 m 分别是函数 f ( x )在区间[a, b ]上的 估值定理: 最大值和最小值, 最大值和最小值,则
m (b − a ) ≤ ∫ f ( x )dx ≤ M (b − a )
a b
上连续, ⑨定积分中值定理:如果函数 f ( x ) 在闭区间[a, b ] 上连续 定积分中值定理: 则至少存在一点ξ ∈(a , b) ,使下式成立: 使下式成立: 使下式成立
b b b
b
a
b
b
∫
b
a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
⑤区间长: ∫ 1dx = b − a 区间长:
a
b
保号性: ⑥保号性:如果在区间[a, b ]上, f ( x ) ≥ 0 ,则∫ a f ( x )dx ≥ 0
b
⑦单调性:如果在区间 [a, b ] 上, f ( x ) ≤ g ( x ) 则 单调性:
b
∫
b
a
f ( x )dx = lim ∫ f ( x )dx −
t →b a
t
设 c ( a < c < b ) 为 f ( x ) 的瑕点,则有 的瑕点,
∫
b a
f ( x )dx = ∫ f ( x )dx + ∫ f ( x )dx
a c
c
b
= lim ∫ f ( x )dx + lim ∫ f ( x )dx − +
∫
b
a
f ′( x )dx = [ f ( x )] a = f (b) − f (a ) = a − b
第五章,定积分

②设f (x)在区间[a b]上有界 且只有有限个间断点 则f (x) 在[a b]上可积
③设f (x)在区间[a b]上只有有限个第一类间断点 则f (x) 在 [a b]上可积
④若f (x)在区间[a b]上单调,则f (x) 在[a b]上可积
4.定积分的性质
两点规定
(1)当ab时
b
a f (x)dx 0.
n i 1
f
i n
.
等式右端的极限可通过等式左端的积分来计算.
2.定积分的几何意义
(1)设
b
a
f
(x) dx存在,若在a,b上f
x
0,
则 b a
f
(x) d x
的值等
于曲线 y f x与直线 x a, x b以及 x 轴所围成的曲边
梯形的面积.
(2) 若在
a, b 上f
x
0,则 b a
(2)当a>b时
b
a
f (x)dx f (x)dx.
a
b
性质1 函数的和(差)的定积分等于定积分的和(差) ,即
b
a[
f
(x)
g(x)]dx
b
a
f
(x)dx
b
a g(x)dx
性质2 被积函数的常数因子可以提到积分号外面, 即
abk
f
(x)dx
k
b
a
f
(x)dx
性质3 如果将积分区间分成两部分,则在整个区间上的定
积分等于这两部分区间上定积分之和,即
b
a
f
(x)dx
c
a
f
(x)dx
b
c
f
5.1 定积分的概念与性质

思 考 题
将和式极限:
lim
n
1 n
sin
sin 2 nn
sin
(n
1) n
表示成定积分.
思考题解答
原式
lim
n
1 n
sin
n
sin
2 n
sin
(n
1) n
sin
n n
lim 1 n sin i n n i1 n
1
lim
n
n i1
sin
i n
n
1
sin xdx.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
解决步骤 : 1) 大化小. 在区间 [a , b] 中任意插入 n –1 个分点
x i
1
0 1 x dx
0
i
i1 i
1x
nn
(2)
lim 1p
n
2p n p1
n
p
lim
n
n
i1
i n
p
1 n
x i
1 x p dx 0
i
定四、积定分积分的的性性质质
对定积分的补充规定:
(1)当a
b时, b a
f
(
x)dx
0;
(2)当a
b时, b a
f
( x)dx
a
b
f
( x)dx .
