高三周测数学试题--4
江苏省楚水实验学校2015届高三周测(一)数学试卷

楚水实验学校2015届高三数学周测试卷一(9.13)一、 填空题:本大题共14小题,每小题5分,共70分.1.已知集合A = {-1,0,1},B = {0,1,2,3},则A ∩B = .2.若复数z 满足(2)z z i =-(i 是虚数单位),则z = . 3.若以连续掷两次骰子得到的点数n m ,分别作为点P 的横、纵坐标,则点P 在直线4x y +=上的概率为 .4.已知4cos 5α=-且(,)2παπ∈,则tan()4πα+= .5.已知定义域为R 的函数121()2x x f x a+-+=+是奇函数,则a = .6.若对任意m ∈R ,直线x +y +m =0都不是曲线ax x x f -=331)(错误!未找到引用源。
的切线,则实数a 的取值范围是____________.7.在ABC ∆中,已知4AB AC ⋅=,12AB BC ⋅=-,则AB = .8.在ABC ∆中,内角,,A B C 所对的边分别是,,a b c . 已知14b c a -=,2sin 3sin B C =,则cos A 的值为 .9.在平面直角坐标系xoy 中,直线230x y +-=被22(2)(1)4x y -++=圆截得的弦长为 .10.函数0(1)3(log >-+=a x y a ,且1≠a )的图象恒过点A ,若点A 在直线01=++ny mx 上,其中0>mn ,则nm 21+的最小值是 .11.若将函数()sin 2cos 2f x x x =+的图象向右平移ϕ个单位,所得图象关于y 轴对称,则ϕ的最小正值是12.已知n S 是等差数列{}n a 的前n 项和,若77S =,1575S =,则数列n S n ⎧⎫⎨⎬⎩⎭的前20项和为 .13.已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是.14.设a 、b 均为大于1的自然数,函数x a ab x f sin )(+=,b x x g +=cos )(,若存在实数k ,使得)()(k g k f =,则=ab .二、解答题:本大题共六小题,共计90分.请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知,,a b c 分别为ABC ∆三个内角,,A B C的对边,cos sin 0a C C b c --= (1)求A (2)若2a =,ABC ∆的面积为3;求,b c .16.(本小题满分14分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,PC ⊥AD .底面ABCD 为梯形,//AB DC ,AB BC ⊥,PA AB BC ==,点E 在棱PB 上,且2PE EB =. (1)求证:平面PAB ⊥平面PCB ;(2)求证:PD ∥平面EAC .P A D B CE17.(本小题满分14分)等差数列}{n a 的前n 项的和为n S ,且.60,4565==S S (1)求}{n a 的通项公式;(2)若数列}{n b 满足)(*1N n a b b n n n ∉=-+,且,31=b 设数列}1{nb 的前n 项和为n T . 求证:43<n T .18. (本小题满分16分)我市西北部分布有面积41.98平方公里的大纵湖、蜈蚣湖两大淡水湖泊,湿地资源十分丰富,被列入2010年江苏省里下河湿地省级生态保护区。
2024-2025学年上海市杨浦区高三上学期期中考试数学检测试题(附解析)

2024-2025学年上海市杨浦区高三上学期期中考试数学检测试题一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1. 不等式的解集是________.(结果用区间表示)2230x x +-<【正确答案】()3,1-【分析】利用分解因式的方法求解不等式.【详解】不等式,解得,2230(3)(1)0x x x x +-<⇔+-<31x -<<所以不等式的解集为.2230x x +-<()3,1-故()3,1-2. 已知全集,集合,;则________.(结U =R {}|1A x x =<{}|13B x x =-<<A B ⋃=果用区间表示)【正确答案】[)3,+∞【分析】根据集合的运算可求得结果.【详解】由题可得,{}|3A B x x =< 则,{}[)|33,A B x x ⋃=≥=+∞故答案为.[)3,+∞3. 已知函数,则______,22log ,0(),0x x f x x x >⎧=⎨≤⎩1(())2f f -=【正确答案】2-【分析】推导出,从而,由此能求出结果.2111224f ⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭1124f f f ⎛⎫⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【详解】解:∵函数,()22log ,0,0x x f x x x >⎧=⎨≤⎩∴,2111224f ⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭.2111log 2244f f f ⎛⎫⎛⎫⎛⎫-===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为.2-本题主要考查了函数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查方程思想,是基础题.4. 函数的最小正周期为_______.2()2sin sin 2f x x x =+【正确答案】π【分析】将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.()π1cos2sin2124f x x x x ⎛⎫=-+=- ⎪⎝⎭ 2ππ2T ∴==本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.5. 已知向量,,若,则__________.(2,)a m = (1,1)b m =+ //a b m =【正确答案】或12-【分析】根据平面向量共线坐标表示公式进行求解即可.【详解】因为,//a b所以有,或,()1211m m m +=⨯⇒=2m =-故或12-6.在二项式的展开式中,前三项的系数依次成________数列.(填写“等差”或“等812x x ⎛⎫+ ⎪⎝⎭比”)【正确答案】等差【分析】根据二项展开式写出前三项的系数,再由等差数列的定义即可判断.【详解】由二项展开式知,前三项的系数分别为,1288811C 1,C 4,C 724===所以前三项的系数依次成等差数列.故等差.7. 已知函数的导数存在,的部分图像如图所示,设是由曲线()f x ()y f x =()()S t a t b ≤≤与直线,及轴围成的平面图形的面积,则在区间上,的()y f x =x a =x t =x [,]a b ()S t '最大值在________处取到.t=【正确答案】c【分析】根据图象,利用导数的定义可求得结果.【详解】由导数的定义得,,()()()()()()Δ0Δ0Δ0ΔΔlimlimlim ΔΔt t t S t t S t t f t S t f t f t tt→→→+-⋅==='=所以的最大值就是的最大值,()S t '()f t 从图象上看,在处取得最大值,()f x x c =故答案为.c8. 班级4名学生报名参加两项区学科竞赛,每人至少报一项,每项比赛参加的人数不限,则不同的报名结果有________种.(结果用具体数字表示)【正确答案】81【分析】由分类计数原理、分步计数原理即可求解.【详解】每名学生可报一项或两项,所以有,1222C C 3+=所以4名学生共有种.333381⨯⨯⨯=故819. 过抛物线的焦点,倾斜角为的直线交抛物线于(),则22y x =F 4πl ,A B A B x x >的值__________.AF BF【正确答案】3+【分析】求出抛物线的焦点坐标,利用点斜式设出直线方程,直线与抛物线联立求出交点坐标,利用焦半径公式求出,的长,从而可得结果AFBF【详解】由得,直线,22y x =1,02F ⎛⎫ ⎪⎝⎭1:2l y x =-直线与抛物线联立可得,,21304x x -+=,A B x x ==由抛物线定义转化为到准线的距离可得,,,122A AF x =+=+122B BF x =+=,故答案为.3AF BF==+3+与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.10. 为了提升全民身体素质,学校十分重视学生体育锻炼,某校篮球运动员进行投篮练习.如果他前一球投进则后一球投进的概率为;如果他前一球投不进则后一球投进的概率为.4512若他第2球投进的概率为,则他第1球投进的概率为__________.2940【正确答案】##340.75【分析】记事件为“第1球投进”,事件为“第2球投进”,设,由全概率公式A B ()P A p=求解即可得出答案.【详解】记事件为“第1球投进”,事件为“第2球投进”,A B ,()()()41,,52P B A P B A P A p ===∣∣由全概率公式可得.()()()()()()412915240P B P A P B A P A P B A p p =+=+-=∣∣解得.34p =故答案为.3411. 某沿海四个城市的位置如图所示,其中,,,,,A B C D 60ABC ∠= 135BCD ∠=mile ,mile , mile ,位于的北偏东方向.现AD =D A 75在有一艘轮船从出发向直线航行,一段时间到达后,轮船收到指令改向城市直线航A D C 行,收到指令时城市对于轮船的方位角是南偏西度,则_________.C θsinθ=【分析】求出,计算,利用正弦定理再计算,故而AC ACD ∠ADC ∠.75ADC θ=︒-∠【详解】解:连结,AC 在中,由余弦定理得:ΔABC,2216400(40280(4075002AC =++-⨯⨯+⨯=,AC ∴=由正弦定理得,即,sin sin AB AC ACB ABC =∠∠80sin ACB =∠解得,,4sin 5ACB ∠=3cos 5ACB ∴∠=,34sin sin(135)55ACD ACB ∴∠=︒-∠=+=在中,由正弦定理得,即,ACD ∆sin sin AC ADADC ACD =∠∠=解得,,1sin 2ADC ∠=30ADC ∴∠=︒.sin sin(7530)sin 45θ∴=︒-︒=︒=.12. 已知空间单位向量,,,,,则的最1e 2e 3e 4 e 1234123421+=+=+++= e e e ee e e e 13⋅ e e 大值是________.【分析】根据题意在球中讨论,结合空间向量数量积的应用可求出最值.【详解】因为空间向量,,,是单位向量,1e 2e 3e 4 e所以把向量,,,平移到以为起点,终点在半径为的球面上,如图:1e 2e 3e 4 e O 1由,得,所以,同理,121e e +=21212221e e e e ++⋅= 12,120e e =︒ 34,120e e =︒令,则,,1234,e e a e e b==++ 1,60e a =︒ 3,60e b =︒根据,两边同时平方解得,,12a b += 78a b ⋅=-7cos 8a b ⋅=- 所以绕向量所在直线旋转一周得圆锥的侧面,绕向量所在直线旋转一周得圆锥1e a 1OO 3eb 的侧面,2OO 因为,7cos ,8a b =-<所以,则,150,180a b ︒<<︒ sin ,a b =观察图形得当旋转到平面内时,向量与的夹角最小,13,e e 12O OO 1e 3e令此最小角为,则,θ,6060,120a b a b θ=-︒-︒=-︒则()71cos cos ,120cos ,cos120sin ,sin12082a b a b a b θ⎛⎫=-︒=︒+︒=-⨯-+=⎪⎝⎭,,131313cos ,cos e e e e e e θ⋅=⋅≤=所以13⋅e e故答案为本题考查了空间向量数量积的应用,解答本题的关键点是将这四个单位向量转化到球中去,结合图形更易判断,求出向量间的夹角,最后结合两角差的余弦值可求得最终结果.二、选择题(本大题共4题,满分18分,第13-14题每题4分,第15-16题每题5分).13. 函数是( )()e ,0e ,0x xx f x x -⎧≤=⎨>⎩A. 偶函数,且没有极值点 B. 偶函数,且有一个极值点C. 奇函数,且没有极值点 D. 奇函数,且有一个极值点【正确答案】B【分析】根据函数图象结合极值点的定义即可得出结论.【详解】画出的图象,函数是偶函数,()f x ()f x 且函数在上单调递增,在上单调递减,()f x (],0-∞(0,+∞)所以函数有一个极大值点.()f x 故选:B.14. 已知,,则“”是“”的( )0a >0b >2a b +>1ab >A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【正确答案】B【分析】通过举例的方法,以及基本不等式,结合充分,必要条件的定义,即可判断选项.【详解】若,满足,但,1.5,0.6a b ==2a b +>1ab <若,,则,即,0,0a b >>1ab>2a b +≥>2a b +>所以“”是“”的必要不充分条件.2a b +>1ab >故选:B 15. 设等比数列的公比为,前项和为,若,,则符合条件的数列{}n a q n n S 32a =425S S =的个数是(){}n a A. B. C. D. 1234【正确答案】B【分析】由等比数列的下标性质和前项和公式求解即可;n 【详解】当时,由题意得解得;1q ≠()()214211211511a q a q a q q q ⎧=⎪--⎨=⨯⎪--⎩1122a q ⎧=⎪⎨⎪=±⎩当时,,不满足,不符合题意;1q =132a a ==425S S =所以符合条件的数列的个数是,{}n a 2故选:B.16. 已知,则下列结论正确的个数是( )()()1010551,2f z z z z z z --=+++∈C ①存在实数解;()0f z =②共有个不同的复数解;()0f z =20③复数解的模长都等于;()0f z =1④存在模长大于的复数解.()0f z =1A. B. C. D. 0123【正确答案】C【分析】设,利用换元法可求得,从而可判断的55z z t -+=5z =()0f z =个复数解的模都是.201【详解】设,则,可得,55z zt -+=210102t z z -=++101022z z t -+=-则,()101055211222z z z z t t --+++=+-于是()210202f z t t t =⇒+-=⇒=这两个的取值都在区间内.t ()2,2-故有解,因此有个不同的复数解.55zz t -+=5z =()0f z=20当,t =1=因此的复数解的模长都等于.()0f z =1因此,②③正确,故选:C.三、解答题(满分78分,共有5题).17. 已知函数为奇函数.e ()1e xx a f x -=+(1)求的值并直接写出的单调性(无需说明理由);a ()f x (2)若存在实数,使得成立,求实数的取值范围.t ()()22220f t t f t k -+->k 【正确答案】(1)单调递减1,a =(2)1,3⎛⎫-+∞ ⎪⎝⎭【分析】(1)根据奇函数的含义可求得的值,根据函数单调性的定义法可求得单调性;a (2)根据单调性以及奇函数性质可得,从而得到不等式,求解即可.