人教版九年级下《反比例函数》单元测试题含答案和解析
人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案满分120分一、单选题1. ( 3分) 如图,正比例函数y1=k1x和反比例函数y2=k2的图象交于A(﹣1,2)、B(1,﹣2)两点,x若y1<y2,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】由图象可得,﹣1<x<0或x>1时y1<y2.故D符合题意.【分析】因为y1<y2,所以正比例函数的图象低于反比例函数的图象,而两图像交于A(﹣1,2)、B (1,﹣2)两点,两交点和原点将图形分成四部分,则x的取值范围是﹣1<x<0或x>1。
的图像上,则k的值是()2. ( 3分) 若点A(-1,6)在反比例函数y=kxA.-6B.-3C.3D.6【答案】A【考点】反比例函数图象上点的坐标特征的图象上【解析】【解答】因为A(-1,6)在反比例函数y=kx所以6= k1解得:k=-6.故答案为:A.的图象上,则点的坐标一定满足解析式,代入就得到k的值.【分析】点A(-1,6)在反比例函数y=kx3. ( 3分) 下列函数的图象,一定经过原点的是()A.y=2B.y=5x2﹣3xC.y=x2﹣1D.y=﹣3x+7x【答案】B【考点】反比例函数的图象,二次函数图象与系数的关系,一次函数图象、性质与系数的关系【解析】【解答】A、x≠0,所以不经过原点,故错误;B、若x=0,则y=5×0﹣3×0=0.所以经过原点.故正确;C、若x=0,则y=﹣1.所以不经过原点.故错误;D、若x=0,则y=7.所以不经过原点.故错误.故答案为:B.【分析】反比例函数中由于自变量的取值范围是不能为零的故图像不可能经过坐标原点;二次函数的图像与y轴的交点取决于常数项C,只有C等于零的时候,图像才会经过坐标原点;一次函数的图像与y轴的交点取决于常数b,只有b=0的时候直线才经过坐标原点。
初中数学(人教版)九年级下册单元检测卷及答案—反比例函数

初中数学(人教版)九年级下册单元检测卷及答案—反比例函数一、选择题(每小题3分,共30分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( ) A .y =1x B .y =-1x C .y =2x D .y =-2x2.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )3.在反比例函数y =k -3x 图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >3 B .k >0 C .k <3 D .k <04.点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .±35.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k≠0)的图象大致是( )6.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.如图,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >28.已知反比例函数y =kx (k <0)图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( )A .正数B .负数C .非负数D .不能确定9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( ) A .2 B .4 C .6 D .8第6题图) ,第7题图) ,第9题图),第10题图)10.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A .(54,0)B .(74,0)C .(94,0)D .(114,0)点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题(每小题3分,共24分)11.写出一个图象在第二、四象限的反比例函数解析式:____.12.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A (2,y 1),B (5,y 2),则y 1与y 2的大小关系为____.13.双曲线y=kx和一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=____.14.若点A(m,2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是____.15.直线y=ax(a>0)与双曲线y=3x交于A(x1,y1),B(x2,y2)两点.则4x1y2-3x2y1=____.16.点A在函数y=6x(x>0)的图象上,如果AH⊥x轴于点H,且AH∶OH=1∶2,那么点A的坐标为____.17.在平面直角坐标系xOy中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=kx的图象的一个交点为A(a,2),则k的值等于____.18.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=k1x和y=k2x的一支上,分别过点A,C作x轴的垂线,垂足分别为M和N,则有以下的结论:①AMCN=|k1||k2|;②阴影部分面积是12(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是____.(把所有正确的结论的序号都填上)三、解答题(共66分)19.(6分)已知y=y1+y2,其中y1与3x成反比例,y2与-x2成正比例,且当x=1时,y=5;当x=-1时,y=-2.求当x=3时,y的值.20.(8分)已知点P(2,2)在反比例函数y=kx(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.21.(10分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y万元.预计x年后结清余款,y与x之间的函数关系如图,试根据图象所提供的信息回答下列问题:(1)确定y与x之间的函数表达式,并说明超超家交了多少万元首付款;(2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元?(3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?22.(10分)如图是反比例函数y=kx的图象,当-4≤x≤-1时,-4≤y≤-1.(1)求该反比例函数的表达式;(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.23.(10分)如图是函数y=3x与函数y=6x在第一象限内的图象,点P是y=6x的图象上一动点,PA⊥x轴于点A,交y=3x的图象于点C,PB⊥y轴于点B,交y=3x的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.24.(10分)如图,已知反比例函数y=k1x的图象与一次函数y=k2x+b的图象交于A,B两点,A点横坐标为1,B(-12,-2).