1)
同济大学(高等数学)_第五章_定积分及其应用

第五章 定积分及其应用本章开始讨论积分学中的另一个基本问题:定积分.首先我们从几何学与力学问题引进定积分的定义,之后讨论它的性质与计算方法.最后,来讨论定积分的应用问题.第1节 定积分的概念与性质定积分问题举例 1.1.1 曲边梯形的面积 曲边梯形设函数)(x f y =在区间[]b a ,上非负、连续由直线0,,===y b x a x 及曲线)(x f y =所围成的图形称为曲边梯形 其中曲线弧)(x f y =称为曲边 求曲边梯形的面积的近似值 将曲边梯形分割成一些小的曲边梯形每个小曲边梯形的面积都近似地等于小矩形的面积则所有小矩形面积的和就是曲边梯形面积的近似值具体方法是在区间[]b a ,中任意插入若干个分点(图5-1),1210b x x x x x a n n =<<<<<=-把[]b a ,分成n 个小区间[],,10x x [],,21x x [],,32x x [],,,1n n x x -它们的长度依次为.,,,1122011--=∆-=∆-=∆n n n x x x x x x x x x经过每一个分点作平行于y 轴的直线段 把曲边梯形分成n 个窄曲边梯形在每个小区间[]i i x x ,1-上任取一点,i ξ 以[]i i x x ,1-为底、)(i f ξ为高的窄矩形近似替代第i 个窄曲边梯形,n i ,,3,2,1 =,把这样得到的n 个窄矩形面积之和作为所求曲边梯形面积A 的近似值 即∑=∆=∆++∆+∆≈ni i i n n x f x f x f x f A 12211.)()()()(ξξξξ求曲边梯形的面积的精确值 显然分点越多、每个小曲边梯形越窄所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值 因此要求曲边梯形面积A 的精确值只需无限地增加分点使每个小曲边梯形的宽度趋于零记{},,,,m ax 21n x x x ∆∆∆= λ于是上述增加分点 使每个小曲边梯形的宽度趋于零 相当于令.0→λ所以曲边梯形的面积为∑=→∆=ni i i x f A 1.)(lim ξλ图5-11.1.2 变速直线运动的路程 设物体作直线运动已知速度)(t v v =是时间间隔[]21,T T 上t 的连续函数且,0)(≥t v 计算在这段时间内物体所经过的路程S求近似路程我们把时间间隔[]21,T T 分成n 个小的时间间隔i t ∆ 在每个小的时间间隔i t ∆内物体运动看成是均速的 其速度近似为物体在时间间隔i t ∆内某点i τ的速度)(i v τ 物体在时间间隔i t ∆内 运动的路程近似为.)(i i i t v s ∆=∆τ把物体在每一小的时间间隔i t ∆内 运动的路程加起来作为物体在时间间隔[]21,T T 内所经过的路程S 的近似值 具体做法是 在时间间隔[]21,T T 内任意插入若干个分点,21210T t t t t t T n n i =<<<<<=-[]21,T T 分成n 个小段[][][],,,,,,12110n n t t t t t t -各小段时间的长依次为.,,,1122011--=∆-=∆-=∆n n n t t t t t t t t t相应地 在各段时间内物体经过的路程依次为.,,,21n s s s ∆∆∆在时间间隔[]i i t t ,1-上任取一个时刻),(1i i i i t t <<-ττ 以i τ时刻的速度)(i v τ来代替[]i i t t ,1-上各个时刻的速度得到部分路程i s ∆的近似值 即).,,2,1()(n i t v s i i i =∆=∆τ于是这n 段部分路程的近似值之和就是所求变速直线运动路程S 的近似值 即∑=∆≈ni ii t v S 1)(τ求精确值记{},,,,m ax 21n t t t ∆∆∆= λ当0→λ时 取上述和式的极限 即得变速直线运动的路程∑=→∆=ni ii t v S 10)(lim τλ定积分的概念 抛开上述问题的具体意义 抓住它们在数量关系上共同的本质与特性加以概括就抽象出下述定积分的定义定义 设函数)(x f y =在[]b a ,上有界 在[]b a ,中任意插入若干个分点,1210b x x x x x a n n =<<<<<=-把区间[]b a ,分成n 个小区间[],,10x x [],,21x x [],,32x x [],,,1n n x x -各小段区间的长依次为.,,,1122011--=∆-=∆-=∆n n n x x x x x x x x x在每个小区间[]i i x x ,1-上任取一个点,i ξ作函数值)(i f ξ与小区间长度i