()()2222f t t f k t ->-【小问1详解】因为函数为奇函数,定义域为R ,则,e ()1e xx a f x -=+()00f =所以,即,()0e 001e af -==+1a =此时,满足,即为奇函数,1e ()1e xx f x -=+()()1e e 11e 1e x x x x f x f x -----===-++()f x ,定义域为R ,对,且,()1e 211e 1e x x x f x -==-+++12,R x x ∀∈12x x <则,()()()()()211212122e e 221e 1e 1e 1e x x x x x x f x f x --=-=++++因为,所以,,,12x x <21e e 0x x->11e 0x+>21e0x +>所以,即函数在R 上单调递减;()()120f x f x ->()f x 【小问2详解】由,则,()()22220f t t f t k -+->()()2222f t t f t k->--又因为为奇函数,所以,()f x ()()()222222f t t f t k f k t ->--=-又因为函数在R 上单调递减,()f x 所以,因为存在实数,使得,2222t t k t -<-t 2320t t k --<所以,解得,4120k ∆=+>13k >-所以的取值范围为.k 1,3∞⎛⎫-+ ⎪⎝⎭18.如图所示,已知三棱台中,,,111ABC A B C -11AB BB ⊥11CB BB ⊥,,.1160ABB CBB ∠=∠=︒AB BC ⊥11BB =(1)求二面角的余弦值;1A BB C --(2)设E 、F 分别是棱、的中点,若平面,求棱台的AC 11A C ⊥EF ABC 111ABC A B C -体积.【正确答案】(1)13-(2【分析】(1)由二面角定义可得二面角的平面角为,结合垂直关系及余1A BB C --1AB C ∠弦定理求其余弦值即可;(2)将棱台补全为棱锥,利用垂直关系证明面,进而得到相关线段O ABC -1BB ⊥1AB C 垂直并求出线段的长度,根据求体积.111O ABC O A B C V V V --=-【小问1详解】因为,,所以二面角的平面角为.11AB BB ⊥11CB BB ⊥1A BB C --1AB C ∠因为,,所以,.1160ABB CBB ∠=∠=︒11BB=11AB CB ==2AB CB ==因为,所以.AB BC⊥AC =因为,222111112cos AC AB CB AB CB AB C =+-⋅⋅∠所以,故二面角余弦值为.11cos 3AB C ∠=-1A BB C --13-【小问2详解】因为是三棱台,所以直线、、共点,设其交点为O ,111ABC A B C -1AA 1BB 1CC 因为E 、F 分别是棱、的中点,所以直线经过点O .AC 11A C EF 因为,,且面,所以面11AB BB ⊥11CB BB ⊥111AB CB B = 11,AB CB ⊂1AB C 1BB ⊥,1AB C 又面,所以.1EB ⊂1AB C 11BB EB ⊥因为,所以.EB =11BB =145B BE ∠=︒因为平面,平面,所以,⊥EF ABC EB ⊂ABC EF EB ⊥所以,F 为的中点.11sin EF BB EBB =⋅∠=OE EB ==OE 三棱台的体111ABC A B C -积.111771883O ABC O A B C O ABC ABC V V V OE S ---=-==⨯⨯⨯=△19. 某市为提高市民对文明城市创建的认识,举办了“创建文明城市”知识竞赛,从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:,得到如图所示的频率分布直方图.[)[)[]40,50,50,60,...,90,100(1)求频率分布直方图中a 的值;(2)求样本成绩的;75P (3)已知落在的平均成绩是54,方差是7,落在的平均成绩为66,方差是[50,60)[60,70)4,求两组成绩的总平均数和总方差.z 2s 【正确答案】(1); 0.030a =(2)84;(3)总平均数是62,总方差是37.【分析】(1)根据频率之和为1列式即可得解.(2)根据频率分布直方图先明确样本成绩的所在的范围,再结合已知数据即可求解.75P (3)先分别求出成绩落在和内的人数,再根据平均数定义和分层随机抽样[)50,60[)60,70的方差公式即可求解.()()22222x y m n s s x z s y z m n m n ⎡⎤⎡⎤=⨯+-+⨯+-⎢⎥⎢⎥⎣⎦⎣⎦++【小问1详解】由频率之和为1得,()0.0050.0100.0200.0250.010101a +++++´=解得.0.030a =【小问2详解】因为成绩落在内的频率为[)40,80()0.0050.0100.0200.030100.650.75++++⨯=<落在内的频率为[)40,90()0.0050.0100.0200.0300.025100.90.75+++++⨯=>所以样本成绩的落在范围内,75P [)80,90设为m ,则,解得,75P ()0.65800.0250.75m +-⨯=84m =故为84.75P 【小问3详解】由图可知,成绩在内的市民人数为,[)50,601000.110⨯=成绩在内的市民人数为,[)60,701000.220⨯=故.10542066621020z ⨯+⨯==+,()()22210201275462466627120371020102033s ⎡⎤⎡⎤=⨯+-+⨯+-=⨯+⨯=⎣⎦⎣⎦++所以两组市民成绩的总平均数是62,总方差是37.20. 如图,在平面直角坐标系中,该点是椭圆上一点,从原xOy ()00,M x y 22:14x C y +=点向圆作两条切线分别与椭圆交于点,,直线、O ()()22200:M x x y y r -+-=C P Q OP的斜率分别记为,.OQ 1k 2k (1)若圆与轴相切于椭圆的右焦点,求圆的方程;M x C M (2)若,求证为定值并求出该定值;r =12k k (3)在(2)的情况下,求的最大值.||||OP OQ ⋅【正确答案】(1)(221124x y ⎛⎫-+±=⎪⎝⎭(2)证明见解析,1214k k =-(3)2.5【分析】(1)求出椭圆的右焦点,将横坐标代入椭圆方程可得相应的纵坐标,继而可得圆的圆心,圆的方程;(2)因为直线,与圆相切,可得是方程12:,:==OP y k x OQ y k x R 12,k k 的两个不相等的实数根,利用根与系数的关系推出,2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭12k k ⋅再由点在椭圆上,得出.()00,M x y C 1214k k =-(3)分直线不落在坐标轴上和直线落在坐标轴上两种情况,推出,OP OQ ,OP OQ ,即可得出的最大值.225OP OQ +=OP OQ⋅【小问1详解】椭圆的右焦点是,可得,C )0,x =2214x y +=12y =±圆的方程.∴M (221124x y ⎛⎫+±=⎪⎝⎭【小问2详解】因为直线,与圆相切,所以直线,12:,:==OP y k x OQ y k x M 1:OP y x k =与圆联立,()()2200:45x x y y M -+-=可得,()()222211000412205k x xk y x x y +-+++-=由,()()122221000104224105x k x y y k ⎛⎫∆=+-++-= ⎪⎝⎭即,211022000204455x k k y x y ⎛⎫-+ --⎝⎭=⎪同理,()()222222000412205k x xk y x x y +-+++-=由,()()222222000204224105x k x y y k ⎛⎫∆=+-++-=⎪⎝⎭即,222022000204455x k k y x y ⎛⎫-+ --⎝⎭=⎪可得是方程的两个不相等的实数根,12,k k 2220000442055x k x y k y ⎛⎫--+-= ⎪⎝⎭,2012204545y k k x -∴=-因为点在椭圆上,所以,()00,M x y C 22014x y =-所以.201220415445y k k x -==--【小问3详解】当直线不落在坐标轴上时,设,,,OP OQ ()11P x y ,()22Q x y ,因为,所以,即,12410k k +=1212410y y x x +=22221212116y y x x =因为在椭圆上,所以,()()1122,,,P x y Q x y C 2222221212121114416x x y y x x ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭整理得,所以,22124x x +=2222221212121121444x x x x y y ⎛⎫⎛⎫++=-+-=-= ⎪ ⎪⎝⎭⎝⎭所以,225OP OQ +=当直线落在坐标轴上时,显然有,综上:225OP OQ +=225OP OQ +=所以,所以的最大值为2.5.()221 2.52OP OQ OP OQ ⋅≤+=OP OQ ⋅方法点睛:直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐x y 标或纵坐标的关系式,该关系中含有,或,最后利用韦达定理把关21x x 12y y 12x x +12y y +系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.21. 已知,函数.0a >()()2πsin ,2sin ,0,24ax f x ax x g x x ⎛⎫==∈ ⎪⎝⎭(1)当时,证明:;2a =()()f xg x >(2)若恒成立,求a 的取值范围;()()f xg x >(3)设集合,对于正整数m ,集合()*1πcos ,21n n n k A a a n k k =⎧⎫⎪⎪==∈⎨⎬+⎪⎪⎩⎭∑N ,记中元素的个数为,求数列的通项公式.{}2m B x m x m =<<m A B m b {}m b 【正确答案】(1)证明见详解 (2)(]0,2(3)m b m=【分析】(1)令,求导,利用导数判断函数单调性,求最()()()π,0,4F x f x g x x ⎛⎫=-∈ ⎪⎝⎭小值即可证明;(2)对的值分类讨论,利用导数判断函数单调性,求最小值,判断能否满足;a ()0F x >(3)利用(1)中结论,,通过放缩并用裂项相消法求()()ππcos12121k k k k >-++,有,可得.()1πcos 21nk k k =+∑()1π1cos21nk n nk k =-<<+∑m b m =【小问1详解】令,()()()2πsin 2sin ,0,24ax F x f x g x ax x x ⎛⎫=-=-∈ ⎪⎝⎭若,则,2a =()()22sin 2sin 2sin sin F x x x x x x x =-=-又因为,.π04x <<2sin 0x >设,,()sin h x x x =-π04x <<则,可知在上单调递增,()1cos 0h x x ='->ℎ(x )π0,4⎛⎫⎪⎝⎭可得,()()00h x h >=即,所以.()0F x >()()f xg x >【小问2详解】因为,()22sin 1cos 22axg x ax ==-由(1)可知:,,()sin cos 1F x ax x ax =+-π04x <<原题意等价于对任意恒成立,()0F x >π0,4x ⎛⎫∈ ⎪⎝⎭则,()()sin cos sin F x a x x x ax -'=+当时,02a <≤注意到,则,π022ax x <≤<sin sin2ax x ≤可得,()()()()sin cos sin2sin 1cos sin cos F x a x x x x a x x x x x '⎡⎤≥+-=-+-⎣⎦由(1)得,则,sin 0x x ->()0F x '>可知在上单调递增,则,满足题意;F (x )π0,4⎛⎫ ⎪⎝⎭()()00F x F >=当时,令,,2a >()()()sin cos sin x F x a x x x ax ϕ==+-'π04x <<则,()()()222cos sin cos 2cos cos x a x x x a ax a a ax a ax aϕ⎛⎫=--<-=- ⎪⎝⎭'因为,可知存在,使得,201a <<0,2a πθ⎛⎫∈ ⎪⎝⎭2cos a a θ=当时,,,(0,)x θ∈0,()ax a θ∈()2220x a a aϕ⎛⎫< ⎝'-=⎪⎭可知在上单调递减,则,φ(x )()0,θ()()00x ϕϕ<=即在上恒成立,()0F x '<()0,θ可知在上单调递减,则,不合题意;F (x )()0,θ()()00F F θ<=综上所述:a 的取值范围为.(]0,2所以a 的取值范围为.(]0,2【小问3详解】由(1)可知时,,2a =cos212sin 12x x x x >->-则,()()πππ11cos11212121k k k k k k ⎛⎫>-=--⎪+++⎝⎭时,;1n =()1πcos 21nk k k ==+∑时,2n =()1πcos21nkk k ===+∑时,3n≥,()1ππ11πcos22212316nk n n k kn =⎛⎫≥+--->-+- ⎪++⎝⎭∑,则,即,(22201840+-=->(2220>200->,π411066-->-=>π16->得,()1ππcos21216nkn nk k=>-+->-+∑又,()1πcos21nknk k=<+∑时,,时,,1n=01<<2n=12<<所以时,都有,Nn*∈()1π1cos21nkn nk k=-<<+∑,则时,集合A在每个区间都有且()*1πcos,21nn nkA a a nk k=⎧⎫⎪⎪==∈⎨⎬+⎪⎪⎩⎭∑NNn*∈()1,n n-只有一个元素,对于正整数m,集合,记中元素的个数为,{}2mB x m x m=<<mA Bmb由,所以.2m m m-=m b m=方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用,不等式问题,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.。
高中高三数学上学期周测试卷 理(1.22,含解析)-人教版高三全册数学试题

某某省某某高中2015届高三上学期周测数学试卷(理科)(1.22)一.本大题共12小题,每小题5分,共60分,在每个小题给出的4个选项中,只有一项是符合要求的.1.设复数z1=1﹣i,z2=+i,其中i为虚数单位,则的虚部为( )A.B.C.D.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由题意结合复数代数形式的乘除运算化简得答案.解答:解:∵z1=1﹣i,z2=+i,∴=.∴的虚部为.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.已知数列{a n}的前n项和为S n,且S n=2a n﹣2,则a2等于( )A.﹣2 B.2 C.1 D.4考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:利用S n=2a n﹣2,n分别取1,2,则可求a2的值.解答:解:n=1时,S1=2a1﹣2,∴a1=2,n=2时,S2=2a2﹣2,∴a2=a1+2=4.故选D.点评:本题考查数列递推式,考查学生的计算能力,属于基础题.3.“m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义集合对数函数的性质分别判断其充分性和必要性,从而得到答案.解答:解:若“m>0”,则函数f(x)=m+log2x>0,(x≥1),故函数f(x)不存在零点,是充分条件,若函数f(x)=m+log2x(x≥1)不存在零点,则m>0,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了对数函数的性质,是一道基础题.4.已知点P(x,y)的坐标满足条件,那么点P到直线3x﹣4y﹣13=0的最小值为( )A.B.2 C.D.1考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点P到直线3x﹣4y﹣13=0的最小值.解答:解:由约束条件作出可行域如图,由图可知,当P与A(1,0)重合时,P到直线3x﹣4y﹣13=0的距离最小为d=.故选:B.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.5.已知双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,则双曲线的离心率是( )A.B.C.4D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用已知条件求出双曲线方程中k的值,然后求解离心率即可.