(1)求反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使△AOP为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(12分)如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(k>0,x>0)的图象上,点P(m,n)是函数y=kx(k>0,x>0)的图象上任一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求点B的坐标和k的值;(2)当S=92时,求点P的坐标;(3)写出S关于m的函数表达式.参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.A 7.D 8.D 9.D10.C点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题11.y =-1x (答案不唯一) 12.y 1<y 2 13.-2 14.x≤-2或x >015.-3 16.(23,3) 17.2 18.①④ 三、解答题19.解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =443. 20.解:(1)-43;(2)43<y <4.21.解:(1)12×5=60(万元),100-60=40(万元),∴y =60x,超超家交了40万元的首付款.(2)把x =10代入y =60x得y =6,∴每年应向银行交付6万元.(3)∵y≤2,∴60x ≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款.22.解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx得k =4,∴该反比例函数的表达式为y =4x .(2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N 的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN≥4 2.23.(1)证明:∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m ),∵点D 在函数y =3x上,BP ∥x轴,∴设点D 坐标为(3m ,m ),由题意,得BD =3m ,BP =6m =2BD ,∴D 是BP 的中点.(2)解:S 四边形OAPB =6m ·m =6,设C 坐标为(x ,3x ),D 点坐标为(3y ,y ),S △OBD =12·y ·3y =32,S△OAC=12·x·3x =32,S 四边形OCPD =S 四边形PBOA -S △OBD -S △OAC =6-32-32=3. 24.解:(1)反比例函数为y =1x ,一次函数为y =2x -1.(2)存在,点P 的坐标是(1,0)或(2,0).25.解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S 正方形OABC =x B ·y B =9.∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9.(2)①∵P (m ,n )在y =9x上,当P 点位于B 点下方时,如图(1),∴S 矩形OEPF =mn =9,S 矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32).②当P 点位于B 点上方时,如图(2),同理可求得P 2(32,6).(3)①如图(1),当m≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m,∴S =S 矩形OEP 1F -S 矩形OAGF=9-3n =9-27m .②如图(2),当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m.。
人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(含答案解析)(1)

一、选择题1.已知反比例函数13y x =-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭ B .y 随x 的增大而增大 C .图象在第二、四象限内D .若1x >,则103y -<< 2.关于反比例函数3y x =,下列说法错误的是( ) A .图象关于原点对称B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab = 3.如图,已知双曲线()0k y x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .44.如图,已知在平面直角坐标系中,Rt ABC 的顶点()0,3A ,()3,0B ,90ABC ∠=︒,函数()40y x x=>的图象经过点C ,则AC 的长为( )A .32B .5C .26D 265.在同一直角坐标系中,反比例函数y =ab x与一次函数y =ax+b 的图象可能是( )A .B .C .D .6.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x 图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定 7.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .12 8.反比例函数k y x =经过点(2,1),则下列说法错误..的是( ) A .2k = B .函数图象分布在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小 9.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( ) A .213y y y << B .312y y y << C .123y y y <<D .321y y y << 10.如图,点A 是反比例函数2(0)y x x =>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCD S 为( )A .2.5B .3.5C .4D .511.已知1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y << 12.如图,正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上与双曲线18y x=恰好交于BC 的中点E ,若2OB OA =,则ABO S △的值为( )A .6B .8C .12D .16第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案二、填空题13.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y =4x(x >0)的图象上,则y 1+y 2+…+y 100的值为_____.14.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x 的图象经过A 、B 两点,则菱形ABCD 的面积是_____;15.