x ∆的乘积),,2,1()(n i x f i i =∆ξ并作出和∑=∆=ni ii x f S 1)(ξ记{},,,,m ax 21n x x x ∆∆∆= λ如果不论对[]b a ,怎样分法 也不论在小区间[]i i x x ,1-上点,i ξ怎样取法 只要当0→λ时 和S 总趋于确定的极限I 这时我们称这个极限I为函数)(x f 在区间[]b a ,上的定积分记作⎰ba dxx f )( 即 ∑⎰=→∆=ni i i ba x f dx x f 1)(lim )(ξλ其中)(x f 叫做被积函数 dx x f )(叫做被积表达式 x 叫做积分变量 a 叫做积分下限b 叫做积分上限 []b a ,叫做积分区间根据定积分的定义 曲边梯形的面积为⎰=ba dx x f A )(变速直线运动的路程为dtt v S TT )(21⎰=说明(1)定积分的值只与被积函数及积分区间有关 而与积分变量的记法无关 即⎰⎰⎰==ba b a b a duu f dt t f dx x f )()()((2)和∑=∆ni i i x f 1)(ξ通常称为f (x )的积分和(3)如果函数)(x f 在[]b a ,上的定积分存在 我们就说)(x f 在区间[]b a ,上可积 函数)(x f 在[]b a ,上满足什么条件时 )(x f 在[]b a ,上可积呢 定理1 设)(x f 在区间[]b a ,上连续 则f (x ) 在[]b a ,上可积 定理2 设)(x f 在区间[]b a ,上有界 且只有有限个间断点 则)(x f 在[]b a ,上可积定积分的几何意义设)(x f 是[]b a ,上的连续函数,由曲线)(x f y =及直线0,,===y b x a x 所围成的曲边梯形的面积记为A .由定积分的定义易知道定积分有如下几何意义:(1)当0)(≥x f 时,A dx x f b a =⎰)( (2)当0)(≤x f 时,A dx x f b a-=⎰)((3)如果)(x f 在[]b a ,上有时取正值,有时取负值时,那么以[]b a ,为底边,以曲线 )(x f y =为曲边的曲边梯形可分成几个部分,使得每一部分都位于x 轴的上方或下方.这时定积分在几何上表示上述这些部分曲边梯形面积的代数和,如图所示,有321)(A A A dx x f b a+-=⎰其中321,,A A A 分别是图5-2中三部分曲边梯形的面积,它们都是正数.图5-2例1. 利用定义计算定积分dx x 210⎰解 把区间[0 1]分成n 等份分点和小区间长度分别为ni x i =(i1 2n 1) nx i 1=∆(i 1 2n )取),,,2,1(n i nii ==ξ作积分和 ∑∑∑===⋅=∆=∆ni in i i i ni i n ni x x f 121211)()(ξξ)12)(1(61113123++⋅==∑=n n n n i n ni )12)(11(61n n ++=因为n1=λ 当0→λ时∞→n 所以31)12)(11(61lim )(lim 10210=++=∆=∞→=→∑⎰n n x f dx x n n i i i ξλ图5-3例2 用定积分的几何意义求⎰-10)1(dxx解 函数x y -=1在区间[]1,0上的定积分是以x y -=1为曲边以区间[]1,0为底的曲边梯形的面积 因为以x y -=1为曲边以区间[]1,0为底的曲边梯形是一直角三角形 其底边长及高均为1 所以211121)1(10=⨯⨯=-⎰dx x图5-4例3利用定积分的几何意义,证明21112π=-⎰-dx x .证明 令]1,1[,12-∈-=x x y ,显然0≥y ,则由21x y -=和直线1,1=-=x x ,0=y 所围成的曲边梯形是单位圆位于x 轴上方的半圆.如图5-5所示.因为单位圆的面积π=A ,所以半圆的面积为2π. 由定积分的几何意义知:21112π=-⎰-dx x .图5-5定积分的性质 两点规定(1)当b a =时 0)(=⎰ba dx x f(2)当b a >时⎰⎰-=ab ba dxx f dx x f )()(性质1 函数的和(差)的定积分等于它们的定积分的和(差) 即⎰⎰⎰±=±ba b a b a dxx g dx x f dx x g x f )()()]()([证明:⎰±ba dx x g x f )]()([∑=→∆±=ni i i i x g f 10)]()([lim ξξλ∑∑=→=→∆±∆=ni i i ni i i x g x f 1010)(lim )(lim ξξλλ⎰⎰±=ba ba dxx g dx x f )()(性质2 被积函数的常数因子可以提到积分号外面 