解答:解:双曲线kx2﹣y2=1(k>0)的一条渐近线与直线x﹣2y﹣3=0平行,可得双曲线的渐近线的斜率为:,即,解得k=,双曲线kx2﹣y2=1为:y2=1,得a=2,b=1,c=,∴双曲线的离心率为:.故选:A.点评:本题考查双曲线的简单性质的应用,离心率的求法,考查计算能力.6.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )A.B.C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,即可得出.解答:解:此几何体是底面积是S==1的三棱锥,与底面是边长为2的正方形的四棱锥构成的组合体,它们的顶点相同,底面共面,高为,∴V==.点评:本题考查了三棱锥与四棱锥的三视图、体积计算公式,属于基础题.7.已知函数f(x)=sin(x+),其中x∈,若f(x)的值域是,则实数a的取值X围是( ) A.(0,] B.C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:先求得x+的取值X围,由x+∈时f(x)的值域是,可知≤a+≤,可解得实数a的取值X围.解答:解:∵x∈,∴x+∈,∵x+∈时f(x)的值域是,∴由函数的图象和性质可知≤a+≤,可解得a∈.故选:D.点评:本题主要考察了正弦函数的图象和性质,由函数的图象和性质得到不等式≤a+≤是解题的关键,属于基本知识的考查.8.抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最小值为( ) A.B.C.1 D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先画出图象、做出辅助线,设|AF|=a、|BF|=b,由抛物线定义得2|MN|=a+b,由题意和余弦定理可得|AB|2=(a+b)2﹣ab,再根据基本不等式,求得|AB|2的取值X围,代入化简即可得到答案.解答:解:如右图:过A、B分别作准线的垂线AQ、BP,垂足分别是Q、P,设|AF|=a,|BF|=b,连接AF、BF,由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab,配方得|AB|2=(a+b)2﹣ab,因为ab≤,则(a+b)2﹣ab≥(a+b)2﹣=(a+b)2,即|AB|2≥(a+b)2,所以≥=3,则,即所求的最小值是,故选:D.点评:本题考查抛物线的定义、简单几何性质,基本不等式求最值,余弦定理的应用等知识,属于中档题.9.已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>0时,f(x+1)=f (x)+f(1),若直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,则实数k的取值X围为( )A.(2﹣2,2﹣4)B.(+2,+)C.(2+2,2+4)D.(4,8)考点:函数奇偶性的性质;抽象函数及其应用.专题:函数的性质及应用.分析:本题通过奇函数特征得到函数图象经过原点,且关于原点对称,利用f(x+1)=f(x)+f(1)得到函数类似周期性特征,从而可以画出函数的草图,再利用两个临界状态的研究,得到k的取值X围.解答:解:∵当0≤x≤1时,f(x)=x2,∴f(1)=1.∵当x>0时,f(x+1)=f(x)+f(1),∴f(x+1)=f(x)+1,∴当x∈,n∈N*时,f(x+1)=f(x﹣1)+2=f(x﹣2)+3=…=f(x﹣n)+n+1=(x﹣n)2+n+1,∵函数f(x)是定义在R上的奇函数,∴函数图象经过原点,且关于原点对称.∵直线y=kx与函数y=f(x)的图象恰有7个不同的公共点,∴当x>0时,直线y=kx与函数y=f(x)的图象恰有3个不同的公共点,∴由x>0时f(x)的图象可知:直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,直线y=kx与函数y=f(x)的图象相切位置在x∈时,直线y=kx与函数y=f(x)的图象恰有9个不同的公共点,∴直线y=kx与函数y=f(x)的图象位置情况介于上述两种情况之间.∵当x∈时,由得:x2﹣(k+2)x+2=0,令△=0,得:k=.由得:x2﹣(k+4)x+6=0,令△=0,得:k=2.∴k的取值X围为().点评:本题考查了函数的奇偶性、周期性、函数图象与性质及其应用,本题有一定的综合性,属于中档题.10.设函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,若实数a,b分别是f(x),g(x)的零点,则( )A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数的解析式判断单调性,运用f(1)=e﹣2>0,g(1)=0+2﹣5<0,得出a<1,b>1,再运用单调性得出g(a)<g(1)<0,f(b)>f(1)>0,即可选择答案.解答:解:∵函数f(x)=e x+2x﹣4,g(x)=lnx+2x2﹣5,∴f(x)与g(x)在各自的定义域上为增函数,∵f(1)=e﹣2>0,g(1)=0+2﹣5<0,∴若实数a,b分别是f(x),g(x)的零点,∴a<1,b>1,∵g(a)<g(1)<0,f(b)>f(1)>0,故选:A点评:本题考查了函数的性质,运用单调性判断函数的零点的位置,再结合单调性求解即可.11.在Rt△ABC中,CA=CB=3,M,N是斜边AB上的两个动点,且,则的取值X 围为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:通过建立直角坐标系求出AB所在直线的方程,设出M,N的坐标,将=2(b﹣1)2,0≤b≤1,求出X围.解答:解:以C为坐标原点,CA为x轴建立平面坐标系,则A(3,0),B(0,3),∴AB所在直线的方程为:y=3﹣x,设M(a,3﹣a),N(b,3﹣b),且0≤a≤3,0≤b≤3不妨设a>b,∵MN=,∴(a﹣b)2+(b﹣a)2=2,∴a﹣b=1,∴a=b+1,∴0≤b≤2,∴=(a,3﹣a)•(b,3﹣b)=2ab﹣3(a+b)+9=2(b2﹣2b+3),0≤b≤2,∴b=1时有最小值4;当b=0,或b=2时有最大值6,∴的取值X围为故选:D点评:熟练掌握通过建立直角坐标系、数量积得坐标运算是解题的关键.12.设函数f1(x)=x,f2(x)=log2015x,a i=(i=1,2,3,…,2015),记I k=|f k(a2)﹣f k(a1)|+|f k(a3)﹣f k(a2)|+…+|f k(a2015)﹣f k(a2014)|,k=1,2,则( ) A.I1<I2B.I1=I2C.I2<I1D.无法确定考点:对数的运算性质.专题:函数的性质及应用.分析:由于f1(a i+1)﹣f1(a i)==.可得I1=×2014.由于f i+1(a i+1)﹣f i(a i)==.即可得出I2==log20152015.解答:解:∵f1(a i+1)﹣f1(a i)==.∴I1=|f1(a2)﹣f1(a1)|+|f1(a3)﹣f1(a2)|+…+|f1(a2015)﹣f1(a2014)|=×2014=.∵f2(a i+1)﹣f2(a i)==.∴I2=|f2(a2)﹣f2(a1)|+|f2(a3)﹣f2(a2)|+…+|f2(a2015)﹣f2(a2014)|==log20152015=1,∴I1<I2.故选:A.点评:本题考查了对数的运算法则、含绝对值符号式的运算,属于基础题.二.填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上.13.已知等比数列{a n},前n项和为S n,,则S6=.考点:等比数列的前n项和.专题:计算题;等差数列与等比数列.分析:设等比数列{a n}的公比为q,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.解答:解:设等比数列{a n}的公比为q,由于,即a1+a1q=,a1q3+a1q4=6,两式相除,可得,q=2,a1=.则S6==.故答案为:点评:本题考查等比数列的通项公式和求和公式,考查运算能力,属于基础题.14.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f (x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 (82)考点:函数的值.专题:函数的性质及应用.分析:函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,再利用倒序相加,即可得到结论解答:解:∵f(x)=x3+sinx+2,∴f'(x)=3x2+cosx,f''(x)=6x﹣sinx,∴f''(0)=0,而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),即x1+x2=0时,总有f(x1)+f(x2)=4,∴…=20×4+f(0)=82.故答案为:82.点评:本题考查函数的对称性,确定函数的对称中心,利用倒序相加x1+x2=0时,总有f(x1)+f(x2)=4,是解题的关键.15.给定方程:()x+sinx﹣1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(﹣∞,0)内有且只有一个实数解;④若x0是该方程的实数解,则x0>﹣1.则正确命题是②③④.考点:命题的真假判断与应用.专题:计算题;函数的性质及应用;三角函数的图像与性质.分析:根据正弦函数的符号和指数函数的性质,可得该方程存在小于0的实数解,故①不正确;根据指数函数的图象与正弦函数的有界性,可得方程有无数个正数解,故②正确;根据y=()x﹣1的单调性与正弦函数的有界性,分析可得当x≤﹣1时方程没有实数解,当﹣1<x<0时方程有唯一实数解,由此可得③④都正确.解答:解:对于①,若α是方程()x+sinx﹣1=0的一个解,则满足()α=1﹣sinα,当α为第三、四象限角时()α>1,此时α<0,因此该方程存在小于0的实数解,得①不正确;对于②,原方程等价于()x﹣1=﹣sinx,当x≥0时,﹣1<()x﹣1≤0,而函数y=﹣sinx的最小值为﹣1且用无穷多个x满足﹣sinx=﹣1,因此函数y=()x﹣1与y=﹣sinx的图象在上不可能有交点因此只要x0是该方程的实数解,则x0>﹣1.故答案为:②③④点评:本题给出含有指数式和三角函数式的方程,讨论方程解的情况.着重考查了指数函数的单调性、三角函数的周期性和有界性、函数的值域求法等知识,属于中档题.16.有n个首项都是1的等差数列,设第m个数列的第k项为a mk(m,k=1,2,3,…,n,n≥3),公差为d m,并且a1n,a2n,a3n,…,a nn成等差数列.若d m=p1d1+p2d2(3≤m≤n,p1,p2是m的多项式),则p1+p2=1.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:先根据首项和公差写出数列的通项公式,利用通项公式表示出数列a1n,a2n,a3n,…,a nn中的第项减第2项,第3项减第4项,…,第n项减第n﹣1项,由此数列也为等差数列,得到表示出的差都相等,进而得到d n是首项d1,公差为d2﹣d1的等差数列,根据等差数列的通项公式表示出d m的通项,令p1=2﹣m,p2=m﹣1,得证,求出p1+p2即可.解答:解:由题意知a mn=1+(n﹣1)d m.则a2n﹣a1n=﹣=(n﹣1)(d2﹣d1),同理,a3n﹣a2n=(n﹣1)(d3﹣d2),a4n﹣a3n=(n﹣1)(d4﹣d3),…,a nn﹣a(n﹣1)n=(n﹣1)(d n ﹣d n﹣1).又因为a1n,a2n,a3n,a nn成等差数列,所以a2n﹣a1n=a3n﹣a2n=…=a nn﹣a(n﹣1)n.故d2﹣d1=d3﹣d2=…=d n﹣d n﹣1,即d n是公差为d2﹣d1的等差数列.所以,d m=d1+(m﹣1)(d2﹣d1)=(2﹣m)d1+(m﹣1)d2.令p1=2﹣m,p2=m﹣1,则d m=p1d1+p2d2,此时p1+p2=1.故答案为:1.点评:此题考查学生灵活运用等差数列的通项公式及前n项和公式化简求值,考查了利用函数的思想解决实际问题的能力,是一道中档题.三.解答题:本大题共5小题,共70分.17.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.考点:正弦定理;余弦定理.专题:解三角形.分析:(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.解答:解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.点评:此题考查了正弦、余弦定理,三角形的面积公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.已知四棱锥P﹣ABCD中,底面ABCD为菱形,且PD⊥底面ABCD,∠DAB=60°,E为AB的中点.(1)证明:DC⊥平面PDE;(2)若PD=AD,求面DEP与面BCP所成二面角的余弦值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间角.分析:(1)根据底面为含有60度的菱形,得△DAB为正三角形,从而得到AB⊥DE,结合PD⊥AB 利用线面垂直判定定理,即可证出DC⊥平面PDE;(2)分别以DE,DC,DP所在直线为x,y,z轴,建立空间直角坐标系,求出面DEP与面BCP 的法向量,代入向量夹角公式,可得答案.解答:证明:(1)∵PD⊥底面ABCD,AB⊂底面ABCD,∴PD⊥AB连接DB,在菱形ABCD中,∠DAB=60°∴△DAB为等边三角形…又∵E为AB的中点∴AB⊥DE又∵PD∩DE=D∴AB⊥底面PDE…∵AB∥CD∴CD⊥底面PDE…解:(2)如图,分别以DE,DC,DP所在直线为x,y,z轴,如图建立空间直角坐标系∴….∴∴…∴∴…点评:本题考查的知识点是用空间向量求平面间的夹角,直线与平面垂直的判定,熟练掌握线面垂直的判定定理是解答(1)的关键,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据条件去掉式子的绝对值,分别令n=1,2代入求出a2和a3,再由等差中项的性质列出关于p的方程求解,利用“{a n}是递增数列”对求出的p的值取舍;(Ⅱ)根据数列的单调性和式子“|a n+1﹣a n|=p n”、不等式的可加性,求出和a2n+1﹣a2n=,再对数列{a n}的项数分类讨论,利用累加法和等比数列前n项和公式,求出数列{a n}的奇数项、偶数项对应的通项公式,再用分段函数的形式表示出来.解答:解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.点评:本题考查了等差数列的通项公式,等比数列前n项和公式、数列的单调性,累加法求数列的通项公式,不等式的性质等,同时考查数列的基础知识和化归、分类整合等数学思想,以及推理论证、分析与解决问题的能力.本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大.20.已知动点P到定点F(1,0)和直线l:x=2的距离之比为,设动点P的轨迹为曲线E,过点F作垂直于x轴的直线与曲线E相交于A,B两点,直线l:y=mx+n与曲线E交于C,D两点,与线段AB相交于一点(与A,B不重合)(Ⅰ)求曲线E的方程;(Ⅱ)当直线l与圆x2+y2=1相切时,四边形ABCD的面积是否有最大值,若有,求出其最大值,及对应的直线l的方程;若没有,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与X围问题.分析:(1)设点P(x,y),由题意可得,,化简即可得出;(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得m2+1=n2,直线与椭圆方程联立可得.利用根与系数的关系可得,再利用基本不等式的性质即可得出.