如图,A 、B 两点在双曲线()30y x x=>,分别经过A 、B 两点向坐标轴作垂线段,已知1S =阴影,则12S S +=______.16.如图,已知双曲线()0k y x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.17.已知点(,7)M a 在反比例函数21y x =的图象上,则a=______. 18.如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数(0)k y k x==的图象过点C ,则该反比例函数的解析式为_________.19.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数k y x=(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.20.如图,点A 是反比例函数y =k x(k >0,x >0)图象上一点,B 、C 在x 轴上,且AC ⊥BC ,D 为AB 的中点,DC 的延长线交y 轴于E ,连接BE ,若△BCE 的面积为8,则k 的值为_____.三、解答题21.如图,一次函数()0y ax b a =+≠的图象与反比例函数()0k y k x=≠的图象相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,5tan 3DCO ∠=,过点A 作AE x ⊥轴于点E ,若点C 是OE 的中点,且点A 的横坐标为-6.(1)求该反比例函数和一次函数的解析式;(2)连接ED ,求ADE 的面积.22.已知反比例函数k y x=的图象与正比例函数2y x =的图象交于点()2,m ,求这个反比例函数的表达式,并在同一平面直角坐标系内,画出这两个函数的图象. 23.为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I (A )是电阻R (Ω)的反比例函数,其图象如图所示.(电压=电流×电阻)(1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为212I ≤≤,则求电路中能使小灯泡发光的电阻R 的取值范围.24.如图所示,一次函数y kx b =+的图象与反比例函数m y x=的图象交于A(-2,1),B(1,n)两点.(1)求反比例函数和一次函数的表达式;(2)求ABO ∆的面积; (3)根据图像直接写出当一次函数的值大于反比例函数的值时x 的取值范围.25.如图,A B 、两点的坐标分别为()()2,0,0,3-,将线段AB 绕点B 逆时针旋转90°得到线段BC ,过点C 作CD OB ⊥,垂足为D ,反比例函数k y x =的图象经过点C .(1)直接写出点C 的坐标,并求反比例函数的解析式;(2)点P 在反比例函数k y x=的图象上,当PCD 的面积为3时,求点P 的坐标. 26.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式;(2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k ,可以判断出A 的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大可判断出B 、C 、D 的正误.【详解】A 选项:将1x =-代入得13y =故过11,3⎛⎫-- ⎪⎝⎭,故A 正确;B 选项:103k =-<,故在每个象限内y 随x 的增大而增大,故B 错误; C 选项:103k =-<,故图象过二、四象限,故C 正确; D 选项:若1x >,则103y -<<,故D 正确. 故选:B .【点睛】 此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y =k x(k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大. 2.B解析:B【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵反比例函数3y x=, ∴该函数图象关于原点轴对称,故选项A 正确;在每个象限内,y 随x 的增大而减小,故选项B 错误;该函数图象为别位于第一、三象限,故选项C 正确;若点M (a ,b )在其图象上,则ab=3,故选项D 正确;故选:B .【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答. 3.A解析:A【分析】通过设F的坐标,得到点B 的坐标,再利用四边形面积OFBE 等于矩形面积OABC 减去三角形COE 和△AOF 的面积作等量,解得k 值即可.【详解】解:设点F 的坐标(m ,k m ), ∵点F 是AB 的中点,∴点B 的坐标(m ,2k m), 则 S 四边形OEBF =S 矩形OABC -S △COE -S △AOF ,∴2=m 21122k k k m --(k>0) ∴2=2k-k ,∴k=2,故选:A .【点睛】 本题考查反比例函数的k 的几何意义以及反比例函数上的点的坐标特点、矩形的性质,难点是根据一点的坐标表示其他点的坐标.4.B解析:B【分析】如图(见解析),先根据点A 、B 的坐标可得3,45OA OB OBA ==∠=︒,从而可得45CBD ∠=︒,再根据等腰直角三角形的判定与性质可得BD CD =,设BD CD a ==,从而可得点C 的坐标为(3,)C a a +,然后利用反比例函数的解析式可求出a 的值,最后利用两点之间的距离公式即可得.【详解】如图,过点C 作CD x ⊥轴于点D ,()()0,3,3,0A B , 3OA OB ∴==,Rt AOB ∴是等腰直角三角形,45OBA ∠=︒,90ABC ∠=︒,18045CBD OBA ABC ∠=︒-∠-∠=∴︒,Rt BCD ∴是等腰直角三角形,BD CD ∴=,设BD CD a ==,则3OD OB BD a =+=+,(3,)C a a ∴+,将(3,)C a a +代入()40y x x =>得:43a a=+, 解得1a =或40a =-<(不符题意,舍去), (4,1)C ∴,由两点之间的距离公式得:22(40)(13)25AC =-+-=,故选:B .【点睛】本题考查了反比例函数的几何应用、等腰直角三角形的判定与性质、两点之间的距离公式等知识点,熟练掌握等腰直角三角形的判定与性质是解题关键.5.D解析:D【分析】先根据一次函数图象经过的象限得出a 、b 的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a <0,b >0,∴ab <0,∴反比例函数的图象经过二、四象限,故A 选项错误,∵一次函数图象应该过第一、三、四象限,∴a >0,b <0,∴ab <0,∴反比例函数的图象经过二、四象限,故B 选项错误;∵一次函数图象应该过第一、二、三象限,∴a >0,b >0,∴ab >0,∴反比例函数的图象经过一、三象限,故C 选项错误;∵一次函数图象经过第二、三、四象限,∴a <0,b <0,∴ab >0,∴反比例函数的图象经经过一、三象限,故D 选项正确;故选:D .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.C解析:C【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小.