即⎰⎰=ba b a dxx f k dx x kf )()(这是因为∑⎰=→∆=ni i i ba x kf dx x kf 10)(lim )(ξλ⎰∑=∆==→ba ni i i dxx f k x f k )()(lim 10ξλ性质如果将积分区间分成两部分则在整个区间上的定积分等于这两部分区间上定积分之和即⎰⎰⎰+=bc c a b a dxx f dx x f dx x f )()()(这个性质表明定积分对于积分区间具有可加性 值得注意的是不论c b a ,,的相对位置如何总有等式⎰⎰⎰+=bc c a b a dx x f dx x f dx x f )()()(成立 例如当c b a <<时由于⎰⎰⎰+=cb ba ca dxx f dx x f dx x f )()()(于是有⎰⎰⎰-=c b c a b a dx x f dx x f dx x f )()()(⎰⎰+=bc c a dxx f dx x f )()(性质4 如果在区间[]b a ,上f (x ) 1 则 ab dx dx ba ba -==⎰⎰1性质5 如果在区间[]b a ,上 f (x )0则⎰≥ba dx x f 0)((ab )推论1 如果在区间[]b a ,上 f (x ) g (x ) 则⎰⎰≤b a ba dx x g dx x f )()((ab )这是因为g (x )f (x )0 从而⎰⎰⎰≥-=-ba ba ba dx x f x g dx x f dx x g 0)]()([)()(所以⎰⎰≤b a ba dxx g dx x f )()(推论2 ⎰⎰≤ba ba dx x f dx x f |)(||)(|(ab ) 这是因为|f (x )| f (x ) |f (x )|所以⎰⎰⎰≤≤-ba ba ba dxx f dx x f dx x f |)(|)(|)(|即⎰⎰≤babadx x f dx x f .)(|)(|性质6 设M 及m 分别是函数)(x f 在区间[]b a ,上的最大值及最小值 则⎰-≤≤-ba ab M dx x f a b m )()()((ab )证明 因为 m f (x ) M 所以⎰⎰⎰≤≤b a ba b a Mdxdx x f mdx )(从而⎰-≤≤-ba ab M dx x f a b m )()()(性质7 (定积分中值定理) 如果函数)(x f 在闭区间[]b a ,上连续则在积分区间[]b a ,上至少存在一个点使下式成立⎰-=ba ab f dx x f ))(()(ξ这个公式叫做积分中值公式证明 由性质6⎰-≤≤-ba ab M dx x f a b m )()()(各项除以a b - 得⎰≤-≤ba Mdx x f ab m )(1 再由连续函数的介值定理 在[]b a ,上至少存在一点使 ⎰-=ba dxx f ab f )(1)(ξ于是两端乘以a b -得中值公式⎰-=ba ab f dx x f ))(()(ξ注意不论b a <还是ba > 积分中值公式都成立并且它的几何意义是:由曲线)(x f y =,直线b x a x ==,和x 轴所围成曲边梯形的面积等于区间],[b a 上某个矩形的面积,这个矩形的底是区间],[b a ,矩形的高为区间],[b a 内某一点ξ处的函数值)(ξf ,如图5-6所示.图5-6习题 5-11.利用定积分的概念计算下列积分.(1)()ax b dx +⎰01; (2)a dx x 01⎰ (a >0). 2.说明下列定积分的几何意义,并指出它们的值. (1)dx x ⎰+1)12(; (2)dx x r rr ⎰--22; (3)dx x ⎰3; (4)dx x ⎰--3329.3.不经计算比较下列定积分的大小 (1)dx x⎰12与dx x ⎰13; (2)dx x ⎰40sin π与dx x ⎰40cos π;(3)dx x ⎰1与dx x ⎰+10)1ln(; (4)dx x ⎰10与dx x ⎰12.4.设)(x f 为区间[]b a ,上单调增加的连续函数,证明:))(()())((a b b f dx x f a b a f ba-≤≤-⎰5.