解答:解:(1)设点P(x,y),由题意可得,,整理可得:.∴曲线E的方程是.(2)设C(x1,y1),D(x2,y2),由已知可得:,当m=0时,不合题意.当m≠0时,由直线l与圆x2+y2=1相切,可得:,即m2+1=n2,联立消去y得.,,所以,,==.当且仅当,即时等号成立,此时.经检验可知,直线和直线符合题意.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、四边形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=(x2﹣2x)lnx+ax2+2.(Ⅰ)当a=﹣1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a>0时,设函数g(x)=f(x)﹣x﹣2,且函数g(x)有且仅有一个零点,若e﹣2<x<e,g(x)≤m,求m的取值X围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理.专题:导数的综合应用.分析:(Ⅰ)当a=﹣1时,求导数,可得切线斜率,求出切点坐标,即可求f(x)在(1,f (1))处的切线方程;(Ⅱ)由g(x)=f(x)﹣x﹣2=0,可得a=,令h(x)=,证明h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,可得h(x)max=h(1)=1,即可求得函数g(x)有且仅有一个零点a的值,然后结合e﹣2<x<e,g(x)≤m,求出g(x)max,即可求得m的取值X围.解答:解:(Ⅰ)当a=﹣1时,f(x)=(x2﹣2x)•lnx﹣x2+2,定义域(0,+∞),∴f′(x)=(2x﹣2)•lnx+(x﹣2)﹣2x.∴f′(1)=﹣3,又f(1)=1,∴f(x)在(1,f(1))处的切线方程3x+y﹣4=0;(Ⅱ)g(x)=f(x)﹣x﹣2=0,则(x2﹣2x)•lnx+ax2+2=x+2,即a=,令h(x)=,则h′(x)=,令t(x)=1﹣x﹣2lnx,则t′(x)=,∵x>0,∴t′(x)<0,∴t(x)在(0,+∞)上是减函数,又∵t(1)=h′(1)=0,∴当0<x<1时,h′(x)>0,当x>1时,h′(x)<0,∴h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,∴h(x)max=h(1)=1,∴当函数g(x)有且仅有一个零点时a=1,当a=1时,g(x)=(x2﹣2x)•lnx+x2﹣x,若e﹣2<x<e, g(x)≤m,只需证明g(x)max≤m,∴g′(x)=(x﹣1)(3+2lnx),令g′(x)=0,得x=1或x=e﹣,又∵e﹣2<x<e,∴函数g(x)在(e﹣2,e﹣)上单调递增,在(e﹣,1)上单调递减,在(1,e)上单调递增,又g(e﹣)=﹣e﹣3+2e﹣,g(e)=2e2﹣3e,∵g(e﹣)=﹣e﹣3+2e﹣<2e﹣<2e<2e(e﹣)=g(e),∴g(e﹣)<g(e),∴m≥2e2﹣3e.点评:本题考查导数知识的综合运用,考查导数的几何意义,考查函数的单调性与最值,考查分离参数法的运用,属于难题.请考生在第(22)、(23)二题中任选一题作答.如果多做,则按所做的第一题记分,答题时,用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-1:几何证明选讲22.如图,过圆E外一点A作一条直线与圆E交于B,C两点,且,作直线AF与圆E相切于点F,连结EF交BC于点D,已知圆E的半径为2,∠EBC=30°(1)求AF的长;(2)求证:AD=3ED.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)延长BE交圆E于点M,连结CM,则∠BCM=90°,由已知条件求出AB,AC,再由切割线定理能求出AF.(2)过E作EH⊥BC于H,得到EDH∽△ADF,由此入手能够证明AD=3ED.解答:(1)解:延长BE交圆E于点M,连结CM,则∠BCM=90°,∵BM=2BE=4,∠EBC=30°,∴,又∵,∴,∴,根据切割线定理得,即AF=3(2)证明:过E作EH⊥BC于H,∵∠EOH=∠ADF,∠EHD=∠AFD,∴△EDH∽△ADF,∴,又由题意知CH=,EB=2,∴EH=1,∴,∴AD=3ED.点评:本题考查与圆有关的线段的求法,考查两条线段间数量关系的证明,是中档题,解题时要注意切割线定理的合理运用.选修4-5:不等式选讲23.已知函数f(x)=|2x﹣1|.(1)若对任意a、b、c∈R(a≠c),都有f(x)≤恒成立,求x的取值X围;(2)解不等式f(x)≤3x.考点:绝对值不等式的解法;函数恒成立问题.专题:不等式的解法及应用.分析:(1)根据|a﹣b|+|b﹣c|≥|a﹣c|,可得≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,由此求得x的X围.(2)不等式即|2x﹣1|≤3x,可得,由此求得不等式的解集.解答:解:(1)∵|a﹣b|+|b﹣c|≥|a﹣b+(b﹣c)|=|a﹣c|,故有≥1,再根据f(x)≤恒成立,可得f(x)≤1,即|2x﹣1|≤1,∴﹣1≤2x﹣1≤1,求得0≤x≤1.(2)不等式f(x)≤3x,即|2x﹣1|≤3x,∴,求得x≥,即不等式的解集为{x|x≥}.点评:本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化的数学思想,属于基础题.。
高三数学一轮检测试题含解析 试题

2021届高三数学一轮检测试题〔含解析〕创 作人:历恰面 日 期: 2020年1月1日考前须知:1.答卷前,所有考生必须将本人的姓名、考生号等填写上在答题卡和试卷规定的正确位置上.2.答复选择题时,选出每一小题答案后,用铅笔把答题卡上对应题目之答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号.答复非选择题时,将答案写在答题卡上.写在套本套试卷上无效.3.在在考试完毕之后以后,将本套试卷和答题卡一起交回.一、单项选择题:此题一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.全集U =R ,集合{|31}M x x =-<<,{|||1}N x x =,那么阴影局部表示的集合是〔 〕A. [1,1]-B. (3,1]-C. (,3)(1,)-∞--+∞D.(3,1)--【答案】D 【解析】 【分析】先求出集合N 的补集UN ,再求出集合M 与UN 的交集,即为所求阴影局部表示的集合.【详解】由U =R ,{|||1}N x x =,可得{1UN x x =<-或者1}x >,又{|31}M x x =-<< 所以{31}UM N x x ⋂=-<<-.应选:D.【点睛】此题考察了韦恩图表示集合,集合的交集和补集的运算,属于根底题.21aibi i-=-,其中a ,b R ∈,i 是虚数单位,那么a bi +=〔 〕A. 12i -+B. 1C. 5【答案】D 【解析】 试题分析:由21aibi i-=-,得()21,1,2ai i bi b i a b -=-=+∴=-=,那么12,12a bi i a bi i +=-+∴+=-+== D考点:1、复数的运算;2、复数的模.3.31(2)(1)mx x--的展开式中的常数项为8,那么实数m =〔 〕A. 2B. -2C. -3D. 3【答案】A 【解析】 【分析】先求31(1)x-的展开式,再分类分析(2)mx -中用哪一项与31(1)x-相乘,将所有结果为常数的相加,即为31(2)(1)mx x --展开式的常数项,从而求出m 的值.【详解】31(1)x -展开式的通项为313311()(1)r r r r r rr T C C x x--+=⋅-=⋅-,当(2)mx -取2时,常数项为0322C ⨯=,当(2)mx -取mx -时,常数项为113(1)3m C m -⨯⨯-=由题知238m +=,那么2m =. 应选:A.【点睛】此题考察了两个二项式乘积的展开式中的系数问题,其中对(2)mx -所取的项要进展分类讨论,属于根底题.4.函数()log (|2|)(0a f x x a a =-->,且1a ≠),那么“()f x 在(3,)+∞上是单调函数〞是“01a <<〞的〔 〕 A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C 【解析】 【分析】先求出复合函数()f x 在(3,)+∞上是单调函数的充要条件,再看其和01a <<的包含关系,利用集合间包含关系与充要条件之间的关系,判断正确答案. 【详解】()log (|2|)(0a f x x a a =-->,且1a ≠), 由20x a -->得2x a <-或者2x a >+,即()f x 的定义域为{2x x a <-或者2}x a >+,〔0,a >且1a ≠〕 令2t x a =--,其在(,2)a -∞-单调递减,(2,)a ++∞单调递增,()f x 在(3,)+∞上是单调函数,其充要条件为2301a a a +≤⎧⎪>⎨⎪≠⎩即01a <<.应选:C.【点睛】此题考察了复合函数的单调性的判断问题,充要条件的判断,属于根底题.5.定义在R 上的函数()f x 的周期为4,当[2,2)x ∈-时,1()43xf x x ⎛⎫=-- ⎪⎝⎭,那么()()33log 6log 54f f -+=〔 〕A.32B.33log 22- C. 12-D.32log 23+ 【答案】A 【解析】 【分析】因为给出的解析式只适用于[2,2)x ∈-,所以利用周期性,将3(log 54)f 转化为32(log )3f ,再与()3log 6f -一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果. 【详解】定义在R 上的函数()f x 的周期为43332(log 54)(log 544)(log )3f f f ∴=-=,当[2,2)x ∈-时,1()()43xf x x =--,3log 6[2,2)-∈-,32log [2,2)3∈-,()()33log 6log 54f f ∴-+332log log 6333112()(log 6)4()log 4333-=---+-- 11333log 6log 233112()()(log 6log )8333=++--3336log (6)822=++⨯-32=. 应选:A.【点睛】此题考察了利用函数的周期性求函数值,对数的运算性质,属于中档题. 6.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,假设AB mAM =,AC nAN =,那么m n +=〔 〕A. 1B.32C. 2D. 3【答案】C 【解析】 【分析】连接AO ,因为O 为BC 中点,可由平行四边形法那么得1()2AO AB AC =+,再将其用AM ,AN 表示.由M 、O 、N 三点一共线可知,其表达式中的系数和122m n+=,即可求出m n +的值.【详解】连接AO ,由O 为BC 中点可得,1()222m nAO AB AC AM AN =+=+,M 、O 、N 三点一共线,122m n∴+=, 2m n ∴+=.应选:C.【点睛】此题考察了向量的线性运算,由三点一共线求参数的问题,熟记向量的一共线定理是关键.属于根底题.7.一个封闭的棱长为2的正方体容器,当程度放置时,如图,水面的高度正好为棱长的一半.假设将该正方体绕下底面〔底面与程度面平行〕的某条棱任意旋转,那么容器里水面的最大高度为〔 〕A. 1B. 2C. 3D. 22【答案】B 【解析】 【分析】根据可知水面的最大高度为正方体面对角线长的一半,由此得到结论. 【详解】正方体的面对角线长为22,又水的体积是正方体体积的一半, 且正方体绕下底面〔底面与程度面平行〕的某条棱任意旋转, 所以容器里水面的最大高度为面对角线长的一半, 即最大水面高度为2,应选B.【点睛】此题考察了正方体的几何特征,考察了空间想象才能,属于根底题. 8.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,那么MN AB 的最大值是〔 〕A.34B.33C.323【答案】B 【解析】【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,那么1AF AA =,1BF BB =,又M是AB中点,所以111()2MN AA BB =+,那么1112MNAA BB AB AB+=⋅2AF BF AB+=,在ABF∆中222AB AF BF =+22cos 3AF BF π-22AF BF AF BF=++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF+-23()4AF BF =+,所以22()43AF BF AB+≤,即AF BF AB +≤MN AB ≤B .考点:抛物线的性质.【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的间隔 ,焦点弦长,抛物线上的点到准线〔或者与准线平行的直线〕的间隔 时,常常考虑用抛物线的定义进展问题的转化.象此题弦AB 的中点M 到准线的间隔 首先等于,A B 两点到准线间隔 之和的一半,然后转化为,A B 两点到焦点F 的间隔 ,从而与弦长AB 之间可通过余弦定理建立关系.二、多项选择题:此题一共4小题,每一小题5分,一共20分.在每一小题给出的选项里面,有多项符合题目要求.全部选对的得5分,局部选对的得3分,有选错的得0分. 9.某调查机构对全国互联网行业进展调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,那么以下结论正确的选项是〔 〕 注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多 【答案】ABC 【解析】 【分析】根据扇形统计图和条状图,逐一判断选项,得出答案.【详解】选项A :因为互联网行业从业人员中,“90后〞占比为56%, 其中从事技术和运营岗位的人数占的比分别为%和17%, 那么“90后〞从事技术和运营岗位的人数占总人数的0000000056(39.617)31.7⨯+≈.“80前〞和“80后〞中必然也有从事技术和运营岗位的人,那么总的占比一定超过三成, 应选项A 正确;选项B :因为互联网行业从业人员中,“90后〞占比为56%, 其中从事技术岗位的人数占的比为%,那么“90后〞从事技术 岗位的人数占总人数的0000005639.622.2⨯≈.“80前〞和“80后〞中必然也有从事技术岗位的人,那么总的占比一定超过20%,应选项B 正确; 选项C :“90后〞从事运营岗位的人数占总人数的比为00000056179.5⨯≈, 大于“80前〞的总人数所占比3%,应选项C 正确;选项D :“90后〞从事技术岗位的人数占总人数的0000005639.622.2⨯≈, “80后〞的总人数所占比为41%,条件中未给出从事技术岗位的占比, 故不能判断,所以选项D 错误. 应选:ABC.【点睛】此题考察了扇形统计图和条状图的应用,考察数据处理才能和实际应用才能,属于中档题.10.以下说法正确的选项是〔 〕A. “5c =〞是“点(2,1)到直线340x y c ++=的间隔 为3”的充要条件B. 直线sin 10x y α-+=的倾斜角的取值范围为3[0,][,)44πππ⋃ C. 直线25y x =-+与直线210x y ++=平行,且与圆225x y +=相切D. y = 【答案】BC 【解析】 【分析】根据点到直线的间隔 公式判断选项A 错误;根据直线斜率的定义及正切函数的值域问题判断选项B 正确;根据两直线平行的断定及直线与圆相切的断定,可判断选项C 正确;根据双曲线渐近线的定义可判断选项D 错误.