番禺区2017学年九年级数学期末精彩试题与参考问题详解
广东省广州市白云区2017-2018学年九年级(上)期末数学试卷(解析版)

2017-2018学年广东省广州市白云区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是一元二次方程的为()A.x﹣2y+1=0B.x2﹣2x﹣3=0C.2x+3=0D.x2+2y﹣10=02.点A(3,﹣1)关于原点对称的点的坐标为()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(1,﹣3)3.将方程x2﹣2x=2配成(x+a)2=k的形式,方程两边需加上()A.1B.2C.4D.﹣14.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的大小是()A.20°B.35°C.130°D.140°5.在抛物线y=﹣x2﹣1的对称轴的左侧()A.y随x的增大而增大B.y随x的增大而减小C.y随x的减小而增大D.以上都不对6.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切7.下列事件中,属于不可能事件的是()A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于08.下列命题中的真命题是()A.各边相等的多边形是正多边形B.正七边形既是轴对称图形,又是中心对称图形C.各角相等的多边形是正多边形D.正八边形既是轴对称图形,又是中心对称图形9.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1B.2C.3D.410.如图,已知Rt△ABC中,∠C=90°,∠ABC=30°,AB=6cm,将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上,则点C经过的路线的长度是()A.12cm B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为.12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.13.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.14.关于x的一元二次方程x2﹣3x+m=0,其根的判别式为.15.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2cm,则⊙O的半径为cm.16.把一根长30cm的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是cm2.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(13分)解下列方程(1)x2﹣3x=0(2)x2﹣6x﹣9=018.(9分)反比例函数y=的图象如图所示.(1)m的取值范围是.(2)若A(﹣2,a),B(﹣3,b)是该函数图象上的两点,试说明a与b的大小关系.19.(9分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.20.(11分)已知二次函数y=x2﹣4x+1(1)该抛物线的对称轴为;(2)用配方法,求出该抛物线的项点坐标;(3)把该抛物线向左平移1个单位长度,求平移后所得函数的解析式.21.(10分)如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A=110°,∠D=40°,求∠AOD的度数.22.(10分)如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2,BD=,求AB的长.23.(12分)如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′,B′;(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.24.(14分)已知二次函数y=x2+(a﹣5)x+5.(1)该抛物线与y轴交点的坐标为;(2)当a=﹣1时,求该抛物线与x轴的交点坐标;(3)已知两点A(2,0)、B(3,0),抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点,求a的取值范围.25.(14分)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆上.(1)当正方形的顶点F也在半圆弧上时,半圆的半径与正方形边长的比为;(2)当正方形DEFG的面积为100,且△ABC的内切圆⊙O的半径r=4,求半圆的直径AB的值;(3)若半圆的半径为R,直接写出⊙O半径r可取得的最大值.2017-2018学年广东省广州市白云区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是一元二次方程的为()A.x﹣2y+1=0B.x2﹣2x﹣3=0C.2x+3=0D.x2+2y﹣10=0【分析】直接利用一元二次方程的定义分别分析得出答案.【解答】解:A、x﹣2y+1=0,是二元一次方程,故此选项错误;B、x2﹣2x﹣3=0,是一元二次方程,故此选项正确;C、2x+3=0,是一元一次方程,故此选项错误;D、x2+2y﹣10=0,是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元二次方程的定义,正确把握定义是解题关键.2.点A(3,﹣1)关于原点对称的点的坐标为()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(1,﹣3)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点A(3,﹣1)关于原点对称的点的坐标为:(﹣3,1).故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.3.将方程x2﹣2x=2配成(x+a)2=k的形式,方程两边需加上()A.1B.2C.4D.﹣1【分析】两边都加上一次项系数一半的平方可得.【解答】解:∵x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,故选:A.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.4.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的大小是()A.20°B.35°C.130°D.140°【分析】欲求∠AOC,又已知一圆周角,可利用圆周角与圆心角的关系求解.【解答】解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,∴∠AOC=2∠ABC=140°;故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.在抛物线y=﹣x2﹣1的对称轴的左侧()A.y随x的增大而增大B.y随x的增大而减小C.y随x的减小而增大D.以上都不对【分析】根据二次函数的性质即可求出答案.【解答】解:由题意可知:抛物线的开口向下,所以对称轴的左侧y随着x增大而增大,故选:A.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.6.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切【分析】直接根据直线与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径为6.5cm,圆心O到直线l的距离为8cm,6.5<8,∴直线l与⊙O相离.故选:C.【点评】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l 的距离为d,当d>r时,直线l和⊙O相离是解答此题的关键.7.下列事件中,属于不可能事件的是()A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于0【分析】不可能事件是一定条件下一定不会发生的事件.依据定义即可解得.【解答】解:A、任何数的绝对值都大于或等于0,故为不可能事件,符合题意;B、0的相反数等于它本身,为随机事件,不符合题意;C、两个负数的和小于0,为随机事件,不符合题意;D、正确,为必然事件,不符合题意;故选:A.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.8.下列命题中的真命题是()A.各边相等的多边形是正多边形B.正七边形既是轴对称图形,又是中心对称图形C.各角相等的多边形是正多边形D.正八边形既是轴对称图形,又是中心对称图形【分析】根据正多边形的判定定理、中心对称图形、轴对称图形的概念判断即可.【解答】解:各边相等、各角相等的多边形是正多边形,A是假命题;正七边形是轴对称图形,不是中心对称图形,B是假命题;各边相等、各角相等的多边形是正多边形,C是假命题正八边形既是轴对称图形,又是中心对称图形,D是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1B.2C.3D.4【分析】根据图象,当x=2时,函数值在1和2之间,代入解析式即可求解.【解答】解:如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=3.故选:C.【点评】解答本题关键是要结合函数的图象,掌握反比例函数的性质.10.如图,已知Rt△ABC中,∠C=90°,∠ABC=30°,AB=6cm,将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上,则点C经过的路线的长度是()A.12cm B.C.D.【分析】由题意可得BC的长度,∠CBC'的度数,由弧长公式可求点C经过的路线的长度.【解答】解:∵∠C=90°,∠ABC=30°,AB=6cm∴AC=3,BC=AC=3∵将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上∴∠CBC'=150°∴则点C经过的路线的长度为=故选:C.【点评】本题考查了点的轨迹,旋转的性质,利用弧长公式求轨迹是本题的关键.二、填空题(共6小题,每小题3分,满分18分)11.若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为2.【分析】根据一元二次方程的解的定义,将x=1代入原方程,列出关于m的方程,然后解方程即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0的一个根为1,∴x=1满足一元二次方程x2﹣3x+m=0,∴1﹣3+m=0,解得,m=2.故答案是:2.【点评】此题主要考查了方程解的定义,此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE= 102°.【分析】连接OB,OD,利用圆周角定理得到∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,再由周角定义及等式的性质得到∠A与∠BCD互补,利用邻补角性质及同角的补角相等即可求出所求角的度数.【解答】解:连接OB,OD,∵∠DOB与∠A都对,∠DOB(大于平角的角)与∠BCD都对,∴∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,∵∠DOB+∠DOB(大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°【点评】此题考查了圆内接四边形的性质,以及圆周角定理,熟练掌握圆周角定理是解本题的关键.13.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.14.关于x的一元二次方程x2﹣3x+m=0,其根的判别式为9﹣4m.【分析】根据一元二次方程根的判别式△=b2﹣4ac,求出该一元二次方程根的判别式即可.【解答】解:x2﹣3x+m=0,a=1,b=﹣3,c=m,把a=1,b=﹣3,c=m代入△=b2﹣4ac得:△=(﹣3)2﹣4×1×m,即△=9﹣4m,故答案为:9﹣4m.【点评】本题考查根的判别式,正确掌握判别式的计算方法是解题的关键.15.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2cm,则⊙O的半径为2cm.【分析】作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,则AD=4.即圆的半径是2.(或连接OA,OB,发现等边△AOB.)【解答】解:作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,∴AD=4,即圆的半径是2.【点评】能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.16.