用定积分定义计算极限)21(lim 22222nn nn n n n n ++++++∞→第2节 微积分基本公式变速直线运动中位置函数与速度函数之间的联系 设物体从某定点开始作直线运动在t 时刻所经过的路程为)(t S 速度为),0)()(()(≥'==t v t S t v v 则在时间间隔[]21,T T 内物体所经过的路程S 可表示为)()(12T S T S -及dtt v TT )(21⎰即)()()(1221T S T S dt t v TT -=⎰上式表明速度函数)(t v 在区间[]21,T T 上的定积分等于)(t v 的原函数)(t S 在区间[]21,T T 上的增量这个特殊问题中得出的关系是否具有普遍意义呢 积分上限函数及其导数定义 设函数)(x f 在区间[]b a ,上连续并且设x 为[]b a ,上的一点我们把函数)(x f 在部分区间[]x a ,上的定积分dx x f xa )(⎰称为积分上限的函数它是区间[]b a ,上的函数记为dxx f x xa)()(⎰=Φ 或dtt f x xa)()(⎰=Φ定理1 如果函数)(x f 在区间[]b a ,上连续 则函数dt t f x xa)()(⎰=Φ在[]b a ,上具有导数 并且它的导数为)()()(x f dt t f dx d x xa==Φ'⎰)(b x a ≤≤证明 若),(b a x ∈取x ∆使).,(b a x x ∈∆+)()(x x x Φ-∆+Φ=∆Φdt t f dt t f xa xx a )()(⎰⎰-=∆+ dt t f dt t f axxx a)()(⎰⎰+=∆+xf dt t f xx x∆==⎰∆+)()(ξ应用积分中值定理 有,)(x f ∆=∆Φξ 其中ξ在x 与x x ∆+之间 0→∆x 时 x→ξ 于是),()(lim )(lim lim00x f f f x x x x ===∆∆Φ→→∆→∆ξξξ即)()(x f x =Φ'若a x = 取0>∆x 则同理可证)()(a f x =Φ'+ 若b x =取0<∆x 则同理可证)()(b f x =Φ'-推论 如果)(x ϕ可导,则)()]([])([])([)()(x x f dt t f dt t f dxd x x a x a ϕϕϕϕ'='=⎰⎰更一般的有[][]).()()()()()()(x x f x x f dt t f x x ψψϕϕϕψ'-'=⎰例1 计算tdt e dxd x tsin 0⎰-. 解 tdt e dx d x tsin 0⎰-=]sin [0'⎰-tdt e x t =x e x sin -. 例2 求极限402sin limxtdt x x ⎰→.解 因为0lim 4=→x x ,⎰⎰==→200000sin sin lim x x tdt tdt ,所以这个极限是0型的未定式,利用洛必达法则得42sin limx tdt x x ⎰→=32042sin lim x x x x ⋅→=2202sin lim x x x → =220sin lim 21xx x → =21. 例3 设)(x f 在[)+∞,0内连续且0)(>x f 证明函数⎰⎰=xxdtt f dt t tf x F 00)()()(在),0(+∞内为单调增加函数证明 )()( 0x xf dt t tf dxd x=⎰ )()(0x f dt t f dxd x=⎰ 故2000))(()()()()()(⎰⎰⎰-='xx xdt t f dtt tf x f dt t f x xf x F 200))(()()()(⎰⎰-=xxdt t f dt t f t x x f按假设 当x t <<0时,0)()(,0)(>->t f t x t f 所以)(0>⎰dt t f x)()(0>-⎰dt t f t x x从而),0(0)(>>'x x F 这就证明了)(x F 在),0(+∞内为单调增加函数定理2 如果函数)(x f 在区间[]b a ,上连续则函数dt t f x xa)()(⎰=Φ就是)(x f 在[]b a ,上的一个原函数定理的重要意义一方面肯定了连续函数的原函数是存在的另一方面初步地揭示了积分学中的定积分与原函数之间的联系牛顿莱布尼茨公式定理3 如果函数)(x F 是连续函数)(x f 在区间[]b a ,上的一个原函数 则)()()(a F b F dx x f ba -=⎰此公式称为牛顿莱布尼茨公式也称为微积分基本公式证明 已知函数)(x F 是连续函数)(x f 的一个原函数 又根据定理2 积分上限函数dt t f x xa)()(⎰=Φ也是)(x f 的一个原函数于是有一常数C 使).