【详解】选项A :由点(2,1)到直线340x y c ++=的间隔 为3,可得:6435c++=,解得5c =或者25-, “5c =〞是“点(2,1)到直线340x y c ++=的间隔 为3”的充分不必要条件, 应选项A 错误;选项B :直线sin 10x y α-+=的斜率sin [1,1]k α=∈-, 设直线的倾斜角为θ,那么0tan 1θ≤<或者1tan 0θ-≤<,3[0,][,)44θπππ∴∈,应选项B 正确;选项C :直线25y x =-+可化为250x y +-=, 其与直线210x y ++=平行,圆225x y +=的圆心(0,0)O 到直线250x y +-=的间隔 为:d ==,那么直线250x y +-=与圆225x y +=相切,应选项C 正确;选项D :离心率为c a =ba=假设焦点在x 轴,那么双曲线的渐近线方程为y =,假设焦点在y 轴,那么双曲线的渐近线方程为2y x =±, 应选项D 错误. 应选:BC.【点睛】此题考察了点到直线的间隔 ,直线的斜率的定义,两直线的平行关系的判断,直线与圆的相切的判断,双曲线的渐近线方程,知识点较繁杂,需要对选项逐一判断.属于中档题.11.,αβ是两个不重合的平面,,m n 是两条不重合的直线,那么以下命题正确的选项是〔 〕A. 假设,,//m n m n αβ⊥⊥,那么αβ⊥B. 假设,//m n αα⊥,那么m n ⊥C. 假设//,m αβα⊂,那么//m βD. 假设//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等 【答案】BCD 【解析】 【分析】根据线、面的位置关系,逐一进展判断.【详解】选项A :假设,m n m α⊥⊥,那么n ⊂α或者//n α, 又//n β,并不能得到αβ⊥这一结论,应选项A 错误;选项B :假设,//m n αα⊥,那么由线面垂直的性质定理和线面平行的 性质定理可得m n ⊥,应选项B 正确;选项C :假设//,m αβα⊂,那么有面面平行的性质定理可知//m β, 应选项C 正确;选项D :假设//,//m n αβ,那么由线面角的定义和等角定理知,m 与α 所成的角和n 与β所成的角相等,应选项D 正确. 应选:BCD.【点睛】此题考察了线面垂直的性质定理,线面平行的性质定理,面面平行的性质定理,以及线面角的定义和等角定理等根底知识,需要对每个选项逐一进展判断,属于中档题. 12.函数||()sin x f x e x =,那么以下结论正确的选项是〔 〕 A. ()f x 是周期为2π的奇函数B. ()f x 在3,44ππ⎛⎫-⎪⎝⎭上为增函数 C. ()f x 在(10,10)ππ-内有21个极值点D. ()f x ax 在0,4π⎡⎤⎢⎥⎣⎦上恒成立的充要条件是1a 【答案】BD 【解析】 【分析】根据周期函数的定义断定选项A 错误;根据导航的符号判断选项B 正确;根据导函数零点断定选项C 错误;根据恒成立以及对应函数最值确定选项D 正确. 【详解】()f x 的定义域为R ,()sin()()x f x e x f x --=-=-,()f x ∴是奇函数,但是22(2)sin(2)sin ()x x f x ex ex f x ππππ+++=+=≠,()f x ∴不是周期为2π的函数,应选项A 错误;当(,0)4x π∈-时,()sin x f x e x -=,(cos ()sin )0x x f x e x -'-=>,()f x 单调递增,当3(0,)4x π∈时,()sin x f x e x =, (sin ))0c (os x x f x e x +'=>,()f x 单调递增,且()f x 在3(,)44ππ-连续,故()f x 在3(,)44ππ-单调递增,应选项B 正确;当[0,10)x π∈时,()sin xf x e x =,(sin c )s ()o xf x e x x +'=,令()0f x '=得,(1,2,3,4,5,6,7,8,9,10)4x k k ππ=-+=,当(10,0)x π∈-时,()sin xf x e x -=,(co (s )sin )x x f x e x -=-',令()0f x '=得,(1,2,3,4,5,6,7,8,9,10)4x k k ππ=+=----------,因此,()f x 在(10,10)ππ-内有20个极值点,应选项C 错误; 当0x =时,()00f x ax =≥=,那么a R ∈,当(0,]4x π∈时,sin ()x e xf x ax a x≥⇔≤,设sin ()x e x g x x =,2(sin cos sin )()x e x x x x x g x x+-'∴=, 令()sin cos sin h x x x x x x =+-,(0,]4x π∈()sin (cos sin )0h x x x x x '∴=+->,()h x 单调递增,()(0)0h x h ∴>=,()0g x '∴>,()g x 在(0,]4π单调递增,又由洛必达法那么知:当0x →时,0sin (sin cos )()11x x x e x e x x g x x =+=→=1a ∴≤,故答案D 正确.应选:BD.【点睛】此题考察了奇函数、周期函数定义,三角函数的几何性质,函数的极值,利用导数研究单调性以及利用导数研究恒成立问题,考察综合分析求解与论证才能,属较难题. 三、填空题:此题一共4小题,每一小题5分,一共20分. 13.()3312,,,sin ,sin 45413ππαβπαββ⎛⎫⎛⎫∈+=--=⎪ ⎪⎝⎭⎝⎭,那么cos 4πα⎛⎫+= ⎪⎝⎭__________.【答案】5665- 【解析】 ∵3,,4παβπ⎛⎫∈⎪⎝⎭, ∴3,22παβπ⎛⎫+∈⎪⎝⎭,∴()()24cos =1sin 5αβαβ+-+=. 又3,424πππβ⎛⎫-∈ ⎪⎝⎭,12sin ,413πβ⎛⎫-= ⎪⎝⎭ ∴25cos()=1sin ()4413ππββ----=-. ∴cos()cos[()()]44ππααββ+=+--cos()cos()sin ()sin()44ππαββαββ=+-++-4531256()()51351365=⨯-+-⨯=-. 答案:5665-14.一个房间的地面是由12个正方形所组成,如下图.今想用长方形瓷砖铺满地面,每一块长方形瓷砖可以覆盖两块相邻的正方形,即或者,那么用6块瓷砖铺满房间地面的方法有_______种.【答案】11 【解析】 【分析】将图形中左侧的两列瓷砖的形状先确定,再由此进展分类,在每一类里面又分按两种形状的瓷砖的数量进展分类,在其中会有一样元素的排列问题,需用到“缩倍法〞. 采用分类计数原理,求得总的方法数.【详解】〔1〕先贴如图这块瓷砖,然后再贴剩下的局部,按如下分类:5个:5!15!=,3个,2个:4!4 3!=,1个,4个:3!3 2!=,〔2〕左侧两列如图贴砖,然后贴剩下的局部:3个:3!1 3!=,1个,2个:2!2=,综上,一一共有1431211++++=〔种〕.故答案为:11.【点睛】此题考察了分类计数原理,排列问题,其中涉及到一样元素的排列,用到了“缩倍法〞的思想.属于中档题.15.?易经?是中国传统文化中的精华,如图是易经八卦〔含乾、坤、巽、震、坎、离、艮、兑八卦〕,每一卦由三根线组成〔""表示一根阳线,""表示一根阴线〕,从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.【答案】3 14【解析】【分析】观察八卦中阴线和阳线的情况为3线全为阳线或者全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。
2024-2025学年广东省江门市高三上学期10月调研数学试题及答案

江门市2025届普通高中高三调研测试数学本试卷共5页,19小题,满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上,2.做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 已知集合{}{}209,010A x x B x x =∈≤≤=∈≤≤N N∣∣,则A B = ( )A. {}09xx ≤≤∣ B. {}1,2,3 C. {}03xx ≤≤∣ D. {}0,1,2,32. 设,m n ∈R ,则“33(1)m n +=”是“22m n ”的( ) A 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分又不必要条件3. 下列命题为真命题的是( ) A. 若0a b c >>>,则a a cb b c+<+ B. 若0,0a b c >><,则c c a b< C. 0a b >>,则22ac bc > D. 若a b >,则2a ba b +>> ..4. 已知函数()e e ,2,,2,3x x x f x x f x − +≤= >则()ln27f =( )A.83B.103C.72827D.730275. 下列函数中,以π为周期,且在区间π,π2上单调递增的是( ) A. sin y x = B. cos y x = C. tan y x =D. cos y x =6. 在正方形ABCD 中,,2,AE EB FC BF AF ==与DE 交于点M ,则cos EMF ∠=( )A.B.15C.D.1107. 金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度h 与其来摘后时间t (天)满足的函数解析式为()()ln 0h m t a a =+>.若采摘后1天,金针菇失去的新鲜度为40%;若采摘后3天,金针菇失去的新鲜度为80%.现在金针菇失去的新鲜度为60%,则采摘后的天数为( )1.41≈) A. 1.5B. 1.8C. 2.0D. 2.18. 已知各项都为正数的数列{aa nn }满足121,2a a ==,()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,则下列结论中一定正确的是( ) A. 8124a > B. 201024a > C. 8124a <D. 201204a <二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若函数()2()f x x x c =−在1x =处取得极大值,则( ) A. 1c =,或3c =B. ()10xf x +<的解集为()1,0− C 当π02x <<时,()()2cos cos f x f x > D. ()()224f x f x ++−=.10. 在ABC 中,1AB =,4AC =,BC =,点D 在边BC 上,AD 为BAC ∠的角平分线,点E 为AC 中点,则( ) A. ABCB. BA CA ⋅C. BE =D. AD =11. 已知()()22sin cos nnn f x x x n +=+∈N ,则( ) A. ()2f x 的最小正周期为π2B. ()2f x 的图象关于点()π,0Z 28k k+∈对称 C. ()n f x 的图象关于直线π2x =对称 D.()1112n n f x −≤≤ 三、填空题:本题共3小题,每小题5分,共15分.12. 函数()ln f x x x =⋅的单调递减区间为______.13. 已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()()sin 1cos f x x x =+,则当0x <时,()f x =__________.14. 已知0,0a b >≠,且4a b +=,则48b a b++的最小值为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点()4,3P −. (1)求sin2α的值;(2)若角β满足()5sin 13αβ+=,求cos β的值. 16. 已知数列{}n a 前n 项和为n S ,且()1344n n S n ++=−∈N .(1)证明:数列{}2log n a 为等差数列; (2)记数列{}2log n a 的前n 项和为n T ,若1231111100101n T T T T ++++< ,求满足条件的最大整数n . 17. 已知ABC 的三个内角,,A B C 所对的边分别为,,a b c ,且4,3==a c b ,记ABC 的面积为S ,内的切圆半径为r ,外接圆半径为R . (1)若b =,求sin A ;(2)记()12pa b c =++,证明:S r p =; (3)求rR 的取值范围: 18 设函数()()()1ln ,10f x x g x x x==−>. (1)求()f x 在1x =处的切线方程; (2)证明:()()f x g x ≥:(3)若方程()()af x g x =有两个实根,求实数a 的取值范围,19. 如果定义域为[]0,1的函数()f x 同时满足以下三个条件:(1)对任意的[]0,1x ∈,总有()0f x ≥;(2)()11f =;(3)当120,0x x ≥≥,且121x x +≤时,()()()1212f x x f x f x +≥+恒成立.则称()f x 为“友谊函数”.请解答下列问题:(1)已知()f x 为“友谊函数”,求()0f 的值;(2)判断函数()[]()310,1xg x x x =−−∈是否为“友谊函数”?并说明理由;(3)已知()f x 为“友谊函数”,存在[]00,1x ∈,使得()[]00,1f x ∈,且()()0f f x x=,证明:()00f x x =..江门市2025届普通高中高三调研测试数学本试卷共5页,19小题,满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上,2.做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.3.答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上作答无效.5.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}209,010A x x B x x =∈≤≤=∈≤≤N N∣∣,则A B = ( )A. {}09xx ≤≤∣ B. {}1,2,3 C. {}03xx ≤≤∣ D. {}0,1,2,3【答案】D 【解析】【分析】根据题意求集合,A B ,集合交集运算求解.【详解】由题意可得:{}{}2090,1,2,3A x x =∈≤≤=N∣, {}{}0100,1,2,3,4,5,6,7,8,9,10B x x =∈≤≤=N ∣,所以{}0,1,2,3A B ∩=. 故选:D .2. 设,m n ∈R ,则“33(1)m n +=”是“22m n ”的( ) A. 充分不必要条件 B. 充要条件C. 必要不充分条件D. 既不充分又不必要条件【答案】A 【解析】【分析】根据充分、必要条件的判定方法进行判断. 【详解】由()331m n +=⇒1m n +=⇒122m n +=,又122m m +<,所以22m n <,故“33(1)m n +=”是“22m n <”的充分条件; 又若22m n <,如0m =,2n =,此时33(1)m n +=不成立, 所以“33(1)m n +=”是“22m n <”的不必要条件. 综上:“33(1)m n +=”是“22m n <”充分不必要条件. 故选:A3. 下列命题为真命题的是( ) A. 若0a b c >>>,则a a cb b c+<+ B. 若0,0a b c >><,则c c a b< C. 0a b >>,则22ac bc > D. 若a b >,则2a ba b +>> 【答案】D 【解析】【分析】根据不等式的性质作差法比较大小或取特殊值判断,即可得出结果. 【详解】对于A ,()()()()()a b c b a c c a b a a c b b cb bc b b c +−+−+−==+++, 因0a b c >>>,所以()0,0a b b b c −>+>,所以()()0c a b a a c b b c b b c −+−=>++,即a a cb b c+>+,故A 错误;对于B ,因为0a b >>,所以11a b<, 又0c <,所以c ca b>,故B 错误; 对于C ,当0c =时,220ac bc ==,故C 错误;对于D ,若a b >,则2,2a a b a b b >++>,的为所以2a ba b +>>,故D 正确. 故选:D.4. 