把一根长30cm的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是cm2.【分析】设第一个等边三角形的边长为xcm,则第二个等边三角形的边长为(10﹣x)cm,设两个三角形的面积和为y,根据等边三角形的性质结合三角形的面积公式即可得出y关于x的二次函数关系式,利用配方法结合二次函数的性质即可解决最值问题.【解答】解:设第一个等边三角形的边长为xcm,则第二个等边三角形的边长为(10﹣x)cm,设两个三角形的面积和为y,根据题意得:y=x2+(10﹣x)2=x2﹣5x+25=(x﹣5)2+.∵>0,∴当x=5时,y取最小值,最小值为.故答案为:.【点评】本题考查了二次函数的应用以及等边三角形的性质,解题的关键是得出y关于x的二次函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积找出y关于x的函数关系式是关键.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(13分)解下列方程(1)x2﹣3x=0(2)x2﹣6x﹣9=0【分析】(1)方程变形后,利用因式分解法求出解即可;(2)方程常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【解答】解:解:(1)x2﹣3x=0分解因式得:x(x﹣3)=0,解得:x1=0,x2=3;(2)x2﹣6x﹣9=0,x2﹣6x=9x2﹣6x+9=18,x2﹣6x+9=18,(x﹣3)2=18,x﹣3=±3,x1=3+3,x2=3﹣3.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.18.(9分)反比例函数y=的图象如图所示.(1)m的取值范围是m<.(2)若A(﹣2,a),B(﹣3,b)是该函数图象上的两点,试说明a与b的大小关系.【分析】(1)直接利用反比函数图象的分布得出2m﹣3<0,进而得出答案;(2)利用反比例函数的增减性得出答案.【解答】解:(1)∵反比例函数图象分布在第二、四象限,∴2m﹣3<0,解得:m<;故答案为:m<;(2)∵反比例函数图象分布在第二、四象限,∴2m﹣3<0,∴每个象限内y随x的增大而增大,∵A(﹣2,a),B(﹣3,b)是该函数图象上的两点,﹣2>﹣3,∴a>b.【点评】此题主要考查了反比例函数图象上的性质,正确掌握反比例函数的增减性是解题关键.19.(9分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【解答】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点评】本题考查借助树状图或列表法求概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(11分)已知二次函数y=x2﹣4x+1(1)该抛物线的对称轴为直线x=2;(2)用配方法,求出该抛物线的项点坐标;(3)把该抛物线向左平移1个单位长度,求平移后所得函数的解析式.【分析】(1)把二次函数解析式配成顶点式得到y=(x﹣2)2﹣3,从而得到抛物线的对称轴;(2)利用(1)配方的结果得到抛物线的顶点坐标;(3)把把点(2,﹣3)向左平移1个单位长度所得对应点的坐标为(1,﹣3),然后利用顶点式写出平移后所得函数的解析式.【解答】解:(1)∵y=x2﹣4x+1=(x﹣2)2﹣3,∴抛物线的对称轴为直线x=2;故答案为直线x=2;(2)抛物线的顶点坐标为(2,﹣3);(3)把点(2,﹣3)向左平移1个单位长度所得对应点的坐标为(1,﹣3),所以平移后所得函数的解析式为y=(x﹣1)2+3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.(10分)如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A=110°,∠D=40°,求∠AOD的度数.【分析】(1)延长AO到A′,使OA′=OA,延长BO到B′,使OB′=OB,则△OA′B′满足条件;(2)根据旋转的性质得∠AOC=80°,∠C=∠A=110°,再利用三角形内角和计算出∠COD,然后计算∠AOC﹣∠COD即可.【解答】解:(1)如图,△OA′B′为所作.(2)∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠AOC=80°,∠C=∠A=110°,∴∠COD=180°﹣110°﹣40°=30°,∴∠AOD=∠AOC﹣∠COD=80°﹣30°=50°.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(10分)如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2,BD=,求AB的长.【分析】(1)根据三角形内角和定理求出∠BHD=90°,根据垂径定理得出即可;(2)根据垂径定理求出DH,根据勾股定理求出BH,根据勾股定理得出关于R的方程,求出R即可.【解答】(1)证明:∵∠B+∠D=90°,∴∠BHD=180°﹣90°=90°,即AB⊥CD,∵AB过O,∴CH=DH,即H是CD的中点;(2)解:连接OD,∵H为CD的中点,CD=2,AB过O,∴DH=CH=CD=,AB⊥CD,∴∠BHD=90°,由勾股定理得:BH===1,设⊙O的半径为R,则AB=2R,OB=OD=R,在Rt△OHD中,由勾股定理得:OH2+DH2=OD2,即(R﹣1)2+()2=R2,解得:R=,∴AB=2×=3.【点评】本题考查了圆周角定理、垂径定理和勾股定理,能灵活运用垂径定理进行推理是解此题的关键.23.(12分)如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′(﹣3,3),B′(﹣6,0);(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.【分析】(1)根据中心对称定义可得;(2)由题意可得点A平移后的坐标为(3﹣m,﹣3),代入解析式可求m的值;(3)①由题意可得旋转后B1(3,3),代入解析式可求k的值;②当α=60°,可求出点A1,点B2的坐标,代入解析式可判断点是否在反比例函数图象上.【解答】解:(1)∵△OA′B′与△OAB关于原点O成中心对称,且A(3,﹣3)、B(6,0),∴A'(﹣3,3),B'(﹣6,0)故答案为(﹣3,3),(﹣6,0)(2)∵将△OAB沿x轴向左平移m个单位,∴点A平移后的坐标为(3﹣m,﹣3)∴﹣3=m=5(3)①设点B逆时针旋转30°后对应点为B1.如图:过点B1作B1C⊥OB∵旋转∴OB1=6,∠COB1=30°∴B1C=3,OC=OB1=3∴B1(3,3)∴3=∴k=9∴解析式为y=②α=60°如图2,过点A作AD⊥OB,∵A(3,﹣3)∴OD=3,DA=3∵tan∠BOA==∴∠AOB=30°设点A逆时针旋转60°后对应点为A1.∴∠A1OB=30°,且OA=OB=6=OA1.∴A1(3,3)设点B逆时针旋转60°后对应点为B2.∴∠B2OB=60°,且OB2=OB=6∴B2(3,3)当x=3时,y==3,当x=3时,y==3∴点A1,点B2在反比例y=的图象上∴将△OAB绕点O按逆时针方向旋转60°时,点A、B能同时落在反比例函数的图象上.【点评】本题考查了反比例函数的综合题,待定系数法求函数解析式,旋转的性质,灵活运用这些性质解决问题是本题的关键.24.(14分)已知二次函数y=x2+(a﹣5)x+5.(1)该抛物线与y轴交点的坐标为(0,5);(2)当a=﹣1时,求该抛物线与x轴的交点坐标;(3)已知两点A(2,0)、B(3,0),抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点,求a的取值范围.【分析】(1)当x=0时,y=5.即抛物线与y轴的交点坐标为(0,5)(2)由题意可得抛物线解析式,当y=0时,可求抛物线与x轴的交点坐标.(3)分抛物线的顶点在线段AB上,抛物线与x轴的其中一个交点在线段AB上两种情况讨论,列不等式组可求a的取值范围.【解答】解:(1)当x=0时,y=5.即抛物线与y轴的交点坐标为(0,5)(2)当a=﹣1时,抛物线解析式为y=x2﹣6x+5.当y=0时,0=x2﹣6x+5解得:x1=1,x2=5∴抛物线与x轴的交点坐标为(1,0),(5,0)(3)①∵抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点∴△=(a﹣5)2﹣20=0∴a=±2+5∵2≤﹣≤3∴﹣1≤a≤1∴a=﹣2+5②∵抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点∴或解得:≤a<或无解综上所述:≤a<或a=﹣2+5,【点评】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,利用分类讨论思想解决问题是本题的关键.25.(14分)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆上.(1)当正方形的顶点F也在半圆弧上时,半圆的半径与正方形边长的比为:2;(2)当正方形DEFG的面积为100,且△ABC的内切圆⊙O的半径r=4,求半圆的直径AB的值;(3)若半圆的半径为R,直接写出⊙O半径r可取得的最大值.【分析】(1)根据圆和正方形的对称性可知:GH=DG=GF ,在直角三角形FGH 中,利用勾股定理可得HF=,从而用含a 的代数式表示半圆的半径为a ,正方形边长为2a ,所以可求得半圆的半径与正方形边长的比;(2)切点分别为I ,J ,连接EB 、AE ,OH 、OI ,可得OHCI 是正方形,且边长是4,可设BD=x ,AD=y ,则BD=BH=x ,AD=AI=y ,分别利用直角三角形ABC 和直角三角形AEB 中的勾股定理和相似比作为相等关系列方程组求解即可求得半圆的直径AB=21. (3)根据(2)中得出方程解答即可.【解答】解:(1)如图,根据圆和正方形的对称性可知:GH=DG=GF ,H 为半圆的圆心,不妨设GH=a ,则GF=2a ,在直角三角形FGH 中,由勾股定理可得HF=.由此可得,半圆的半径为a ,正方形边长为2a ,所以半圆的半径与正方形边长的比是a :2a=:2;故答案为::2; (2)因为正方形DEFG 的面积为100,所以正方形DEFG 边长为10.切点分别为I ,J ,连接EB 、AE ,OI 、OJ ,∵AC 、BC 是⊙O 的切线,∴CJ=CI ,∠OJC=∠OIC=90°,∵∠ACB=90°,∴四边形OICJ 是正方形,且边长是4,设BD=x ,AD=y ,则BD=BI=x ,AD=AJ=y ,在直角三角形ABC 中,由勾股定理得(x +4)2+(y +4)2=(x +y )2①;在直角三角形AEB 中,∵∠AEB=90°,ED ⊥AB ,∴△ADE ∽△BDE ∽△ABE ,于是得到ED 2=AD•BD ,即102=x•y ②.解①式和②式,得x +y=21,即半圆的直径AB=21;(3)由(2)可得:r=.【点评】本题综合考查了圆、三角形、方程等知识,是一道综合性很强的题目,难度偏上,需要正确理解相关知识点及懂得运用方能很好的解答本题.。
广东省广州市白云区2017-2018学年九年级(上)期末数学试卷(解析版)

2017-2018学年广东省广州市白云区九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是一元二次方程的为()A.x﹣2y+1=0 B.x2﹣2x﹣3=0 C.2x+3=0 D.x2+2y﹣10=02.点A(3,﹣1)关于原点对称的点的坐标为()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(1,﹣3)3.将方程x2﹣2x=2配成(x+a)2=k的形式,方程两边需加上()A.1 B.2 C.4 D.﹣14.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的大小是()A.20°B.35°C.130°D.140°5.在抛物线y=﹣x2﹣1的对称轴的左侧()A.y随x的增大而增大B.y随x的增大而减小C.y随x的减小而增大D.以上都不对6.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切7.下列事件中,属于不可能事件的是()A.某个数的绝对值小于0 B.某个数的相反数等于它本身C.某两个数的和小于0 D.某两个负数的积大于08.下列命题中的真命题是()A.各边相等的多边形是正多边形B.正七边形既是轴对称图形,又是中心对称图形C.各角相等的多边形是正多边形D.正八边形既是轴对称图形,又是中心对称图形9.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.410.如图,已知Rt△ABC中,∠C=90°,∠ABC=30°,AB=6cm,将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上,则点C经过的路线的长度是()A.12cm B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为.12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.13.