()()(b x a C x x F ≤≤=Φ-当a x =时有C a a F =Φ-)()(,而0)(=Φa ,所以)(a F C = 当b x =时)()()(a F b b F =Φ- 所以)()()(a F b F b -=Φ 即)()()(a F b F dx x f ba -=⎰ 为了方便起见 可把)()(a Fb F -记成b ax F )]([ 于是)()()]([)(a F b F x F dx x f ba b a -==⎰该公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系 例4 计算⎰102dxx解 由于331x 是2x 的一个原函数 所以31031131]31[33103102=⋅-⋅==⎰x dx x例5 计算2311xdx +⎰-解 由于x arctan 是211x+的一个原函数 所以31231][arctan 1--=+⎰x x dx)1arctan(3arctan --=πππ127)4 (3 =--=例6 计算⎰--121dxx解 1212|]|[ln 1----=⎰x dx xln 1ln 2ln 2例7 求dx x ⎰--312.解dx x ⎰--312=⎰⎰⎰⎰---+-=-+-21322132)2()2(|2||2|dx x dx x dx x dx x=322212)221()212(x x x x -+--=2129+=5.例8 计算正弦曲线y sin x 在[0]上与x 轴所围成的平面图形的面积解 这图形是曲边梯形的一个特例 它的面积ππ0]cos [sin x xdx A -==⎰(1)(1)2习题5-21.设0()d xf x t t =⎰,求2()4f π';2.设30()cos d xf x x t t =⎰,求()f x '';3.求下列函数的导数 (1)dt e x f xt ⎰-=0)(; (2)dt t x f x ⎰+=121)(; (3)dt t f ⎰=θθθcos sin )(; (4)dt t x f x ⎰+=221)(.4.计算下列导数(1)2220d d d x t t e t x ⎰; (2)22d d 1x x t x t +⎰; (3)220d ()sin d d xt x t t x -⎰.5.求下列极限(1))cos(1)sin(lim11t dtt xx ππ+⎰→; (2)dtte dt e xt xt x ⎰⎰→02222)(lim.6.计算下列定积分 (1)dx x x )1(212-+⎰; (2)dx x x )2(21+⎰; (3)dx x⎰211;(4)dx x ⎰πcos ; (5)dx x ⎰π20sin ; (6)10e d x x ⎰;(7)dx x ⎰-10)cos 32(; (8)dx x⎰1100; (9)dx x x ⎰+-12211; (10)dx x ⎰+π2cos 1; (11)dx x x ⎰+41)1(; (12)dx x ⎰+331211; (13)dx x⎰-21211; (14)1100d xx ⎰; (15)dx x x x ⎰-+++012241133;(16)dx x e ⎰---+2111; (17)dx x ⎰402tan π; (18)10max{,1}d x x x -⎰8.设()21,11,12x x f x x x +≤⎧⎪=⎨>⎪⎩,求()20d f x x ⎰.第3节 定积分的计算定积分的换元积分法定理 假设函数)(x f 在区间[]b a ,上连续 函数)(t x ϕ=满足条件(1) ;)(,)(b a ==βϕαϕ(2) )(t ϕ在[]βα, (或[]αβ,)上具有连续导数 且其值域不越出[]b a ,则有dtt t f dx x f b a )()]([)(ϕϕβα'=⎰⎰这个公式叫做定积分的换元公式证明 由假设知)(x f 在区间[]b a ,上是连续因而是可积的[])()(t t f ϕϕ'在区间[]βα, (或[]αβ,)上也是连续的因而是可积的假设)(x F 是)(x f 的一个原函数 则).()()(a F b F dx x f ba-=⎰另一方面因为[]{}[][])()()()()(t t f t t F t F ϕϕϕϕϕ'=''='所以F [(t )]是[])()(t t f ϕϕ'的一个原函数 从而[]dt t t f ⎰'βαϕϕ)()([][]).()()()(a F b F F F -=-=αϕβϕ因此dtt t f dx x f ba )()]([)(ϕϕβα'=⎰⎰例1 求dx xx ⎰+301.解 令t x =+1,则12-=t x ,tdt dx 2=,当0=x 时,1=t ,当3=x 时,2=t ,于是dx xx ⎰+301=tdt tt 21212⋅-⎰=dt t ⎰-212)1(2=213]31[2t t -=38例2 求dx e x ⎰-2ln 01.解 令t e x =-1,则)1ln(2t x +=,dt ttdx 212+=,当0=x 时,0=t ;当2ln =x 时,1=t ,于是dx e x⎰-2ln 01=dt t t t ⎰+⋅10212=dt t t ⎰+102212=dt t)111(2102⎰+- =10]arctan [2t t -=22π-.