已知函数()e e ,2,,2,3x x x f x x f x − +≤= >则()ln27f =( )A.83B.103C.72827D.73027【答案】B 【解析】【分析】利用对数的运算性质计算可得答案. 【详解】因为21ln e ln 3ln e 2=<<=所以3ln27ln 33ln 33==>,又因为()e e ,2,23x x x f x x f x − +≤ =>, 所以()()1ln ln3ln33ln273ln3110ln27ln3e e 3e 33333f f f f − ====+=+=+=. 故选:B.5. 下列函数中,以π为周期,且在区间π,π2上单调递增的是( ) A. sin y x = B. cos y x = C. tan y x = D. cos y x =【答案】D 【解析】【分析】先判断各函数的最小正周期,再确定各函数在区间上的单调性,即可选择判断. 【详解】对于A :由sin 1s 1π3π2in 2−−==−,,可知π不是其周期,(也可说明其不是周期函数)故错误; 对于B :()cos ,0cos ,0coscos cos ,0cos ,0x x x x yx x x x x x ≥≥ === −<< ,其最小正周期为2π,故错误; 对于C :tan y x =满足()tan tan x x π+=,以π为周期,当π,π2x∈时,tan tan y x x ==−,由正切函数的单调性可知tan tan y x x ==−在区间π,π2 上单调递减,故错误;对于D ,cos y x =满足()cos πcos x x +=,以π为周期, 当π,π2x∈时,cos cos y x x ==−,由余弦函数的单调性可知,cos y x =−在区间π,π2 上单调递增,故正确; 故选:D6. 在正方形ABCD 中,,2,AE EB FC BF AF ==与DE 交于点M ,则cos EMF ∠=( )A.B.15C.D.110【答案】C 【解析】【分析】建立平面直角坐标系,利用向量的坐标计算夹角的余弦值即可.【详解】建立平面直角坐标系,设正方形ABCD 棱长为2,因为,2AE EB FC BF == ,则()0,1E ,()0,2A ,()2,2D ,2,03F, 所以2,23AF=−,()2,1DE =−−,所以cos cos ,EMFAF DE ∠== .故选:C的7. 金针菇采摘后会很快失去新鲜度,甚至腐烂,所以超市销售金针菇时需要采取保鲜膜封闭保存.已知金针菇失去的新鲜度h 与其来摘后时间t (天)满足的函数解析式为()()ln 0h m t a a =+>.若采摘后1天,金针菇失去的新鲜度为40%;若采摘后3天,金针菇失去的新鲜度为80%.现在金针菇失去的新鲜度为60%,则采摘后的天数为( )1.41≈) A. 1.5 B. 1.8C. 2.0D. 2.1【答案】B 【解析】【分析】根据已知条件得到两个等式,两个等式相除求出a 的值,再根据两个等式相除可求得结果.【详解】由题可得()()ln 10.4ln 30.8m a m a +=+=,两式相除可得()()ln 32ln 1a a +=+, 则()()ln 32ln 1a a +=+,()231a a +=+,∵0a >,解得1a =,设t 天后金针菇失去的新鲜度为60%,则()ln 10.6m t +=,又()110.4mln +=, ∴()ln 13ln 22t +=,()2ln 13ln 2t +=,()23128t +==,12 1.41 2.82t +==×=, 则 2.821 1.82 1.8t =−=≈, 故选:B.8. 已知各项都为正数数列{aa nn }满足121,2a a ==,()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,则下列结论中一定正确的是( ) A. 8124a > B. 201024a > C. 8124a < D. 201204a <【答案】B 【解析】【分析】由()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N 得()()1120n n n n n a a a a a −−− +−+> ,由题意,12n n n a a a −−>+,根据递推公式可验证B ,通过对3a 赋值,可验证ACD.【详解】由()2212123,n n n n n n a a a a a a n n −−−−+−−>≥∈N ,的得()()1120n n n n n a a a a a −−− +−+> , 因为数列{aa nn }各项都为正数,所以10n n a a −>+,故()120n n n a a a −−−+>,即12n n n a a a −−>+,所以321213a a a >+=+=,对于A ,设34a =,则432426a a a >+=+=, 设47a =,则5437411a a a >+=+=, 设512a =,则65412719a a a >+=+=, 设620a =,则765201232a a a >+=+=, 设733a =,则876332053a a a >+=+=, 则8a 可以为54124<,故A 错误;对于B ,432325a a a >+>+>,543538a a a >+>+>,6548513a a a >+>+>,76513821a a a >+>+>, 876211334a a a >+>+>, 987342155a a a >+>+>, 1098553489a a a >+>+>,111098955144a a a >+>+>, 12111014489233a a a >+>+>,131211233144377a a a >+>+>, 141312377233610a a a >+>+>,151413610377987a a a >+>+>, 1615149876101597a a a >+>+>,17161515979872584a a a >+>+>, 181716258415974181a a a >+>+>,191817418125846765a a a >+>+>,20191867654184109461024a a a >+>+>>,故B 正确;对于C ,若3124a =, 由于12n n n a a a −−>+,则8124a >,故C 错误; 对于D ,若31024a =, 由于12n n n a a a −−>+,则201024a >,故D 错误; 故选:B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 若函数()2()f x x x c =−在1x =处取得极大值,则( ) A. 1c =,或3c =B. ()10xf x +<的解集为()1,0−C. 当π02x <<时,()()2cos cos f x f x > D. ()()224f x f x ++−=【答案】BCD 【解析】【分析】A 选项,由题可得()10f ′=,据此得c 的可能值,验证后可判断选项正误;B 选项,由A 分析,可得()1xf x +表达式,解相应不等式可判断选项正误;C 选项,由A 分析结合cos x ,2cos x 大小关系可判断选项正误;D 选项,由A 分析,验证等式是否成立可判断选项正误.【详解】A 选项,由题()3222f x x cx c x =−+,则()2234f x x cx c =−+′, 因在1x =处取得极大值,则()214301f c c c +′=−=⇒=或3c =.当1c =时,()2341f x x x ′=−+,令()()10,1,3f x x ∞∞ >⇒∈−∪+ ′;()10,13f x x <⇒∈′.则()f x 在()1,1,3∞∞−+ ,上单调递增,在1,13上单调递减,则()f x 在1x =处取得极小值,不合题意;当3c =时,()23129f x x x =−+′,令()()()0,13,f x x ∞∞>⇒∈−∪+′;()()01,3f x x <⇒∈′.则()f x 在()(),13,∞∞−+,上单调递增,在()1,3上单调递减,则()f x 在1x =处取得极大值,满足题意;则3c =,故A 错误;B 选项,由A 可知,()()23f x x x =−,则()()()()()21120101,0xf x x x x x x x +=+−<⇒+<⇒∈−.故B 正确; C 选项,当π02x <<,则,则2cos cos x x <,由A 分析,()f x 在(0,1)上单调递增, 则()()2cos cos f x f x >,故C 正确;D 选项,令22x m x n +=−=,,由A 可知,()3269f x x x x =−+.则()()()()22f x f x f m f n ++−=+()()()()32322222696969m m m n n n m n m mn n m n m n =−++−+=+−+−+++,又4m n+=,则()()()()22242363624f m f n mn m n m n +=−−++=−+=,故D 正确. 故选:BCD10. 在ABC 中,1AB =,4AC =,BC =,点D 在边BC 上,AD 为BAC ∠的角平分线,点E 为AC 中点,则( ) A. ABCB. BA CA ⋅C. BE =D. AD =【答案】ACD 【解析】【分析】根据余弦定理可得π3A ∠=,进而可得面积判断A ,再结合向量的线性运算及向量数量积可判断BC ,根据三角形面积及角分线的性质可判断D.【详解】如图所示,由余弦定理可知222116131cos 22142AB AC BC BAC AB AC +−+−∠===⋅××, 而BAC ∠为三角形内角,故π3BAC ∠=,sin BAC ∠, 所以ABC面积11sin 1422S AB AC BAC =⋅⋅∠=××=A 选项正确; 1cos 1422BA CA AB AC AB AC BAC ⋅=⋅=⋅⋅∠=××= ,B 选项错误;由点E 为AC 中点,则12BE AE AB AC AB =−=− , 所以222211412324BE AC AB AC AB AB AC =−=+−⋅=+−=,则BE = ,C 选项正确;由AD 为BAC ∠的角平分线,则π6BAD CAD ∠=∠=,所以1sin sin 2S AB AD BAD AC AD CAD =⋅⋅∠+⋅⋅∠,111151422224AD AD AD =××+××=,则AD =D 选项正确; 故选:ACD.11. 已知()()22sin cos nnn f x x x n +=+∈N ,则( ) A. ()2f x 的最小正周期为π2B. ()2f x 的图象关于点()π,0Z 28k k+∈对称 C. ()n f x 的图象关于直线π2x =对称 D.()1112n n f x −≤≤ 【答案】ACD 【解析】【分析】用函数对称性的定义及函数周期性的定义可判断ABC 选项的正误;利用导数法可判断D 选项的正误.【详解】()2442222221()sin cos sin cos 2sin cos 1sin 22f x x x x x x x x =+=+−=−11cos 43cos 41224x x −+=−×=,所以()f x 的最小正周期为2ππ=42T =,故A 正确; 令π4π2xk =+,可得ππ,Z 84k x k =+∈,所以()2f x 的图象关于点()ππ3,Z 484k k+∈对称,故B 错误; 对于C : ()()()()()2222sin cos sin cos nnnnf x x x x x πππ −=−+−=+−()22sin cos n n x x f x =+=,所以函数()f x 的图象关于直线π2x =对称,C 对; 对于D: ,因为()()2222sin cos cos sin 222nnnnf x x x x x πππ+=+++=+−()22sin cos n n x x f x =+=,所以,函数()f x 为周期函数,且π2是函数()f x 的一个周期, 只需求出函数()f x 在0,2π上的值域,即为函数()f x 在R 上的值域, ()22sin cos n n f x x x =+ ,则()()212122222sin cos 2cos sin 2sin cos sin cos n n n n f x n x x n x x n x x x x −−−−−′−=,当,42x ππ∈时,0cos sin 1x x <<<<, 因为2n ≥且k ∗∈N ,则222n −≥,故2222sin cos n n x x −−>,此时ff ′(xx )>0,所以,函数()f x 在ππ,42上单调递增,当0,4x π∈时,0sin cos 1x x <<<<, 因为2k ≥且k ∗∈N ,则222n −≥,故2222sin cos n n x x −−<,此时ff ′(xx )<0,所以,函数()f x 在0,4π上单调递减,所以,当π0,2 ∈ x 时,()1min π112422n n f x f − ==×=, 又因为()π012f f ==,则()max 1f x =, 因此,函数()f x 的值域为11,12n −,D 对.故选:ACD三、填空题:本题共3小题,每小题5分,共15分.12. 函数()ln f x x x =⋅的单调递减区间为______. 【答案】10,e##(10,e − 【解析】【分析】利用导数求得()f x 的单调递减区间.【详解】函数的定义域为()0,∞+,∵()ln 1f x x ′=+,令ln 10x +≤得10ex <≤, ∴函数()ln f x x x =⋅的单调递减区间是10,e.故答案为:10,e13. 已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()()sin 1cos f x x x =+,则当0x <时,()f x =__________.【答案】()sin 1cos x x −+ 【解析】【分析】根据函数的奇偶性与三角函数的奇偶性求解即可.【详解】因为当0x ≥时,()()sin 1cos f x x x =+, 所以当0x <时,则0x −>,所以()()()()sin 1cos sin 1cos f x x x x x −=−+−=−+ , 又函数()f x 是定义在R 上的偶函数,所以()()()sin 1cos f x f x x x =−=−+. 故答案为:()sin 1cos x x −+.14. 已知0,0a b >≠,且4a b +=,则48b a b++的最小值为__________.【答案】2+. 【解析】【分析】先将所求式子化简4848b b a b a b b ++=++,再根据基本不等式得到48a b+的最小值,则可判断当0b <,求得最小值.【详解】根据题意:4848b b a b a b b++=++, 若0b >,则1||b b =, 若0b >,则1||=−b b , 因为0,0a b >≠,则||0b >,481482()()34b a a b a b a b a b +=++=++33≥++当且仅当2b aab=即1),4(2a b =−=−时取等号;则当0b <时,48481b a b a b++=+−的最小值是312+−=+当且仅当1),2)a b =−=−时取等号.故答案为:2+.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点()4,3P −. (1)求sin2α的值;(2)若角β满足()5sin 13αβ+=,求cos β的值. 【答案】(1)2425−(2)3365或6365− 【解析】【分析】(1)根据三角函数的定义,求三角函数值,再根据二倍角公式,即可求解;(2)利用角的变换()cos cos βαβα=+− ,再结合两角差的余弦公式,即可求解.【小问1详解】由题意可知,()4,3P −,则=5r , 则3sin 5α=−,4cos 5α=, 24sin 22sin cos 25ααα==−;【小问2详解】()5sin 13αβ+=,所以()12cos 13αβ+=±, 所以()()()cos cos cos cos sin sin βαβααβααβα=+−=+++ ,当()12cos 13αβ+=,所以1245333cos 13513565β =×+×−= ,当()12cos 13αβ+=−,所以1245363cos 13513565β=−×+×−=−, 综上可知,cos β的值为3365或6365− 16. 