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=.14.关于x的一元二次方程x2﹣3x+m=0,其根的判别式为.15.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2cm,则⊙O的半径为cm.16.把一根长30cm的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是cm2.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(13分)解下列方程(1)x2﹣3x=0 (2)x2﹣6x﹣9=018.(9分)反比例函数y=的图象如图所示.(1)m的取值范围是.(2)若A(﹣2,a),B(﹣3,b)是该函数图象上的两点,试说明a与b的大小关系.19.(9分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.20.(11分)已知二次函数y=x2﹣4x+1(1)该抛物线的对称轴为;(2)用配方法,求出该抛物线的项点坐标;(3)把该抛物线向左平移1个单位长度,求平移后所得函数的解析式.21.(10分)如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A=110°,∠D=40°,求∠AOD的度数.22.(10分)如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2,BD=,求AB的长.23.(12分)如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′,B′;(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.24.(14分)已知二次函数y=x2+(a﹣5)x+5.(1)该抛物线与y轴交点的坐标为;(2)当a=﹣1时,求该抛物线与x轴的交点坐标;(3)已知两点A(2,0)、B(3,0),抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点,求a的取值范围.25.(14分)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆上.(1)当正方形的顶点F也在半圆弧上时,半圆的半径与正方形边长的比为;(2)当正方形DEFG的面积为100,且△ABC的内切圆⊙O的半径r=4,求半圆的直径AB的值;(3)若半圆的半径为R,直接写出⊙O半径r可取得的最大值.2017-2018学年广东省广州市白云区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是一元二次方程的为()A.x﹣2y+1=0 B.x2﹣2x﹣3=0 C.2x+3=0 D.x2+2y﹣10=0【分析】直接利用一元二次方程的定义分别分析得出答案.【解答】解:A、x﹣2y+1=0,是二元一次方程,故此选项错误;B、x2﹣2x﹣3=0,是一元二次方程,故此选项正确;C、2x+3=0,是一元一次方程,故此选项错误;D、x2+2y﹣10=0,是二元二次方程,故此选项错误;故选:B.【点评】此题主要考查了一元二次方程的定义,正确把握定义是解题关键.2.点A(3,﹣1)关于原点对称的点的坐标为()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(1,﹣3)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点A(3,﹣1)关于原点对称的点的坐标为:(﹣3,1).故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.3.将方程x2﹣2x=2配成(x+a)2=k的形式,方程两边需加上()A.1 B.2 C.4 D.﹣1【分析】两边都加上一次项系数一半的平方可得.【解答】解:∵x2﹣2x=2,∴x2﹣2x+1=2+1,即(x﹣1)2=3,故选:A.【点评】本题主要考查配方法解一元二次方程,熟练掌握配方法解方程的基本步骤是解题的关键.4.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的大小是()A.20°B.35°C.130°D.140°【分析】欲求∠AOC,又已知一圆周角,可利用圆周角与圆心角的关系求解.【解答】解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,∴∠AOC=2∠ABC=140°;故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.在抛物线y=﹣x2﹣1的对称轴的左侧()A.y随x的增大而增大B.y随x的增大而减小C.y随x的减小而增大D.以上都不对【分析】根据二次函数的性质即可求出答案.【解答】解:由题意可知:抛物线的开口向下,所以对称轴的左侧y随着x增大而增大,故选:A.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型.6.已知⊙O的直径为13cm,圆心O到直线l的距离为8cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切【分析】直接根据直线与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径为6.5cm,圆心O到直线l的距离为8cm,6.5<8,∴直线l与⊙O相离.故选:C.【点评】本题考查的是直线与圆的位置关系,熟知设⊙O的半径为r,圆心O到直线l的距离为d,当d >r时,直线l和⊙O相离是解答此题的关键.7.下列事件中,属于不可能事件的是()A.某个数的绝对值小于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某两个负数的积大于0【分析】不可能事件是一定条件下一定不会发生的事件.依据定义即可解得.【解答】解:A、任何数的绝对值都大于或等于0,故为不可能事件,符合题意;B、0的相反数等于它本身,为随机事件,不符合题意;C、两个负数的和小于0,为随机事件,不符合题意;D、正确,为必然事件,不符合题意;故选:A.【点评】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.8.下列命题中的真命题是()A.各边相等的多边形是正多边形B.正七边形既是轴对称图形,又是中心对称图形C.各角相等的多边形是正多边形D.正八边形既是轴对称图形,又是中心对称图形【分析】根据正多边形的判定定理、中心对称图形、轴对称图形的概念判断即可.【解答】解:各边相等、各角相等的多边形是正多边形,A是假命题;正七边形是轴对称图形,不是中心对称图形,B是假命题;各边相等、各角相等的多边形是正多边形,C是假命题正八边形既是轴对称图形,又是中心对称图形,D是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.4【分析】根据图象,当x=2时,函数值在1和2之间,代入解析式即可求解.【解答】解:如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=3.故选:C.【点评】解答本题关键是要结合函数的图象,掌握反比例函数的性质.10.如图,已知Rt△ABC中,∠C=90°,∠ABC=30°,AB=6cm,将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上,则点C经过的路线的长度是()A.12cm B.C.D.【分析】由题意可得BC的长度,∠CBC'的度数,由弧长公式可求点C经过的路线的长度.【解答】解:∵∠C=90°,∠ABC=30°,AB=6cm∴AC=3,BC=AC=3∵将△ABC绕着点B顺时针旋转至△A′BC′的位置,且A、B、C′三点在同一条直线上∴∠CBC'=150°∴则点C经过的路线的长度为=故选:C.【点评】本题考查了点的轨迹,旋转的性质,利用弧长公式求轨迹是本题的关键.二、填空题(共6小题,每小题3分,满分18分)11.若关于x的一元二次方程x2﹣3x+m=0的一个根为1,则m的值为2.【分析】根据一元二次方程的解的定义,将x=1代入原方程,列出关于m的方程,然后解方程即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0的一个根为1,∴x=1满足一元二次方程x2﹣3x+m=0,∴1﹣3+m=0,解得,m=2.故答案是:2.【点评】此题主要考查了方程解的定义,此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=102°.【分析】连接OB,OD,利用圆周角定理得到∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,再由周角定义及等式的性质得到∠A与∠BCD互补,利用邻补角性质及同角的补角相等即可求出所求角的度数.【解答】解:连接OB,OD,∵∠DOB与∠A都对,∠DOB(大于平角的角)与∠BCD都对,∴∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,∵∠DOB+∠DOB(大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°【点评】此题考查了圆内接四边形的性质,以及圆周角定理,熟练掌握圆周角定理是解本题的关键.13.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n=1.【分析】根据白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情况数与总情况数之比.14.关于x的一元二次方程x2﹣3x+m=0,其根的判别式为9﹣4m.【分析】根据一元二次方程根的判别式△=b2﹣4ac,求出该一元二次方程根的判别式即可.【解答】解:x2﹣3x+m=0,a=1,b=﹣3,c=m,把a=1,b=﹣3,c=m代入△=b2﹣4ac得:△=(﹣3)2﹣4×1×m,即△=9﹣4m,故答案为:9﹣4m.【点评】本题考查根的判别式,正确掌握判别式的计算方法是解题的关键.15.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2cm,则⊙O的半径为2cm.【分析】作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,则AD=4.即圆的半径是2.(或连接OA,OB,发现等边△AOB.)【解答】解:作直径AD,连接BD,得∠ABD=90°,∠D=∠C=30°,∴AD=4,即圆的半径是2.【点评】能够根据圆周角定理发现等边三角形或直角三角形是解题的关键.16.把一根长30cm的铁丝分为两部分,每一部分均弯曲成一个正三角形,它们的面积和的最小值是cm2.【分析】设第一个等边三角形的边长为xcm,则第二个等边三角形的边长为(10﹣x)cm,设两个三角形的面积和为y,根据等边三角形的性质结合三角形的面积公式即可得出y关于x的二次函数关系式,利用配方法结合二次函数的性质即可解决最值问题.【解答】解:设第一个等边三角形的边长为xcm,则第二个等边三角形的边长为(10﹣x)cm,设两个三角形的面积和为y,根据题意得:y=x2+(10﹣x)2=x2﹣5x+25=(x﹣5)2+.∵>0,∴当x=5时,y取最小值,最小值为.故答案为:.【点评】本题考查了二次函数的应用以及等边三角形的性质,解题的关键是得出y关于x的二次函数关系式.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积找出y关于x的函数关系式是关键.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(13分)解下列方程(1)x2﹣3x=0(2)x2﹣6x﹣9=0【分析】(1)方程变形后,利用因式分解法求出解即可;(2)方程常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【解答】解:解:(1)x2﹣3x=0分解因式得:x(x﹣3)=0,解得:x1=0,x2=3;(2)x2﹣6x﹣9=0,x2﹣6x=9x2﹣6x+9=18,x2﹣6x+9=18,(x﹣3)2=18,x﹣3=±3,x1=3+3,x2=3﹣3.【点评】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键.18.(9分)反比例函数y=的图象如图所示.(1)m的取值范围是m<.(2)若A(﹣2,a),B(﹣3,b)是该函数图象上的两点,试说明a与b的大小关系.【分析】(1)直接利用反比函数图象的分布得出2m﹣3<0,进而得出答案;(2)利用反比例函数的增减性得出答案.【解答】解:(1)∵反比例函数图象分布在第二、四象限,∴2m﹣3<0,解得:m<;故答案为:m<;(2)∵反比例函数图象分布在第二、四象限,∴2m﹣3<0,∴每个象限内y随x的增大而增大,∵A(﹣2,a),B(﹣3,b)是该函数图象上的两点,﹣2>﹣3,∴a>b.