例3 计算⎰-adx x a 022(a >0)解 令t a x sin =,则t a t a a x a cos sin 22222=-=-,.cos tdt a dx = 当0=x 时0=t 当a x =时2π=t⎰⎰⋅-=20sin 022cos cosπtdt a t a dx x a ta x a令⎰⎰+==2022022)2cos 1(2cos ππdt t a tdt a220241]2sin 21[2a t t a ππ=+=例4 计算xdxx sin cos 520⎰π解:令,cos x t =则当0=x 时1=t 当2π=x 时0=txxd xdx x cos cos sin cos 52052⎰⎰-=ππ61]61[ 106105015cos ===-⎰⎰=t dt t dt t tx 令或 x xd xdx x cos cos sin cos 520520⎰⎰-=ππ610cos 612cos 61]cos 61[66206=+-=-=ππx例5 计算⎰-π053sin sin dxx x解 dx x x dx x x |cos |sin sin sin 230053⎰⎰=-ππ⎰⎰-=πππ2232023cos sin cos sin xdx x xdx x⎰⎰-=πππ2232023sin sin sin sin x xd x xd54)52(52]sin 52[]sin 52[2252025=--=-=πππx x 提示 |cos |sin )sin1(sin sin sin 232353x x x x x x =-=-在]2,0[π上,cos cos x x =在] ,2[ππ上.cos cos x x -=例6 计算dxx x ⎰++4122解 令,12t x =+则212-=t x , ,tdt dx =当0=x 时1=t 当4=x 时3=t⎰⎰⎰+=⋅+-++=+312312124)3(21221 122dt t tdt t t dx x x t x 令322)]331()9327[(21]331[21313=+-+=+=t t例7设)(x f 在区间],[a a -上连续,证明: (1)如果)(x f 为奇函数,则⎰-=a a dx x f 0)(; (2)如果)(x f 为偶函数,则⎰⎰-=a aadx x f dx x f 0)(2)(.证明 由定积分的可加性知x d x f x d x f x d x f aaaa⎰⎰⎰+=--00)()()(,对于定积分⎰-0)(adx x f ,作代换t x -=,得⎰-0)(adx x f =⎰--0)(adt t f =⎰-a dt t f 0)(=⎰-a dx x f 0)(,所以⎰⎰⎰-+-=aaa a dx x f dx x f dx x f 0)()()(=⎰-+adx x f x f 0)]()([(1)如果)(x f 为奇函数,即)()(x f x f -=-,则0)()(=-+x f x f , 于是⎰-=aadx x f 0)(.(2)如果)(x f 为偶函数,即)()(x f x f =-,)(2)()()()(x f x f x f x f x f =+=-+, 于是⎰⎰-=aaadx x f dx x f 0)(2)(.例8 若)(x f 在[]1,0上连续 证明 (1)⎰⎰=2020)(cos )(sin ππdxx f dx x f (2)⎰⎰=πππ0)(sin 2)(sin dxx f dx x xf证明 (1)令tx -=2π 则dt t f dx x f )]2[sin()(sin 0220--=⎰⎰πππ⎰⎰⎰==-=202020)(cos )(cos )]2[sin(ππππdxx f dt t f dt t f(2)令t x -=π则⎰⎰---=0)][sin()()(sin ππππdt t f t dx x xf ⎰⎰-=--=πππππ00)(sin )()][sin()(dt t f t dt t f t⎰⎰-=πππ00)(sin )(sin dt t tf dt t f ⎰⎰-=πππ00)(sin )(sin dx x xf dx x f所以⎰⎰=πππ0)(sin 2)(sin dx x f dx x xf例9 设函数⎪⎩⎪⎨⎧<<-+≥=-01 cos 11)(2x xx xe x f x 计算⎰-41)2(dxx f解 设t x =-2 则;dt dx =当1=x 时1-=t 当4=x 时2=t⎰⎰⎰⎰---++==-200121412cos 11)()2(dt te