已知数列{}n a 的前n 项和为n S ,且()1344n n S n ++=−∈N .(1)证明:数列{}2log n a 为等差数列; (2)记数列{}2log n a 的前n 项和为n T ,若1231111100101n T T T T ++++< ,求满足条件的最大整数n . 【答案】(1)证明见解析 (2)99 【解析】【分析】(1)利用退一相减法可得n a 及2log n a ,即可得证;(2)根据等差数列求和公式可得()1n T n n =+,则()111111n T n n n n ==−++,利用裂项相消法可得1231111111n T T T T n ++++=−+ ,解不等式即可. 【小问1详解】由已知1344n n S +=−,当1n =时,211334412a S ==−=,即14a =;当2n ≥时,1344nn S −=−, 则11333444434n n n n n n a S S +−=−=−−+=⋅,即4n n a =,又1n =时,14a =满足4nn a =,所以242n nna ==, 设222log log 22nn n b a n ===,()12122n n b b n n +−=+−=, 即数列{bb nn }为等差数列,即数列{}2log n a 为以2为首项2为公差的等差数列; 【小问2详解】 由等差数列可知()()()122122n nb b n n nT n n ++===+,则()111111n T n n n n ==−++, 所以1231111n T T T T ++++ 1111112231n n =−+−++−+ 11n 1=−+,即110011101n −<+,N n +∈, 解得100n <,即满足条件的最大整数99n =.17. 已知ABC 的三个内角,,A B C 所对的边分别为,,a b c ,且4,3==a c b ,记ABC 的面积为S ,内切圆半径为r ,外接圆半径为R . (1)若b =,求sin A ;(2)记()12pa b c =++,证明:S r p =; (3)求rR 取值范围: 【答案】(1(2)证明见解析 (3)3,24【解析】【分析】(1)利用余弦定理求得cos A ,进而求得sin A . (2)根据三角形的面积公式证得结论成立.(3)用b 表示rR ,然后利用导数求得rR 的取值范围. 【小问1详解】 ∵4a =,b =,c =,由余弦定理,得2221cos 23b c a A bc +−== ,∵0πA <<,sin A ∴.【小问2详解】∵ABC 的面积为S ,内切圆半径为r ,的∴()11112222S a r b r c r a b c r =×+×+×=++, 又∵1()2pa b c =++,∴S pr =,∴S r p =.【小问3详解】 由正弦定理得2sin aR A=,得2sin 2sin 42sin R A A a A ===, 因为4a =,3c b =, 由(2)得1(43)(22)2S pr r b b b r ==++=+, 又因为213sin sin 22b S bc A A ==×,所以23sin 4(1)b A r b =+, 所以2321b Rr b =×+, 由3443b b b b +>+>,解得12b <<, 令23()(12)2(1)b f b b b =<<+,()()()232021b b f b b +=>+′, 则()f b 在(1,2)上单调递增, 所以()243f b <<, 故rR 的取值范围为3,24. 18. 设函数()()()1ln ,10f x x g x x x==−>. (1)求()f x 在1x =处的切线方程; (2)证明:()()f x g x ≥:(3)若方程()()af x g x =有两个实根,求实数a 的取值范围,【答案】(1)10x y −−=(2)证明见解析 (3)(0,1)(1,)∪+∞ 【解析】【分析】(1)根据切点和斜率求得切线方程. (2)利用构造函数法,结合导数证得不等式成立.(3)利用构造函数法,结合导数以及对a 进行分类讨论来求得a 的取值范围. 【小问1详解】 1()f x x′=,则(1)1,(1)0k f f ===′.()f x ∴在1x =处的切线方程为1y x =−,即10x y −−=. 【小问2详解】 令1()()()ln 1,(0,)h x f x g x x x x∞=−=+−∈+ 22111()x h x x x x −′=−=.令21()0x h x x ′−==,解得1x =. 01,()0x h x ′∴<<<;1,()0x h x ′>>.()h x 在(0,1)上单调递减,在(1,)+∞上单调递增.()(1)0h x h ≥=,即()()f x g x ≥.【小问3详解】令1()()()ln 1,(0,)m x f x g x a x x x∞=−=+−∈+, 问题转化为()m x 在(0,)+∞上有两个零点.2211()a ax m x x x x−=−=′.①当0a ≤时,()0m x ′<,()m x 在(0,)+∞递减,()m x 至多只有一个零点,不符合要求.②当0a >时, 令()0m x ′=,解得1x a= 当10x a<<时,()0m x ′<,()m x 递减; 当1x a>时,()0m x ′>,()m x 递增. 所以11()ln 1ln 1m x m a a a a a a a≥=+−=−−.当1a =时,1(1)0m m a==,()m x 只有一个零点,不合题意. 令()ln 1,()ln a a a a a a ϕϕ′=−−=−, 当01a <<时,()ln 0ϕ′=−>a a , 所以()a φ在(0,1)递增,()(1)0a ϕϕ<=. 由于1(1)0,()0m m a a φ ==< ,111111(e )ln e 10e e a a a am a =+−=>, 111,e a x a ∴∃∈,使得1()0m x =, 故01a <<满足条件.当1a >时,()ln 0a a ϕ′=−<, 所以()a φ在(1,)+∞递减,()(1)0a φφ<=. 由于1(1)0,()0m m a a φ==< ,21(e )ln e 1e 10ea a a a m a a −−−+−−−> 21e ,a x a − ∴∃∈,使得2()0m x =, 故1a >满足条件.综上所述:实数a 的取值范围为(0,1)(1,)∪+∞.【点睛】关键点点睛:本题的解题过程中,需通过导数分析函数的性质,并将问题转化为函数零点的讨论,充分体现了数学思想方法的应用.在解题时,要特别注意导数符号的变化对函数单调性的影响,确保分类讨论的全面性和严谨性.19. 如果定义域为[]0,1的函数()f x 同时满足以下三个条件:(1)对任意的[]0,1x ∈,总有()0f x ≥;(2)()11f =;(3)当120,0x x ≥≥,且121x x +≤时,()()()1212f x x f x f x +≥+恒成立.则称()f x 为“友谊函数”.请解答下列问题:(1)已知()f x 为“友谊函数”,求()0f 的值;(2)判断函数()[]()310,1x g x x x =−−∈是否为“友谊函数”?并说明理由; (3)已知()f x 为“友谊函数”,存在[]00,1x ∈,使得()[]00,1f x ∈,且()()00f f x x =,证明:()00f x x =.【答案】(1)()00f =(2)是,理由见解析.(3)证明见解析.【解析】【分析】(1)结合条件,利用“赋值法”可求函数值. (2)根据给出的条件,逐一验证即可.(3)先判断函数的单调性,结合反证法进行证明.【小问1详解】由条件(1)可知:()00f ≥;结合条件(3),令120x x ==,则()()020f f ≥⇒()00f ≤. 所以:()00f =.【小问2详解】函数()[]()310,1x g x x x =−−∈是“友谊函数”.理由如下: 对条件(1):因为()00g =,()3ln 31xg x ′=−,当[]0,1x ∈时,()0g x ′>,所以()g x 在[0,1]上单调递增,所以()0g x ≥,[]0,1x ∈.对条件(2):()13111g =−−=.对条件(3):设120,0x x ≥≥,且121x x +≤,则: ()()()1212g x x g x g x +−+()()()12121212313131x x x x x x x x + −+−−−−−−− 12123331x x x x +=−−+()()123131x x =−−0≥. 所以:()()()1212g x x g x g x +≥+.综上可知:函数()[]()310,1x g x x x =−−∈是“友谊函数”. 【小问3详解】设1201x x ≤<≤且121x x +≤,则210x x −>, 所以()()()()211211f x f x f x x x f x −=+−− ()()()1211f x f x x f x ≥+−−()21f x x −0≥所以函数()f x 在[0,1]上单调递增. 下面用反证法证明:()00f x x =. 假设()00f x x ≠,则()00f x x >或()00f x x <.若()00f x x >,则()()000f x f f x x <=,这与()00f x x >矛盾; 若()00f x x <,则()()000f x f f x x >=,这与()00f x x <矛盾. 故假设不成立,所以()00f x x =.【点睛】方法点睛:对于抽象函数的问题,“赋值法”是解决问题的突破口.合理赋值是解决问题的突破口.。
高三一轮复习第七次数学周练习

高三下学期第七周数学周测试题一.选择题(共8小题,每小题5分)1.已知集合A={x|y=},B={x∈R|a≤x≤a+l},若A∩B=∅,则实数a的取值范围为()A.[﹣3,2]B.(﹣∞,﹣3)∪(2,+∞)C.[﹣2,1]D.(﹣∞,﹣3]∪[2,+∞)2.当1<m<2时,复数(3+i)+m(2﹣i)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.第24届冬季奥林匹克运动会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O1,O2,O3,O4,O5,若双曲线C以O1,O3为焦点、以直线O2O4为一条渐近线,则C的离心率为()A.B.C.D.4.已知m,n,s,t∈R*,m+n=4,+=9,其中m,n是常数,且s+t的最小值是,点M(m,n)是曲线﹣=1的一条弦AB的中点,则弦AB所在直线方程为()A.x﹣4y+6=0B.4x﹣y﹣6=0C.4x+y﹣10=0D.x+4y﹣10=0 5.已知0.5a=5b=3,则()A.ab<0<a+b B.ab<a+b<0C.a+b<ab<0D.a+b<0<ab6.如图所示,△ABC的面积为,其中AB=2,∠ABC=60°,AD为BC边上的高,M为AD的中点,若,则λ+2μ的值为()A.B.C.D.7.单位正四面体的外接球内接的最大正三角形边长为()A.B.C.D.8.已知函数在(0,1)内恰有3个极值点和4个零点,则实数ω的取值范围是()A.B.C.D.二.多选题(共4小题)(多选)9.已知函数f(x)=|sin x||cos x|,则下列说法正确的是()A.f(x)的图象关于直线对称B.f(x)的周期为C.(π,0)是f(x)的一个对称中心D.f(x)在区间上单调递增(多选)10.下列选项中正确的是()A.若平面向量,满足,则的最大值是5B.在△ABC中,AC=3,AB=1,O是△ABC的外心,则的值为4C.函数f(x)=tan(2x﹣)的图象的对称中心坐标为,k∈Z D.已知P为△ABC内任意一点,若,则点P为△ABC的垂心(多选)11.已知数列{a n}的前n项和为S n,a1=1,S n+1=S n+2a n+1,数列的前n项和为T n,n∈N*,则下列选项正确的是()A.数列{a n+1}是等比数列B.数列{a n+1}是等差数列C.数列{a n}的通项公式为D.T n>1(多选)12.如图,抛物线C:y2=4x的焦点为F,过点F的直线与抛物线C交于M,N 两点,过点M,N分别作准线l的垂线,垂足分别为M1,N1,准线l与x轴的交点为F1,则()A.直线F1N与抛物线C必相切B.C.|F1M|•|F1N|=|F1F|•|MN|D.|FM1|•|FN1|=|FF1F|•|M1N1|三.填空题(共4小题,每小题5分)13.已知数列{a n}满足a1=a5=0,|a n+1﹣a n|=2,则{a n}前5项和的最大值为.14.《九章算术》中的“商功“篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵ABC﹣A1B1C1中,M是A1C1的中点,AB=2AA1=2AC,,,若,则x+y+z =.15.已知函数f(x)=在区间(a,a+)上存在极值,则实数a的取值范围是.16.过抛物线y2=2px(p>0)焦点F的直线与抛物线的交于点A,B,O是坐标原点,且满足,S△AOB=,则p=()A.2B.C.4D.高三下学期第七周数学周测试题参考答案与试题解析一.选择题(共8小题)1.已知集合A={x|y=},B={x∈R|a≤x≤a+l},若A∩B=∅,则实数a的取值范围为()A.[﹣3,2]B.(﹣∞,﹣3)∪(2,+∞)C.[﹣2,1]D.(﹣∞,﹣3]∪[2,+∞)【分析】可求出A={x|﹣2≤x≤2},然后根据A∩B=∅可得出a的范围.【解答】解:A={x|4﹣x2≥0}={x|﹣2≤x≤2},B={x|a≤x≤a+1},且A∩B=∅,∴a>2或a+1<﹣2,∴a<﹣3或a>2,∴a的取值范围为(﹣∞,﹣3)∪(2,+∞).故选:B.【点评】本题考查了一元二次不等式的解法,交集和子集的定义,交集的运算,考查了计算能力,属于基础题.2.当1<m<2时,复数(3+i)+m(2﹣i)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据已知条件,结合复数的四则运算,以及复数的几何意义,即可求解.【解答】解:(3+i)+m(2﹣i)=3+2m+(1﹣m)i,∵1<m<2,∴3+2m>0,1﹣m<0,∴复数(3+i)+m(2﹣i)在复平面内对应的点(3+2m,1﹣m)位于第四象限.故选:D.【点评】本题主要考查复数的四则运算,以及复数的几何意义,属于基础题.3.第24届冬季奥林匹克运动会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为O1,O2,O3,O4,O5,若双曲线C以O1,O3为焦点、以直线O2O4为一条渐近线,则C的离心率为()A.B.C.D.【分析】建立平面直角坐标系,可得双曲线的渐近线方程,由O4(﹣13,﹣11)在渐近线上,可得a,b的关系,即可求得离心率.【解答】解:如图建立平面直角坐标系,依题意,可得双曲线的渐近线方程为,由O4(﹣13,﹣11)在渐近线上,可得﹣11=•(−13)即可得,则双曲线C的离心率为=.故选:B.【点评】本题考查了双曲线的渐近线、离心率,属于中档题.4.已知m,n,s,t∈R*,m+n=4,+=9,其中m,n是常数,且s+t的最小值是,点M(m,n)是曲线﹣=1的一条弦AB的中点,则弦AB所在直线方程为()A.x﹣4y+6=0B.4x﹣y﹣6=0C.4x+y﹣10=0D.x+4y﹣10=0【分析】由已知求出s+t取得最小值时m,n满足的条件,再结合m+n=4求出m,n,再用点差法求出直线的斜率,从而得直线方程.【解答】解:∵,当且仅当,即取等号,∴,又m+n=4,又m,n为正数,∴可解得,设弦两端点分别为(x1,y1),(x2,y2),则,两式相减得,∵x1+x2=4,y1+y2=4,∴,∴直线方程为,即x﹣4y+6=0.故选:A.【点评】本题考查了直线与双曲线的综合运用,属于中档题.5.已知0.5a=5b=3,则()A.ab<0<a+b B.ab<a+b<0C.a+b<ab<0D.a+b<0<ab 【分析】化简得a=log0.53<0,b=log53>0,从而可得ab<0,化简=+,从而比较大小.