【点评】此题主要考查了反比例函数图象上的性质,正确掌握反比例函数的增减性是解题关键.19.(9分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【解答】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点评】本题考查借助树状图或列表法求概率.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(11分)已知二次函数y=x2﹣4x+1(1)该抛物线的对称轴为直线x=2;(2)用配方法,求出该抛物线的项点坐标;(3)把该抛物线向左平移1个单位长度,求平移后所得函数的解析式.【分析】(1)把二次函数解析式配成顶点式得到y=(x﹣2)2﹣3,从而得到抛物线的对称轴;(2)利用(1)配方的结果得到抛物线的顶点坐标;(3)把把点(2,﹣3)向左平移1个单位长度所得对应点的坐标为(1,﹣3),然后利用顶点式写出平移后所得函数的解析式.【解答】解:(1)∵y=x2﹣4x+1=(x﹣2)2﹣3,∴抛物线的对称轴为直线x=2;故答案为直线x=2;(2)抛物线的顶点坐标为(2,﹣3);(3)把点(2,﹣3)向左平移1个单位长度所得对应点的坐标为(1,﹣3),所以平移后所得函数的解析式为y=(x﹣1)2+3.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.21.(10分)如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);(2)若∠A=110°,∠D=40°,求∠AOD的度数.【分析】(1)延长AO到A′,使OA′=OA,延长BO到B′,使OB′=OB,则△OA′B′满足条件;(2)根据旋转的性质得∠AOC=80°,∠C=∠A=110°,再利用三角形内角和计算出∠COD,然后计算∠AOC ﹣∠COD即可.【解答】解:(1)如图,△OA′B′为所作.(2)∵△OAB绕点O逆时针旋转80°得到△OCD,∴∠AOC=80°,∠C=∠A=110°,∴∠COD=180°﹣110°﹣40°=30°,∴∠AOD=∠AOC﹣∠COD=80°﹣30°=50°.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.(10分)如图,⊙O中,弦CD与直径AB交于点H.(1)当∠B+∠D=90°时,求证:H是CD的中点;(2)若H为CD的中点,且CD=2,BD=,求AB的长.【分析】(1)根据三角形内角和定理求出∠BHD=90°,根据垂径定理得出即可;(2)根据垂径定理求出DH,根据勾股定理求出BH,根据勾股定理得出关于R的方程,求出R即可.【解答】(1)证明:∵∠B+∠D=90°,∴∠BHD=180°﹣90°=90°,即AB⊥CD,∵AB过O,∴CH=DH,即H是CD的中点;(2)解:连接OD,∵H为CD的中点,CD=2,AB过O,∴DH=CH=CD=,AB⊥CD,∴∠BHD=90°,由勾股定理得:BH===1,设⊙O的半径为R,则AB=2R,OB=OD=R,在Rt△OHD中,由勾股定理得:OH2+DH2=OD2,即(R﹣1)2+()2=R2,解得:R=,∴AB=2×=3.【点评】本题考查了圆周角定理、垂径定理和勾股定理,能灵活运用垂径定理进行推理是解此题的关键.23.(12分)如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′(﹣3,3),B′(﹣6,0);(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.【分析】(1)根据中心对称定义可得;(2)由题意可得点A平移后的坐标为(3﹣m,﹣3),代入解析式可求m的值;(3)①由题意可得旋转后B1(3,3),代入解析式可求k的值;②当α=60°,可求出点A1,点B2的坐标,代入解析式可判断点是否在反比例函数图象上.【解答】解:(1)∵△OA′B′与△OAB关于原点O成中心对称,且A(3,﹣3)、B(6,0),∴A'(﹣3,3),B'(﹣6,0)故答案为(﹣3,3),(﹣6,0)(2)∵将△OAB沿x轴向左平移m个单位,∴点A平移后的坐标为(3﹣m,﹣3)∴﹣3=m=5(3)①设点B逆时针旋转30°后对应点为B1.如图:过点B1作B1C⊥OB∵旋转∴OB1=6,∠COB1=30°∴B1C=3,OC=OB1=3∴B1(3,3)∴3=∴k=9∴解析式为y=②α=60°如图2,过点A作AD⊥OB,∵A(3,﹣3)∴OD=3,DA=3∵tan∠BOA==∴∠AOB=30°设点A逆时针旋转60°后对应点为A1.∴∠A1OB=30°,且OA=OB=6=OA1.∴A1(3,3)设点B逆时针旋转60°后对应点为B2.∴∠B2OB=60°,且OB2=OB=6∴B2(3,3)当x=3时,y==3,当x=3时,y==3∴点A1,点B2在反比例y=的图象上∴将△OAB绕点O按逆时针方向旋转60°时,点A、B能同时落在反比例函数的图象上.【点评】本题考查了反比例函数的综合题,待定系数法求函数解析式,旋转的性质,灵活运用这些性质解决问题是本题的关键.24.(14分)已知二次函数y=x2+(a﹣5)x+5.(1)该抛物线与y轴交点的坐标为(0,5);(2)当a=﹣1时,求该抛物线与x轴的交点坐标;(3)已知两点A(2,0)、B(3,0),抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点,求a的取值范围.【分析】(1)当x=0时,y=5.即抛物线与y轴的交点坐标为(0,5)(2)由题意可得抛物线解析式,当y=0时,可求抛物线与x轴的交点坐标.(3)分抛物线的顶点在线段AB上,抛物线与x轴的其中一个交点在线段AB上两种情况讨论,列不等式组可求a的取值范围.【解答】解:(1)当x=0时,y=5.即抛物线与y轴的交点坐标为(0,5)(2)当a=﹣1时,抛物线解析式为y=x2﹣6x+5.当y=0时,0=x2﹣6x+5解得:x1=1,x2=5∴抛物线与x轴的交点坐标为(1,0),(5,0)(3)①∵抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点∴△=(a﹣5)2﹣20=0∴a=±2+5∵2≤﹣≤3∴﹣1≤a≤1∴a=﹣2+5②∵抛物线y=x2+(a﹣5)x+5与线段AB恰有一个交点∴或解得:≤a<或无解综上所述:≤a<或a=﹣2+5,【点评】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,利用分类讨论思想解决问题是本题的关键.25.(14分)如图,AB为半圆的直径,C是半圆弧上一点,正方形DEFG的一边DG在直径AB上,另一边DE过△ABC的内切圆圆心O,且点E在半圆上.(1)当正方形的顶点F也在半圆弧上时,半圆的半径与正方形边长的比为:2;(2)当正方形DEFG的面积为100,且△ABC的内切圆⊙O的半径r=4,求半圆的直径AB的值;(3)若半圆的半径为R,直接写出⊙O半径r可取得的最大值.【分析】(1)根据圆和正方形的对称性可知:GH=DG=GF,在直角三角形FGH中,利用勾股定理可得HF=,从而用含a的代数式表示半圆的半径为a,正方形边长为2a,所以可求得半圆的半径与正方形边长的比;(2)切点分别为I,J,连接EB、AE,OH、OI,可得OHCI是正方形,且边长是4,可设BD=x,AD=y,则BD=BH=x,AD=AI=y,分别利用直角三角形ABC和直角三角形AEB中的勾股定理和相似比作为相等关系列方程组求解即可求得半圆的直径AB=21.(3)根据(2)中得出方程解答即可.【解答】解:(1)如图,根据圆和正方形的对称性可知:GH=DG=GF,H为半圆的圆心,不妨设GH=a,则GF=2a,在直角三角形FGH中,由勾股定理可得HF=.由此可得,半圆的半径为a,正方形边长为2a,所以半圆的半径与正方形边长的比是a:2a=:2;故答案为::2;(2)因为正方形DEFG的面积为100,所以正方形DEFG边长为10.切点分别为I,J,连接EB、AE,OI、OJ,∵AC、BC是⊙O的切线,∴CJ=CI,∠OJC=∠OIC=90°,∵∠ACB=90°,∴四边形OICJ是正方形,且边长是4,设BD=x,AD=y,则BD=BI=x,AD=AJ=y,在直角三角形ABC中,由勾股定理得(x+4)2+(y+4)2=(x+y)2①;在直角三角形AEB中,∵∠AEB=90°,ED⊥AB,∴△ADE∽△BDE∽△ABE,于是得到ED2=AD•BD,即102=x•y②.解①式和②式,得x+y=21,即半圆的直径AB=21;(3)由(2)可得:r=.【点评】本题综合考查了圆、三角形、方程等知识,是一道综合性很强的题目,难度偏上,需要正确理解相关知识点及懂得运用方能很好的解答本题.。
2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。
【真题】2016-2017学年广东省中山市九年级(上)期末数学试卷及参考答案PDF

2016-2017学年广东省中山市九年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C. D.2.(3分)从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为()A.B.C.D.3.(3分)若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠04.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)5.(3分)商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是()A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖6.(3分)如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40°B.45°C.60°D.80°7.(3分)抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.﹣18.(3分)直角三角形两直角边长分别为和1,那么它的外接圆的直径是()A.1 B.2 C.3 D.49.(3分)如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°10.(3分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题(共6个小题,每小题4分,满分24分)11.(4分)如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=.12.(4分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是.13.(4分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有个.14.(4分)如图,已知点P(1,2)在反比例函数的图象上,观察图象可知,当x<1时,y的取值范围是.15.(4分)如图,二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),当x=2时,y的值为.16.(4分)如图,等边三角形ABC的内切圆的面积9π,则△ABC的周长为.三、解答题(一)(共3个小题,每小题6分,满分18分)17.(6分)解方程:x2+2x=1.18.(6分)已知:二次函数y=x2﹣(m﹣1)x﹣m.(1)若图象的对称轴是y轴,求m的值;(2)若图象与x轴只有一个交点,求m的值.19.(6分)在如图所示的直角坐标系中,解答下列问题:(1)将△ABC绕点A顺时针旋转90°,画出旋转后的△A1B1C1;(2)求经过A1B1两点的直线的函数解析式.四、解答题(二)(共3个小题,每小题7分,满分21分)20.(7分)如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.21.(7分)将分别标有数字1,3,5的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析:随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率.22.(7分)反比例函数y=在第一象限的图象如图所示,过点A(1,0)作x 轴的垂线,交反比例函数y=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形ABCD有一个顶点在反比例函数y=的图象上,求t的值.五、解答题(三)(共3个小题,每小题9分,满分27分)23.(9分)如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.24.(9分)将一条长度为40cm的绳子剪成两段,并以每一段绳子的长度为周长围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,那么这段绳子剪成两段后的长度分别是多少?(2)求两个正方形的面积之和的最小值,此时两个正方形的边长分别是多少?25.