dt t dt t f dx x f t 212121tan ]21[]2[tan 420012+-=-=---e e t t定积分的分部积分法设函数)()(x v x u 、在区间[]b a ,上具有连续导数)()(x v x u ''、 由v u v u uv '+'=')(得v u uv v u '-='式两端在区间[]b a ,上积分得vdx u uv dx v u ba b a ba '-='⎰⎰][ 或vduuv udv ba b a b a ⎰⎰-=][这就是定积分的分部积分公式 分部积分过程][][⋅⋅⋅='-=-=='⎰⎰⎰⎰vdx u uv vdu uv udv dx v u ba ba ba b a ba ba例10 计算xdx arcsin 21⎰解 xdx arcsin 21⎰x xd x x arcsin ]arcsin[210210⎰-=dx x x 22101621--⋅=⎰π)1(11211222210x d x --+=⎰π212]1[12x -+=π12312-+=π例11 计算⎰10dx e x解 令tx = 则⎰⎰=10102tdt e dx e t x ⎰=102t tde ⎰-=1010 2 ][2dt e te t t 2][2210 =-=t e e例12求⎰21ln xdx x .解⎰21ln xdx x =⎰212)(ln 21x xd =)(ln 21ln 21212212x d x x x ⎰-=⎰-21212ln 2xdx =212412ln 2x -=432ln 2-.例13求⎰πsin xdx x .解⎰πsin xdx x =⎰-πcos x xd =⎰+-ππ0cos cos xdx x x=ππ0sin x +=π.例14 设⎰=20sin πxdxI n n 证明(1)当n 为正偶数时 22143231π⋅⋅⋅⋅⋅--⋅-=n n n n I n(2)当n 为大于1的正奇数时 3254231⋅⋅⋅⋅--⋅-=n n n n I n证明 ⎰=20sin πxdx I n n ⎰--=201cos sin πx xd n ⎰--+-=20120 1sin cos ]sin [cos ππx xd x x n n⎰--=2022sin cos )1(πxdxx n n ⎰--=-202)sin (sin )1(πdx x x n n n⎰⎰---=-20202sin )1(sin )1(ππxdx n xdx n n n(n 1)I n 2(n 1)I n由此得21--=n n I nn I2214342522232212I m m m m m m I m ⋅⋅⋅⋅--⋅--⋅-= 112325432421222122I m m m m m m I m ⋅⋅⋅⋅--⋅--⋅+=+而2200ππ==⎰dx I 1sin 201==⎰πxdx I因此22143425222322122π⋅⋅⋅⋅⋅--⋅--⋅-=m m m m m m I m 32543242122212212⋅⋅⋅⋅--⋅--⋅+=+m m m m m m I m定积分的近似计算虽然牛顿——莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限 性的。
定积分:定积分ppt全

(梯形公式)
为了提高精度, 还可建立更好的求积公式, 例如辛普森
公式, 复化求积公式等,
并有现成的数学软件可供调用.
三、定积分的性质
(设所列定积分都存在)
( k 为常数)
证:
= 右端
证: 当
时,
因
在
上可积 ,
所以在分割区间时, 可以永远取 c 为分点 ,
于是
当 a , b , c 的相对位置任意时, 例如
用直线
将曲边梯形分成 n 个小曲边梯形;
2) 常代变.
在第i 个窄曲边梯形上任取
作以
为底 ,
为高的小矩形,
并以此小
梯形面积近似代替相应
窄曲边梯形面积
得
3) 近似和.
4) 取极限.
令
则曲边梯形面积
2. 变速直线运动的路程
设某物体作直线运动,
且
求在运动时间内物体所经过的路程 s.
解决步骤:
1) 大化小.
第五章
积分学
不定积分
定积分
定积分
第一节
一、定积分问题举例
二、 定积分的定义
三、 定积分的性质
定积分的概念及性质
第五章
一、定积分问题举例
1. 曲边梯形的面积
设曲边梯形是由连续曲线
以及两直线
所围成 ,
求其面积 A .
矩形面积
梯形面积
解决步骤 :
1) 大化小.
在区间 [a , b] 中任意插入 n –1 个分点
积分中值定理对
因
例4.
计算从 0 秒到 T 秒这段时间内自由落体的平均
速度.
解: 已知自由落体速度为
故所求平均速度