【解答】解:∵0.5a=5b=3,∴a=log0.53<0,b=log53>0,∴ab<0,=+=log35+log30.5=log32.5,又∴0<log32.5<1,∴0<<1,∴ab<a+b<0,故选:B.【点评】本题考查了指数式与对数式的互化及对数的运算,属于基础题.6.如图所示,△ABC的面积为,其中AB=2,∠ABC=60°,AD为BC边上的高,M为AD的中点,若,则λ+2μ的值为()A.B.C.D.【分析】根据三角形的面积公式可求得BC,再根据AD为BC边上的高,求出BD,从而可得出点D的位置,再根据平面向量的线性运算将用表示,再根据平面向量基本定理求出λ,μ,即可得解.【解答】解:,所以BC=3,因为AD为BC边上的高,所以,因为M为AD的中点,所以=,又因为,所以,所以.故选:C.【点评】本题考查平面向量的基本定理,考查学生的运算能力,属于中档题.7.单位正四面体的外接球内接的最大正三角形边长为()A.B.C.D.【分析】由题意首先求得外接球半径,然后计算外接球内接的最大正三角形边长即可.【解答】解:如图为单位正四面体A﹣BCD.过点A作面BCD的垂线交面于点E,F为外接球球心,则E为△BCD的中心,,∴.不妨设AF=R.在Rt△BEF中,由勾股定理,得.即,解得.∴最大正三角形的边长为.故选:C.【点评】本题主要考查球与多面体的切接问题,空间想象能力的培养等知识,属于基础题.8.已知函数在(0,1)内恰有3个极值点和4个零点,则实数ω的取值范围是()A.B.C.D.【分析】由第4个正零点小于1,第4个正极值点大于等于1可解.【解答】解:,因为x∈(0,1),所以,又f(x)在(0,1)内恰有3个极值点和4个零点,所以,解得,所以实数ω的取值范围是.故选:A.【点评】本题考查了根据函数的零点和极值点求参数的取值范围,考查了转化思想,属中档题.二.多选题(共4小题)(多选)9.已知函数f(x)=|sin x||cos x|,则下列说法正确的是()A.f(x)的图象关于直线对称B.f(x)的周期为C.(π,0)是f(x)的一个对称中心D.f(x)在区间上单调递增【分析】化简函数f(x),根据函数的单调性与对称性和周期性,判断选项中的命题是否正确即可.【解答】解:函数f(x)=|sin x||cos x|=|sin x cos x|=|sin2x|,画出函数图象,如图所示;所以f(x)的对称轴是x=,k∈Z;所以x=是f(x)图象的对称轴,A正确;f(x)的最小正周期是,B正确;f(x)是偶函数,没有对称中心,C错误;x∈[,]时,2x∈[,π],sin2x≥0,所以f(x)=|sin2x|是单调减函数,D错误.故选:AB.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了命题真假的判断问题,是基础题.(多选)10.下列选项中正确的是()A.若平面向量,满足,则的最大值是5B.在△ABC中,AC=3,AB=1,O是△ABC的外心,则的值为4C.函数f(x)=tan(2x﹣)的图象的对称中心坐标为,k∈ZD.已知P为△ABC内任意一点,若,则点P为△ABC的垂心【分析】对A选项,根据平面向量数量积的定义与性质,函数思想即可求解;对B选项,根据三角形外心的性质,向量的线性运算及向量数量积的几何定义即可求解;对C选项,根据正切函数的图象性质即可求解;对D选项,根据向量数量积的性质,三角形垂心的概念即可求解.【解答】解:对A选项,∵,∴====≤=5,∴的最大值是5,∴A选项正确;对B选项,∵在△ABC中,AC=3,AB=1,O是△ABC的外心,∴====4,∴B选项正确;对C选项,令,可得x=,k∈Z,∴f(x)=tan(2x﹣)的图象的对称中心坐标为(,0),k∈Z,∴C选项错误;对D选项,∵,∴,∴,∴PB⊥CA,同理P A⊥BC,PC⊥AB,∴点P为△ABC的垂心,∴D选项正确.故选:ABD.【点评】本题考查平面向量数量积的定义与性质,函数思想,三角形外心的性质,正切函数的图象性质,三角形垂心的概念,属中档题.(多选)11.已知数列{a n}的前n项和为S n,a1=1,S n+1=S n+2a n+1,数列的前n项和为T n,n∈N*,则下列选项正确的是()A.数列{a n+1}是等比数列B.数列{a n+1}是等差数列C.数列{a n}的通项公式为D.T n>1【分析】由a n+1=S n+1﹣S n=2a n+1可得,,可判断A,B的正误,再求出a n,可判断C的正误,利用裂项相消法求T n,可判断D的正误.【解答】解:因为S n+1=S n+2a n+1,所以a n+1=S n+1﹣S n=2a n+1,a n+1+1=2a n+2,即,且a1+1=2,所以数列{a n+1}是首项为2,公比为2的等比数列,故A正确,B错误;所以,即,故C正确;因为,所以,故D错误;故选:AC.【点评】本题考查了等比数列的判断和裂项相消求和,属于中档题.(多选)12.如图,抛物线C:y2=4x的焦点为F,过点F的直线与抛物线C交于M,N 两点,过点M,N分别作准线l的垂线,垂足分别为M1,N1,准线l与x轴的交点为F1,则()A.直线F1N与抛物线C必相切B.C.|F1M|•|F1N|=|F1F|•|MN|D.|FM1|•|FN1|=|FF1F|•|M1N1|【分析】选项A,联列方程,整理成y的一元二次方程,用判别式判定是否恒为零即可;选项B,由•=4m2≥0知,选项B正确;选项C,计算得|F1F||MN|=8m2+8,|F1M||F1N|=4m2+8,两式不恒等,故C不正确;选项D,先计算•,从而得⊥,由等面积法知选项D正确.【解答】解:由已知F(1,0),F1(﹣1,0),设过点F的直线方程为:x=my+1,设点M(my1+1,y1),N(my2+1,y2),则M1(﹣1,y1),N1(﹣1,y2),F1(﹣1,0),由,得y2﹣4my﹣4=0,所以y1+y2=4m,y1y2=﹣4,选项A:直线F1N的方程为y=(x+1),联立方程组得:,所以y2﹣4[(m+)y﹣1]=0,Δ=16(m+)2﹣16不恒为零,故选项A不正确;选项B:由题得=(my1+2,y1),=(my2+2,y2),而•=m2y1y2+2m(y1+y2)+4+y1y2=4m2≥0,所以cos<•>=≥0,所以∠MF1N≤,故B正确;选项C:|F1F|=2,|MN|=|x1+x2+2|=|m(y1+y2)+4|=4m2+4,所以|F1F||MN|=8m2+8;|F1M|2=(my1+2)2+y12,|F1N|2=(my2+2)2+y22,所以|F1M|2•|F1N|2=[(my1+2)(my2+2)]2+y22(my1+2)2+y12(my2+2)2+y12y22=(4m2+4)2﹣32m2+64m2+48=16(m2+2)2,所以|F1M||F1N|=4(m2+2)=4m2+8,所以选项C不正确;选项D:∵=(﹣2,y1),=(﹣2.y2),∴•=4+y1y2=4﹣4=0,∴⊥,在△M1FN1中,S=|M1N1|•|F1F|=|FM1||FN1|,故D正确.故选:BD.【点评】本题考查抛物线的应用,属于中档题.三.填空题(共4小题)13.已知数列{a n}满足a1=a5=0,|a n+1﹣a n|=2,则{a n}前5项和的最大值为8.【分析】由题意,分类讨论,求出数列的前5项,从而得出结论.【解答】解:已知数列{a n}满足a1=a5=0,|a n+1﹣a n|=2,则{a n}前5项分别为0,﹣2,0,﹣2,0;或0,﹣2,﹣4,﹣2,0;或0,2,0,2,0;或0,2,4,2,0;故当{a n}前5项分别为0,2,4,2,0 时,前5项的和最大,为0+2+4+2+0=8,故答案为:8.【点评】本题主要考查等差数列的定义,数列求和,属于基础题.14.《九章算术》中的“商功“篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵ABC﹣A1B1C1中,M是A1C1的中点,AB=2AA1=2AC,,,若,则x+y+z=.【分析】根据已知条件,结合空间向量的线性运算,即可求解.【解答】解:由图可知:,又因为,所以,所以,所以,所以,.故答案为:.【点评】本题主要考查空间向量的线性运算,属于基础题.15.已知函数f(x)=在区间(a,a+)上存在极值,则实数a的取值范围是(,1).【分析】求函数f(x)的导数,利用f′(x)=0求出极值点,再结合题意列出不等式求解集即可.【解答】解:因为函数f(x)=,x>0,所以f′(x)=﹣,令f′(x)=0,解得x=1,当f′(x)>0,即0<x<1,函数单调递增,当f′(x)<0,即x>1,函数单调递减,所以1是函数的极值点,又因为函数f(x)在区间(a,a+)(a>0)上存在极值,所以a<1<a+,解得<a<1,所以实数a的取值范围是(,1).故答案为:(,1).【点评】本题主要考查了利用导数研究函数的单调性和极值的应用问题,也考查了运算求解能力,是中档题.16.过抛物线y2=2px(p>0)焦点F的直线与抛物线的交于点A,B,O是坐标原点,且满足,S△AOB=,则p=()A.2B.C.4D.【分析】过A,B作抛物线准线的垂线,垂足分别为C,D,由AB=3FB,丨AC丨=2丨BD丨,求得丨BE丨,可得直线AB的方程,与抛物线联立方程,表示|AB|的长,进而可表示三角形的面积,根据面积求得p的值【解答】解:不妨设直线AB的斜率k>0,过A,B作抛物线准线的垂线,垂足分别为C,D,过B作BE⊥AC于E,由AB=3FB,∴=2,丨丨=2丨丨,即丨AC丨=2丨BD丨,∴E为AC的中点,即丨AE丨=丨AB丨,∴丨BE丨==丨AB丨,由S△OAB=S OAF+S OBF=丨BE丨•丨OF丨=p丨AB丨,S△OAB=丨AB丨,∴由丨AE丨=丨AB丨,则直线AB斜率为k AB=±2,直线AB的方程y=2(x ﹣1),,整理得:8x2﹣10px﹣8p2=0,则x1+x2=,则丨AB丨=x1+x2+p=+p,∴S△OAB=(+p),∴(+p)=,解得p=2.【点评】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,抛物线的焦点弦公式,考查计算能力,属中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三周测数学试题(理)--4
一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只
有一项是符合题目要求的
1.若复数11izi,z为z的共轭复数,则2017z ( )
A. i B. i C. 20172i D. 20172i
2.已知全集UR,集合260Axxx,401xBxx,那么集合
U
ACB
( )
A. 2,4 B. 1,3 C. 2,1 D. 1,3
3.若ln2a, 125b, 201cos2cxdx的大小关系为( )
A. bca B. bac C. abc D. cba
4.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活
动中,若所发红包的总金额为10元,被随机分配为1.49元,1.81元,2.19元,
3.41元,0.62元,0.48元,共6份,供甲、乙等6人抢,每人只能抢一次,则
甲、乙二人抢到的金额之和不低于4元的概率是( )
A. 12 B. 14 C. 13 D. 16
5.已知将函数213sincoscos2fxxxx的图像向左平移512个单位长度后
得到ygx的图像,则gx在,123上的值域为 ( )
A. 1,12 B. 11,2 C. 31,22 D. 13,22
6.已知fx为奇函数,函数fx与gx的图像关于直线1yx对称,若
14g,则
3f
( )
A. 2 B. 2
C. 1 D. 4
7. 某空间几何体的三视图如图所示,则该几何体的体积为
A.73 B.83
C.83 D.73
8. 按流程图的程序计算,若开始输入的值为3x,则输出的x的值是 ( )
A.6 B.21 C.156 D.231
9.已知数列na、nb满足2log,nnbanN,其中nb是等差数列,且
920094aa,则1232017
bbbb
( )
A.2016 B.2017 C. 2log2017 D. 20172
10.在直角ABC中,090,1BCACACB,P为AB边上的点APAB,若
,则的最大值是( )
A.222 B. 222 C. 1 D. 2
11. 已知点,MN是抛物线24yx上不同的两点,F为抛物线的焦点,且满足
23MFN,弦MN的中点P到直线:l1
16
y
的距离记为d,若22MNd,
则的最小值为 ( )
A. 3 B. 3 C. 13 D. 4
12.已知332fxxxm 0m,在区间0,2上存在三个不同的实数
,,abc
,使得以,,fafbfc为边长的三角形是直角三角形,则m的取值范围
是 ( )
A. 442m B. 0222m
C. 442442m D. 0442m
二、填空题:本大题共4小题 ,每小题5分,共20分。把答案填在题中的横线上。
13.已知数列na为等比数列,nS是它的前n项和,若2312aaa,且4a与72a的
等差中项为54,则5S等于 .
14.
若A、B、C、D四人站成一排照相,A、B相邻的排法总数为k,则二项式
1kxk
输入x
计算(1)2xxx的值
100?x
输出结果x
是
否
的展开式中含2x项的系数为______________.
15.
已知变量,xy满足约束条件26xyyxxy,则2zxy的取值范围是___________
16.
下列说法中错误的是_______(填序号)
①命题“,,212,1xxMxx有0))](()([1221xxxfxf”的否定是
“,,212,1xxMxx有0))](()([1221xxxfxf”;
②已知001abab>,>, ,则23ab的最小值为526;
③设,xyR,命题“若0xy,则220xy”的否命题是真命题;
④已知032:2xxp, 131:xq,若命题pq)(为真命题,则x的取值
范围是(,3)(1,2)[3,).
三、解答题:本大题共6小题,前5题每题12分,选考题10分,共70分,解答应写出必
要的文字说明、证明过程或演算步骤。
17.已知向量)1,(cosxa,)21,sin3(xb,函数
2fxaba
.
(1)求函数fx的最小正周期及单调递增区间;
(2)在ABC中,三内角A,B,C的对边分别为cba,,,已知函数fx的图象经过
点)21,(A,cab、、 成等差数列,且9ABAC,求a的值.
18. 某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任
取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为23,答
对文科题的概率均为14,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一
文),求其所得总分X的分布列与数学期望()EX.
19. 如图1,在ABC中,002,90,30,PACACBABC是AB边的中点,现把
ACP沿CP折成如图2所示的三棱锥ABCP
,使得10AB.
(1)求证:平面ACP平面BCP;
(2)求平面ABC与平面ABP夹角的余弦值.
20. 已知右焦点为F的椭圆222:1(3)3xyMaa与直线37y相交于P、Q两点,
且PFQF.
(1)求椭圆M的方程;
(2)O为坐标原点,A,B,C是椭圆E上不同的三点,
并且O为ABC的重心,试探究ABC的面积是否为定值,
若是,求出这个定值;若不是,说明理由.
21.已知函数212fxx,lngxax.
(1)若曲线yfxgx在1x处的切线的方程为6250xy,求实数a的值;
(2)设hxfxgx,若对任意两个不等的正数12xx,,都有12122hxhxxx恒成
立,求实数a的取值范围;
(3)若在1,e上存在一点0x,使得00001fxgxgxfx成立,求实数a的取值
范围.
22. 在平面直角坐标系xOy中,已知曲线3cos:sinxaCya(a为参数),在以原点O为极
点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为
1)4cos(22
.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)过点(1,0)M且与直线l平行的直线1l交C于A,B两点,求点M到A,B两点的
距离之积.