(9分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.2016-2017学年广东省中山市九年级(上)期末数学试卷参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C. D.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.2.(3分)从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为()A.B.C.D.【解答】解:从,﹣6,1.2,π,中可以知道π和为无理数.其余都为有理数.故从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为,故选B.3.(3分)若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠0【解答】解:由题意,得m﹣2≠0,m≠2,故选:A.4.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.5.(3分)商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是()A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖【解答】解:根据概率的意义可得“抽到一等奖的概率为O.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.6.(3分)如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40°B.45°C.60°D.80°【解答】解:∵弧长l=,∴n===40°.故选A.7.(3分)抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.﹣1【解答】解:∵令x=0,则y=﹣2(x﹣1)2﹣3=﹣5,∴抛物线y=﹣2(x﹣1)2﹣3与y轴交点的纵坐标坐标为﹣5,故选C.8.(3分)直角三角形两直角边长分别为和1,那么它的外接圆的直径是()A.1 B.2 C.3 D.4【解答】解:由勾股定理得,直角三角形的斜边长==2,∴它的外接圆的直径是2,故选:B.9.(3分)如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°【解答】解:连接OC,∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠COD=180°﹣90°﹣40°=50°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=50°,∴∠A=25°.故选B.10.(3分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.二、填空题(共6个小题,每小题4分,满分24分)11.(4分)如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=100°.【解答】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.12.(4分)已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.13.(4分)袋中装有6个黑球和n个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有2个.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是白球的概率为,∴=,解得:n=2.故答案为:2.14.(4分)如图,已知点P(1,2)在反比例函数的图象上,观察图象可知,当x<1时,y的取值范围是y>2或y<0.【解答】解:根据题意,反比例函数y=的图象在第一象限,y随x的增大而减小;∵其图象过点(1,2);∴当0<x<1时,y的取值范围时y>2;当x<0时,y<0.故答案为:y>2或y<0.15.(4分)如图,二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),当x=2时,y的值为2.【解答】解:∵二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),∴,解得:,则这个二次函数的表达式为y=﹣x2+x+2.把x=2代入得,y=﹣×4+×2+2=2.故答案为2.16.(4分)如图,等边三角形ABC的内切圆的面积9π,则△ABC的周长为.【解答】解:设圆和BC的切点是D,连接OB,OD,则:∵内切圆的面积是9π,∴内切圆的半径OD=3;∵∠OBD=30°,∴BD=3,∴BC=6,∴△ABC的周长是18.三、解答题(一)(共3个小题,每小题6分,满分18分)17.(6分)解方程:x2+2x=1.【解答】解:∵x2+2x=1,∴x2+2x+1=1+1,∴(x+1)2=2,∴x+1=,∴x=﹣1.18.(6分)已知:二次函数y=x2﹣(m﹣1)x﹣m.(1)若图象的对称轴是y轴,求m的值;(2)若图象与x轴只有一个交点,求m的值.【解答】解:(1)∵抛物线的对称轴是y轴,∴﹣=0,∴m=1;(2)∵图象与x轴只有一个交点,则△=0,即(m﹣1)2﹣4×1×(﹣m)=0,∴m=﹣1.19.(6分)在如图所示的直角坐标系中,解答下列问题:(1)将△ABC绕点A顺时针旋转90°,画出旋转后的△A1B1C1;(2)求经过A1B1两点的直线的函数解析式.【解答】解:(1)如图,(2)设线段B1A1所在直线l的解析式为:y=kx+b(k≠0),∵B1(﹣2,3),A1(2,0),∴,∴,∴线段B1A1所在直线l的解析式为:.四、解答题(二)(共3个小题,每小题7分,满分21分)20.(7分)如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.【解答】解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×16=8cm,CF=CD=×12=6cm,在Rt△AOE中,OE===6cm,在Rt△OCF中,OF===8cm,∴EF=OF﹣OE=8﹣6=2cm.答:AB和CD的距离为2cm.21.(7分)将分别标有数字1,3,5的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析:随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率.【解答】解:(1)∵卡片共有3张,有1,3,5,1有一张,∴抽到数字恰好为1的概率;(2)画树状图:由树状图可知,所有等可能的结果共有6种,其中两位数恰好是35有1种.∴P(35)=.22.(7分)反比例函数y=在第一象限的图象如图所示,过点A(1,0)作x 轴的垂线,交反比例函数y=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形ABCD有一个顶点在反比例函数y=的图象上,求t的值.【解答】解:(1)∵△AOM的面积为3,∴|k|=3,而k>0,∴k=6,∴反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D 点与M点重合,即AB=AM,把x=1代入y=得y=6,∴M点坐标为(1,6),∴AB=AM=6,∴t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t﹣1,∴C点坐标为(t,t﹣1),∴t(t﹣1)=6,整理为t2﹣t﹣6=0,解得t1=3,t2=﹣2(舍去),∴t=3,∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或3.五、解答题(三)(共3个小题,每小题9分,满分27分)23.(9分)如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.【解答】(1)证明:过O作ON⊥CD于N,连接OM,∵⊙O与BC相切于点M,∴OM⊥BC,∵四边形ABCD为正方形,∴∠B=90°,AB∥CD∴AB∥OM∥DC,∵AC为正方形ABCD对角线,∴∠NOC=∠NCO=∠MOC=∠MCO=45°,∵OM=ON,∴CD与⊙O相切;(2)解:由(1)易知△MOC为等腰直角三角形,OM为半径,∴OM=MC=1,∴OC2=OM2+MC2=1+1=2,∴.∴,在Rt△ABC中,AB=BC,有AC2=AB2+BC2,∴2AB2=AC2,∴=.故正方形ABCD的边长为.24.(9分)将一条长度为40cm的绳子剪成两段,并以每一段绳子的长度为周长围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,那么这段绳子剪成两段后的长度分别是多少?(2)求两个正方形的面积之和的最小值,此时两个正方形的边长分别是多少?【解答】解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(10﹣x)cm,依题意列方程得x2+(10﹣x)2=58,整理得:x2﹣10x+21=0,解方程得x1=3,x2=7,3×4=12cm,40﹣12=28cm,或4×7=28cm,40﹣28=12cm.因此这段绳子剪成两段后的长度分别是12cm、28cm;(2)设两个正方形的面积和为y,则y=x2+(10﹣x)2=2(x﹣5)2+50,∴当x=5时,y=50,此时,10﹣5=5cm,最小值即两个正方形的面积之和的最小值是50cm2,此时两个正方形的边长都是5cm.25.(9分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【解答】解:(1),解得:,∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+3)(x﹣1),∴B(﹣3,0),把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,,解得:,∴直线BC解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3,得y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又B(﹣3,0),C(0,3),BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(t﹣3)2+12=t2﹣6t+10,若B为直角顶点,则:BC2+PB2=PC2,即:18+4+t2=t2﹣6t+10,解得:t=﹣2;若C为直角顶点,则:PB2+PC2=PB2,即:18+t2﹣6t+10=4+t2,解得:t=4;若P为直角顶点,则PB2+PC2=BC2,即:4+t2+t2﹣6t+10=18,解得:t=.综上所述,满足要求的P点坐标为(﹣1,﹣2),(﹣1,4),(﹣1,),(﹣1,)。
广东省中山市2017届九年级(上)期末数学试卷(解析版)

2016-2017学年广东省中山市九年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C. D.2.从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为()A.B.C.D.3.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠04.若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)5.商场举行摸奖促销活动,对于“抽到一等奖的概率为O.1”.下列说法正确的是()A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖6.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40°B.45°C.60°D.80°7.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.﹣18.直角三角形两直角边长分别为和1,那么它的外接圆的直径是()A.1 B.2 C.3 D.49.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°10.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限二、填空题(共6个小题,每小题4分,满分24分)11.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=.12.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有个.14.如图,已知点P(1,2)在反比例函数的图象上,观察图象可知,当x <1时,y的取值范围是.15.如图,二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),当x=2时,y的值为.16.如图,等边三角形ABC的内切圆的面积9π,则△ABC的周长为.三、解答题(一)(共3个小题,每小题6分,满分18分)17.解方程:x2+2x=1.18.已知:二次函数y=x2﹣(m﹣1)x﹣m.(1)若图象的对称轴是y轴,求m的值;(2)若图象与x轴只有一个交点,求m的值.19.在如图所示的直角坐标系中,解答下列问题:(1)将△ABC绕点A顺时针旋转90°,画出旋转后的△A1B1C1;(2)求经过A1B1两点的直线的函数解析式.四、解答题(二)(共3个小题,每小题7分,满分21分)20.如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.21.将分别标有数字1,3,5的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析:随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率.22.反比例函数y=在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=的图象上,求t的值.五、解答题(三)(共3个小题,每小题9分,满分27分)23.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.24.将一条长度为40cm的绳子剪成两段,并以每一段绳子的长度为周长围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,那么这段绳子剪成两段后的长度分别是多少?(2)求两个正方形的面积之和的最小值,此时两个正方形的边长分别是多少?25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.2016-2017学年广东省中山市九年级(上)期末数学试卷参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、是中心对称图形,不是轴对称图形,故此选项错误;故选:C.2.从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为()A.B.C.D.【考点】概率公式;无理数.【分析】从题中可以知道,共有5个数,只需求出5个数中为无理数的个数就可以得到答案.【解答】解:从,﹣6,1.2,π,中可以知道π和为无理数.其余都为有理数.故从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为,故选B.3.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解,一元二次方程必须满足两个条件:未知数的最高次数是2;二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意,得m﹣2≠0,m≠2,故选:A.4.若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【考点】反比例函数图象上点的坐标特征.【分析】先把(2,1)代入y=求出k得到反比例函数解析式为y=,然后根据反比例函数图象上点的坐标特征,通过计算各点的横纵坐标的积进行判断.【解答】解:把(2,1)代入y=得k=2×1=2,所以反比例函数解析式为y=,因为2×(﹣1)=﹣2,1×(﹣2)=﹣2,﹣2×1=﹣2,﹣2×(﹣1)=2,所以点(﹣2,﹣1)在反比例函数y=的图象上.故选D.5.商场举行摸奖促销活动,对于“抽到一等奖的概率为O.1”.下列说法正确的是()A.抽10次奖必有一次抽到一等奖B.抽一次不可能抽到一等奖C.抽10次也可能没有抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖【考点】概率的意义.【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现进行解答即可.【解答】解:根据概率的意义可得“抽到一等奖的概率为O.1”就是说抽10次可能抽到一等奖,也可能没有抽到一等奖,故选:C.6.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40°B.45°C.60°D.80°【考点】弧长的计算.【分析】根据弧长的公式l=可以得到n=.【解答】解:∵弧长l=,∴n===40°.故选A.7.抛物线y=﹣2(x﹣1)2﹣3与y轴交点的横坐标为()A.﹣3 B.﹣4 C.﹣5 D.﹣1【考点】二次函数图象上点的坐标特征.【分析】令x=0,求出y的值即可得出结论.【解答】解:∵令x=0,则y=﹣2(x﹣1)2﹣3=﹣5,∴抛物线y=﹣2(x﹣1)2﹣3与y轴交点的纵坐标坐标为﹣5,故选C.8.直角三角形两直角边长分别为和1,那么它的外接圆的直径是()A.1 B.2 C.3 D.4【考点】三角形的外接圆与外心.【分析】根据勾股定理求出直角三角形的斜边长,根据直角三角形的外心的性质解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2,∴它的外接圆的直径是2,故选:B.9.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为()A.20°B.25°C.30°D.40°【考点】切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质;圆周角定理.【分析】连接OC,根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.【解答】解:连接OC,∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠COD=180°﹣90°﹣40°=50°,∵OA=OC,∴∠A=∠OCA,∵∠A+∠OCA=∠COD=50°,∴∠A=25°.故选B.10.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.二、填空题(共6个小题,每小题4分,满分24分)11.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE=100°.【考点】旋转的性质.【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【解答】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.12.已知方程x2+mx+3=0的一个根是1,则它的另一个根是3.【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从中任摸一个球,恰好是白球的概率为”,则这个袋中白球大约有2个.【考点】概率公式.【分析】根据若从中任摸一个球,恰好是白球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是白球的概率为,∴=,解得:n=2.故答案为:2.14.如图,已知点P(1,2)在反比例函数的图象上,观察图象可知,当x <1时,y的取值范围是y>2或y<0.【考点】反比例函数图象上点的坐标特征.【分析】根据图象,结合反比例函数的图象性质,分析其增减性及过点的坐标易得答案.【解答】解:根据题意,反比例函数y=的图象在第一象限,y随x的增大而减小;∵其图象过点(1,2);∴当0<x<1时,y的取值范围时y>2;当x<0时,y<0.故答案为:y>2或y<0.15.如图,二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),当x=2时,y的值为2.【考点】待定系数法求二次函数解析式.【分析】把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式,然后把x=2代入解析式即可求得.【解答】解:∵二次函数y=ax2+bx+c的图象经过点(﹣1,0)、(3,0)和(0,2),∴,解得:,则这个二次函数的表达式为y=﹣x2+x+2.把x=2代入得,y=﹣×4+×2+2=2.故答案为2.16.如图,等边三角形ABC的内切圆的面积9π,则△ABC的周长为.【考点】三角形的内切圆与内心.【分析】根据等边三角形的内切圆的面积是9π,得其内切圆的半径是3.设圆和BC的切点是D,连接OB,OD.再根据等边三角形的三线合一,则三角形BOD 是一个30°的直角三角形,得BD=3,再求得边长从而可求三角形的周长.【解答】解:设圆和BC的切点是D,连接OB,OD,则:∵内切圆的面积是9π,∴内切圆的半径OD=3;∵∠OBD=30°,∴BD=3,∴BC=6,∴△ABC的周长是18.三、解答题(一)(共3个小题,每小题6分,满分18分)17.解方程:x2+2x=1.【考点】解一元二次方程-配方法.【分析】方程左右两边同时加上1,则左边是完全平方式,右边是常数,再利用直接开平方法即可求解.【解答】解:∵x2+2x=1,∴x2+2x+1=1+1,∴(x+1)2=2,∴x+1=,∴x=﹣1.18.已知:二次函数y=x2﹣(m﹣1)x﹣m.(1)若图象的对称轴是y轴,求m的值;(2)若图象与x轴只有一个交点,求m的值.【考点】抛物线与x轴的交点.【分析】(1)根据二次函数的性质得到﹣=0,然后解关于m的方程即可;(2)根据判别式的意义得到(m﹣1)2﹣4×1×(﹣m)=0,然后解关于m的方程即可.【解答】解:(1)∵抛物线的对称轴是y轴,∴﹣=0,∴m=1;(2)∵图象与x轴只有一个交点,则△=0,即(m﹣1)2﹣4×1×(﹣m)=0,∴m=﹣1.19.在如图所示的直角坐标系中,解答下列问题:(1)将△ABC绕点A顺时针旋转90°,画出旋转后的△A1B1C1;(2)求经过A1B1两点的直线的函数解析式.【考点】作图-旋转变换;待定系数法求一次函数解析式.【分析】(1)根据旋转的性质,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)如图,(2)设线段B1A1所在直线l的解析式为:y=kx+b(k≠0),∵B1(﹣2,3),A1(2,0),∴,∴,∴线段B1A1所在直线l的解析式为:.四、解答题(二)(共3个小题,每小题7分,满分21分)20.如图,⊙O的半径为10cm,弦AB∥CD,AB=16cm,CD=12cm,圆心O位于AB、CD的上方,求AB和CD间的距离.【考点】垂径定理;勾股定理.【分析】过点O作弦AB的垂线,垂足为E,延长AE交CD于点F,连接OA,OC;由于AB∥CD,则OF⊥CD,EF即为AB、CD间的距离;由垂径定理,易求得AE、CF的长,在构建的直角三角形中,根据勾股定理即可求出OE、OF的长,也就求出了EF的长,即弦AB、CD间的距离.【解答】解:过点O作弦AB的垂线,垂足为E,延长OE交CD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=30cm,CD=16cm,∴AE=AB=×16=8cm,CF=CD=×12=6cm,在Rt△AOE中,OE===6cm,在Rt△OCF中,OF===8cm,∴EF=OF﹣OE=8﹣6=2cm.答:AB和CD的距离为2cm.21.将分别标有数字1,3,5的三张卡片洗匀后,背面朝上放在桌面上.(1)随机地抽取一张,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析:随机地抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率.【考点】列表法与树状图法.【分析】(1)让1的个数除以数的总数即为所求的概率;(2)列举出所有情况,看所组成的两位数恰好是“35”的情况数占总情况数的多少即可.【解答】解:(1)∵卡片共有3张,有1,3,5,1有一张,∴抽到数字恰好为1的概率;(2)画树状图:由树状图可知,所有等可能的结果共有6种,其中两位数恰好是35有1种.∴P(35)=.22.反比例函数y=在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=的图象上,求t的值.【考点】待定系数法求反比例函数解析式;解一元二次方程-因式分解法;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;正方形的性质.【分析】(1)根据反比例函数k的几何意义得到|k|=3,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(1,6),则AB=AM=6,所以t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t﹣1,则C点坐标为(t,t﹣1),然后利用反比例函数图象上点的坐标特征得到t(t﹣1)=6,再解方程得到满足条件的t的值.【解答】解:(1)∵△AOM的面积为3,∴|k|=3,而k>0,∴k=6,∴反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D 点与M点重合,即AB=AM,把x=1代入y=得y=6,∴M点坐标为(1,6),∴AB=AM=6,∴t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t﹣1,∴C点坐标为(t,t﹣1),∴t(t﹣1)=6,整理为t2﹣t﹣6=0,解得t1=3,t2=﹣2(舍去),∴t=3,∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或3.五、解答题(三)(共3个小题,每小题9分,满分27分)23.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.【考点】切线的判定与性质;勾股定理;正方形的性质.【分析】(1)过O作ON⊥CD于N,连接OM,由切线的性质可知,OM⊥BC,再由AC是正方形ABCD的对角线可知AC是∠BCD的平分线,由角平分线的性质可知OM=ON,故CD与⊙O相切;(2)先根据正方形的性质得出△MOC是等腰直角三角形,由勾股定理可求出OC的长,进而可求出AC的长,在Rt△ABC中,利用勾股定理即可求出AB的长.【解答】(1)证明:过O作ON⊥CD于N,连接OM,∵⊙O与BC相切于点M,∴OM⊥BC,∵四边形ABCD为正方形,∴∠B=90°,AB∥CD∴AB∥OM∥DC,∵AC为正方形ABCD对角线,∴∠NOC=∠NCO=∠MOC=∠MCO=45°,∵OM=ON,∴CD与⊙O相切;(2)解:由(1)易知△MOC为等腰直角三角形,OM为半径,∴OM=MC=1,∴OC2=OM2+MC2=1+1=2,∴.∴,在Rt△ABC中,AB=BC,有AC2=AB2+BC2,∴2AB2=AC2,∴=.故正方形ABCD的边长为.24.将一条长度为40cm的绳子剪成两段,并以每一段绳子的长度为周长围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,那么这段绳子剪成两段后的长度分别是多少?(2)求两个正方形的面积之和的最小值,此时两个正方形的边长分别是多少?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(10﹣x)cm,依题意列方程即可得到结论;(2)设两个正方形的面积和为y,于是得到y=x2+(10﹣x)2=2(x﹣5)2+50,于是得到结论.【解答】解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(10﹣x)cm,依题意列方程得x2+(10﹣x)2=58,整理得:x2﹣10x+21=0,解方程得x1=3,x2=7,3×4=12cm,40﹣12=28cm,或4×7=28cm,40﹣28=12cm.因此这段绳子剪成两段后的长度分别是12cm、28cm;(2)设两个正方形的面积和为y,则y=x2+(10﹣x)2=2(x﹣5)2+50,10﹣5=5cm,∴当x=5时,y最小值=50,此时,即两个正方形的面积之和的最小值是50cm2,此时两个正方形的边长都是5cm.25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【考点】二次函数综合题.【分析】(1)由对称轴公式及A、C两点的坐标直接求解即可;(2)由于B点与A点关于对称轴对称,故连接BC与对称轴的交点即为M点;(3)设出P点的纵坐标,分别表示出BP,PC,BC三条线段的长度的平方,分三种情况,用勾股定理列出方程求解即可.【解答】解:(1),解得:,∴抛物线解析式为y=﹣x2﹣2x+3=﹣(x+3)(x﹣1),∴B(﹣3,0),把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,,解得:,∴直线BC解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3,得y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又B(﹣3,0),C(0,3),BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(t﹣3)2+12=t2﹣6t+10,若B为直角顶点,则:BC2+PB2=PC2,即:18+4+t2=t2﹣6t+10,解得:t=﹣2;若C为直角顶点,则:PB2+PC2=PB2,即:18+t2﹣6t+10=4+t2,解得:t=4;若P为直角顶点,则PB2+PC2=BC2,即:4+t2+t2﹣6t+10=18,解得:t=.综上所述,满足要求的P点坐标为(﹣1,﹣2),(﹣1,4),(﹣1,),(﹣1,)2017年2月20日。
2016-2017年广东省中山市九年级(上)期末数学试卷和参考答案

第1页(共20页) 2016-2017学年广东省中山市九年级(上)期末数学试卷 一、单项选择题(共10个小题,每小题3分,满分30分) 1.(3分)下列图形中既是中心对称图形又是轴对称图形的是( )
A. B. C. D. 2.(3分)从数据,﹣6,1.2,π,中任取一数,则该数为无理数的概率为( ) A. B. C. D. 3.(3分)若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( ) A.m≠2 B.m=2 C.m≥2 D.m≠0 4.(3分)若反比例函数y=(k≠0)的图象过点(2,1),则这个函数的图象一定过点( ) A.(2,﹣1) B.(1,﹣2) C.(﹣2,1) D.(﹣2,﹣1) 5.(3分)商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( ) A.抽10次奖必有一次抽到一等奖 B.抽一次不可能抽到一等奖 C.抽10次也可能没有抽到一等奖 D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 6.(3分)如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为( ) A.40° B.45° C.60° D.80° 7.(3分)抛物线y=﹣2(x﹣1)2﹣3与y轴交点的纵坐标为( ) A.﹣3 B.﹣4 C.﹣5 D.﹣1 8.(3分)直角三角形两直角边长分别为和1,那么它的外接圆的直径是( ) 第2页(共20页)
A.1 B.2 C.3 D.4 9.(3分)如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )
A.20° B.25° C.30° D.40° 10.(3分)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过( )
A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限
二、填空题(共6个小题,每小题4分,满分24分) 11.(4分)如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE= .
番禺区九年级数学综合训练1--答案与评分参考

番禺区20XX 年九年级数学综合训练试题(一)参考答案与评分说明本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项: 1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中只有一项是符合题目要求的.)1. 如图,直线a 、b 被直线c 所截,且a b ∥,如果 ∠166=,那么∠2=(※). B (A )66° (B )114° (C )124° (D )24°2. 下列运算正确的是(※).C(A)2=± (B) 224-=-(C)2=- (D) |2|2--=3. 不等式组312840x x ->⎧⎨-≥⎩的解集在数轴上表示为(※).C4. 国家游泳中心--“水立方”是北京20XX 年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为(※).D (A)60.2610⨯ (B)42610⨯ (C)62.610⨯(D)52.610⨯5. 在一周内体育老师对某同学进行了5次百米短跑测试,若想了解该同学的成绩是否稳定,老师需要知道他5次成绩的(※) .C(A)平均数 (B) 中位数 (C) 方差 (D)众数6. 如图2,在□ABCD 中,ABC ∠的平分线交AD 于E , 若2AE =,:2:1AE ED =,则□ABCD 的周长是(※).A (A )10(B )12(C )9 (D )157. 对于二次函数2(0)y ax bx c a =++≠,我们把使函数值等于0的实数x 叫做这个函数的零点..,则二次函数22y x mx m =-+-(m 为实数)的零点..的个数是(※).A (A )2 (B )1 (C )0 (D )1或28. 如图3,把一矩形纸片OABC 放入平面直角坐标系xoy 中,使OA 、OC 分别落在x 轴、(A)(B)(C)(D)图1cb a21abc 图1图2y 轴上,现将纸片OABC 沿OB 折叠,折叠后点A 落在点A '的位置,若1OA =,2OB =,则点A '的坐标为(※).B(A)1(,)22(B)1(,)22-(C )(34,55-) (D )(1) 9. 如图4,路灯距地面8米,身高1.6米的小明从距离灯底(点O )20米的点A 处,沿AO 所在直线行走12米到达点B 时,小明身影长度(※).D (A)变长2.5米(B)变短2米 (C)变短2.5米(D)变短3米10. 如图5所示,半径为2的圆和边长为5的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为t ,圆与正方形重叠部分(阴影部分)的面积为S ,则S 与t 的函数关系式的大致图象为(※).B5t(A) t(B)t(C)t(D)图4第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.函数y =x 的取值范围是 ※ . 12.分式方程1321=-x 的解为 ※ .13.图6是某种工件的三视图,其府视图为正六边形,它的表面积是 ※ 2cm . 14.某商店老板将一件进价为900元的商品先提价50%,再打8折卖出,则卖出这件商品所获利润是 ※ 元.15. 如图7,⊙O 内切于ABC △,切点分别为D 、E 、F ,若40°B ∠=,60°C ∠=,则EDF ∠的大小为 ※ .16. 如图8,将边长为2cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着BC 平移得到△C B A ''',设两三角形重叠部分的面积为S ,则S 的最大值为 ※ 2cm . 答案:11.6x ≤;12.2x =;13.36+56.78;14.180;15.50;16.1.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)已知1x =,试求代数式2221x x xx x-+÷的值. 解:22222211x x x x x x x x x x-+-÷=+ …………………………………………………… 2分 2(1)(1)(1)x x x x x x -+=+ …………………………………………………………… 6分 1x =- …………………………………………………… 7分31x =+,∴ ………………………………………………9分'图7D 图618.(本小题满分9分)如图9,在等腰ABC △中,AB AC =,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点F .试写出图中所有全等的三角形,并选其中一对加以证明.解:ABE ACD △≌△,BCD CBE △≌△或BFD CFE △≌△ (共3分,每写对一个给1分).(1)选ABE ACD △≌△.BE AC ⊥ 证明:∵CD AB ⊥,BE AC ⊥,90ADC AEB ∠=∠=∴. ………………………………… 5分在ABE △和ACD △中,A A ADC AEB AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩………………………………… 8分 (...)ABE ACD A A S ∴△≌△. ………………………………… 9分选择其余各对来证明可比照给分. 19.(本小题满分10分)某校综合实践活动小组开展了初中学生课外阅读兴趣调查,随机抽查了所在镇若干名初中学生的课外阅读情况,并将统计结果绘制出了如下两幅不完整的统计图(如图10),请你根据图中所给出的信息解答下列问题: (1)将两幅统计图补充完整;(2)如果该镇有8000名初中生,那么其中喜欢卡通动漫的学生约有多少人? (3)根据统计结果,谈谈你的看法解:(1)扇形图中填:报纸杂志30%(2)该镇8000名初中生中,喜欢卡通动漫的学生人数约为:800048%3840⨯=(人) …………………………………………………(6分)(3)结论开放,只要能根据统计结果鲜明地提出自己的观点,均可给分(10分). 主要观点:(1)从统计结果看该镇中学生感兴趣的课外阅读书籍是卡通动漫,其次是报刊杂志,对古今中外名著感兴趣的同学不多;(2)阅读报刊杂志和中外名著可以让中学生了解和关心时事,增长知识,培养阅读能力,是值得倡导的阅读喜好;(3)卡通动漫虽也适合儿童休闲阅读,但若沉迷其中则对中学生的健康成长是有害的,中学生应该逐步培养对中外名著的阅读兴趣。
2017年广东广州番禺区初三一模数学试卷

2017年广东广州番禺区初三一模数学试卷选择题(本大题共10小题,每小题3分,共30分)1.A.B.C.D.计算的结果是( ).|−2017|−2017−12017201712017
2.A.B.C.D.下列所给图形中,既是中心对称图形又是轴对称图形的是( ).
3.A.B.C.D.年中国增速,经济总量约为亿元,中国经济总量在各个国家中排名第二,将用科学记数法表示为( ).2016GDP6.7%744000744000
7.44×1057.4×1057.44×106744×1034.A.B.C.D.如图所示的几何体的俯视图是( ).
5.A.B.C.D.我市年月份某一周的天最高气温(单位:)分别为,,,,,,,这周的日最高气温的平均值为( ).201657C∘25283029313228
28C∘29C∘30C∘31C∘6.A.B.C.D.如图,内接于⊙,若,则的度数是( ).△ABCO∠ACB=50∘∠AOB
100∘90∘80∘130∘填空题(本大题共6小题,每小题3分,共18分)
7.A.B.C.D.计算的结果为( ).×+2√8√−27−−−−√3
±114−33√7
8.A.B.C.D.如图,已知在中,点,,在轴上.将绕点逆时针旋转,点的对应点恰好落在双曲线()上,则的值为( ).Rt△AOBA(1,2)∠OBA=90∘OBx△AOBA90∘OC
y=kxk>0k
12349.A.B.C.D.如图所示,一张纸片,点,分别在线段,上,将沿着折叠,若,则( ).△ABCDEACAB△ADEDE∠A=α∠1+∠2=
α2α180−α∘180−2α∘10.A.个B.个C.个D.个抛物线()的对称轴为直线,与轴的一个交点在点和之间,其部分图象如图,则下列结论:①.②.③.④点、在抛物线上,若,则,其中正确结论的个数是( ).
y=a+bx+cx2a≠0x=−1xA(−3,0)(−2,0)4ac−<0b22a−b=0a+b+c<0M(,)x1y1N(,)x2y22
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年第一学期九年级数学科期末测试题 【试卷说明】1.本试卷共4页,全卷满分150分,考试时间为120分钟.考生应将答案全部填(涂)写在答题卡相应位置上,写在本试卷上无效.考试时允许使用计算器; 2. 答题前考生务必将自己的姓名、准考证号等填(涂)写到答题卡的相应位置上; 3. 作图必须用2B铅笔,并请加黑加粗,描写清楚。
一、选择题 (本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有
一项是符合题目要求的.) 1. 如果2是方程230xxk的一个根,则常数k的值为(※). )A( 1 )B( 1 )C( 2 )D( 2
2. 下列图形中,既是轴对称图形又是中心对称图形的是(※).
)A( )B( )C( )D( 3.用配方法解方程0122xx时,配方结果正确的是(※). (A)2(1)2x (B)2(1)2x (C)3)2(2x (D)3)1(2x
4. 在反比例函数7myx的图象的每一支位上,y随x的增大而减小, 则m的取值范围 是(※). (A)7m (B)7m (C)7m (D)7m 5. 如图,⊙O的直径AB垂直于弦CD,∠CAB=36°, 则∠BCD的大小是(※). )A(18 )B( 36 )C( 54 )D(72
6.关于x的二次函数2(1)2yx,下列说法正确的是(※). (A)图象的开口向上 (B)图象与y轴的交点坐标为(-1,2) (C)当1x时,y随x的增大而减小 (D)图象的顶点坐标是(-1,2) 7. 已知二次函数22y=x+bx-的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是(※). (A)(1,0) (B)(2,0) (C)(-2,0) (D)(-1,0)
8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则
第5题 第 8题 ∠B的度数是(※). (A)70 (B)65° (C)60° (D)55°
9.如图,一个正六边形转盘被分成6个全等的正三角形,随机转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是(※).
(A)12 (B)13 (C)14 (D)16
10. 如图,点A是反比例函数2yx(x>0)的图象上任意一点,ABx∥轴交反比例函数3yx的图象于点B,以AB为边作 ABCD ,其中C、D在x轴上,则S ABCD为(※).
(A)2 (B)3 (C)4 (D)5 二、填空题(共6题,每题3分,共18分.)
11. 方程2(5)5x的解为 ※ . 12. 抛物线2610yxx的对称轴为 ※ . 13. 点(12)P,关于原点的对称点的坐标为 ※ . 14. 受益于国家支持新能源汽车发展,番禺区某汽车零部件生产企业的利润逐年提高,据统计2015年利润为2亿元,2017年利润为2.88亿元.则该企业近2年利润的年平均增长率 为 ※ . 15. 一个书法兴趣小组有2名女生,3名男生,现要从这5名学生中选出2人代表小组参加比赛,则一男一女当选的概率是 ※ . 16. 对于实数p,q,我们用符号min,pq表示p,q两数中较小的数,如min1,21,min2,33;若22min(1),1xx,则x .
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)
17.(本小题满分9分) (1)解方程:2+20xx; (2)用配方法解方程:2630xx.
第10题 A D C B y x O
2yx 3
yx
第9题 第20题 yDBA(4,2)
xO
18. (本小题满分9分) 如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4. (1) 求∠BAC的大小; (2) 求图中阴影部分的面积.
19.(本小题满分10分) 如图,直线26yx与反比例函数(0)kyxx的图象交于点(42)A,,与x轴交于点B. (1)求k的值及点B的坐标; (2)过点B作BDx轴交反比例函数的图象于点D, 求点D的坐标和ABD△的面积;
(3)观察图象,写出不等式26kxx的解集.
20.(本小题满分10分) 如图,在正方形网格中,ABC△的三个顶点都在格点上,点ABC、、的坐标分别为(24),、(20),、(41),,试解答下列问题:
(1)画出ABC△关于原点O对称的111ABC△; (2)平移ABC△,使点A移到点2(02)A,,画出平移后的
222ABC△并写出点2B、2C的坐标;
(3)在ABC△、111ABC△、222ABC△中,222ABC△与哪 个图形成中心对称?试写出其对称中心的坐标.
21.(本小题满分12分) 甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字-1,-2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y). (1)用树状图或列表法列举点M所有可能的坐标; (2)求点M(x,y)在函数y=-x+1的图象上的概率.
第19题 ABCDO第18题 22.(本小题满分12分) “国庆”期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数关系: 426060yxx(30),x是整数,影院每天运营成本为1600元,设影院每天的利润为w(元)(利润=票房收入运
营成本). (1)试求w与x之间的函数关系式; (2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?
23.(本小题满分12分) 关于x的方程22(21)230xkxkk有两个不相等的实数根. (1)求实数k的取值范围; (2)设方程的两个实数根分别为1x 2,x,是否存在实数k,使得12||||3xx?若存在,试求出k的值;若不存在,说明理由.
24.(本小题满分14分) 如图,AB是⊙O的直径,AC是上半圆的弦,过点C 作⊙O的切线DE交AB的延长线于点E,且ADDE 于D,与⊙O交于点F. (1)判断AC是否是∠DAE的平分线?并说明理由; (2)连接OF与AC交于点G,当AG:GC=k时, 求切线CE的长.
25.(本小题满分14分) 已知抛物线2+1(23)2ymxmxm()的图象与x轴有两个公共点. (1)求m的取值范围,写出当m取其范围内最大整数时抛物 线的解析式; (2)将(1)中所求得的抛物线记为1C, ①求1C的顶点P的坐标; ②若当1xn时,y的取值范围是22yn,求n的值;
(3)将1C平移得到抛物线2C,使2C的顶点Q落在以原点为圆心半径为5的圆上,求点P与Q两点间的距离最大时2C的解析式,怎样平移1C可以得到所求抛物线?
第24题 21
G
OEFDCBA
xy123
–1–2
12O–1–2
第25题 2007学年第一学期九年级数学科期末测试题 参考答案及评分说明 一、选择题(本大题共10小题,每小题3分,满分30分) 题号 1 2 3 4 5 6 7 8 9 10 分数 答案 C D A A B C或者D C B B D
二、填空题(共6题,每题2分,共12分) 11. 1255,55xx;12. 直线3x;13.12(,-);14. 20%; 15.35; 16.2 或者1 .
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)
【评卷说明】1.在评卷过程中做到“三统一”:评卷标准统一,给分有理、扣分有据,始
终如一;掌握标准统一,宽严适度,确保评分的客观性、公正性、准确性. 2.如果考生的解法与下面提供的参考解答不同,凡正确的,一律记满分;若某一步出现错误,则可参照该题的评分意见进行评分. 3. 评卷时不要因解答中出现错误而中断对该题的评阅,当解答中某一步出现错误,影响了后继部分,但该步后的解答未改变这一道题的内容和难度,在未发生新的错误前,可视影响的程度决定后面部分的记分,这时原则上不应超过后面部分应给分数之半;如有严重概念性错误,就不记分,在一道题解答过程中,对发生第二次错误起的部分,不记分. 17.(本小题满分9分) (1)解方程:2+20xx; (2)用配方法解方程:2630xx.
解:(1)因式分解得:(+2)0xx, …………………………(2分) 于是得:0x ,+20x , …………………………(3分) 120,2xx …………………………(5分)
(2移项得:263xx, …………………………(6分) 配方得:2(3)6x …………………………(7分) 由此得:36x , 于是得:1236,36xx . …………………………(9分)