【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x =-的图象上的点, ∴y 1=12x -,y 2=22x -,y 3=32x -, 而x 1<0<x 2<x 3,∴y 1>y 3>y 2.故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.B解析:B【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =, ∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.8.C解析:C【分析】将点(2,1)代入k y x=中求出k 值,再根据反比例函数的性质对四个选项逐一分析即可. 【详解】 将点(2,1)代入k y x=中,解得:k=2, A .k=2,此说法正确,不符合题意; B .k=2﹥0,反比例函数图象分布在第一、三象限,此书说法正确,不符合题意; C .k=2﹥0且x ﹥0,函数图象位于第一象限,且y 随x 的增大而减小,此说法错误,符合题意;D .k=2﹥0且x ﹥0,函数图象位于第一象限,且y 随x 的增大而减小,此说法正确,不符合题意;故选:C .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质,理解函数图象上的点与解析式的关系是解答的关键.9.B解析:B【分析】 先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】 解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x >30y ,210y y >>,∴312y y y <<,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数k y x =图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大. 10.D解析:D【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】 解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a ∴ABCD S =BH·CD=5故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.11.C解析:C【分析】分别计算自变量为13-,12-和1时的函数值,然后比较函数值的大小即可. 【详解】1(3A -,1)y 、1(2B -,2)y 、3(1,)C y 是一次函数3y x b =-+的图象上三点,11y b ∴=+,232y b =+,33y b =-+. 3312b b b -+<+<+, 312y y y ∴<<.故选:C .【点睛】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了一次函数的性质.12.C解析:C【分析】过点B 作x 轴的平行线,过点A ,C 分别作y 轴的平行线,两线相交于M ,N ,证明△ABM ≌△BCN ,可得BN=AM=2a ,CN=BM=a ,所以点C 坐标为(2a ,a ),BC 的中点E 的坐标为(a ,1.5a ),把点E 代入双曲线18y x=可得a 的值,进而得出S △ABO 的值. 【详解】如图,过点B 作x 轴的平行线,过点A ,C 分别作y 轴的平行线,两线相交于M ,N ,∵四边形ABCD 为正方形,∴∠ABC=90°,AB=BC ,∴∠ABM=90°-∠CBN=∠BCN ,∵∠M=∠N=90°,∴△ABM ≌△BCN (AAS ),∵OB=2OA ,∴设OA=a ,OB=2a ,则BN=AM=2a ,CN=BM=a ,∴点C 坐标为(2a ,a ),∵E 为BC 的中点,B (0,2a ),∴E (a ,1.5a ),把点E 代入双曲线18y x =得1.5a 2=18,a 2=12, ∴S △ABO =12a•2a=12,故选:C.【点睛】此题考查反比例函数k的几何意义,三角形全等的判定和性质,解题的关键是构造全等三角形表示出点E的坐标.二、填空题13.20【分析】根据点C1的坐标确定y1可求反比例函数关系式由点C1是等腰直角三角形的斜边中点可以得到OA1的长然后再设未知数表示点C2的坐标确定y2代入反比例函数的关系式建立方程解出未知数表示点C3的解析:20【分析】根据点C1的坐标,确定y1,可求反比例函数关系式,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,……然后再求和.【详解】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…则∠OD1C1=∠OD2C2=∠OD3C3=90°,∵三角形OA1B1是等腰直角三角形,∴∠A1OB1=45°,∴∠OC1D1=45°,∴OD1=C1D1,其斜边的中点C1在反比例函数y=4x,∴C(2,2),即y1=2,∴OD1=D1A1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=4x得:a(4+a)=4,解得:a=﹣2,即:y2=﹣2,同理:y3=,y4=﹣,……y100=∴y1+y2+…+y100=﹣﹣20,故答案为:20.【点睛】本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.14.【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y=的图象解析:42【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3的图象经过A、B两点,A、B两点的横坐标分别为1和3,x∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB22=2,22∵四边形ABCD是菱形,∴BC=AB=2∴菱形ABCD的面积=BC×AH=2故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.15.4【分析】根据反比例函数系数k 的几何意义求出S1+S 阴影和S2+S 阴影求出答案【详解】解:∵AB 两点在双曲线上∴S1+S 阴影=3S2+S 阴影=3∴S1+S2=6-2=4故答案为:4【点睛】本题考查的解析:4【分析】根据反比例函数系数k 的几何意义,求出S 1+S 阴影和S 2+S 阴影,求出答案.【详解】解:∵A 、B 两点在双曲线3y x=上, ∴S 1+S 阴影=3,S 2+S 阴影=3,∴S 1+S 2=6-2=4,故答案为:4.【点睛】本题考查的是反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|. 16.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.17.3【分析】把点代入反比例函数解析式求解即可【详解】解:∵点在反比例函数的图象上∴解得故答案为:3【点睛】本题考查反比例函数上点的坐标特征掌握反比例函数上点的坐标特征是解题的关键解析:3【分析】把点(,7)M a 代入反比例函数解析式,求解即可.【详解】解:∵点(,7)M a 在反比例函数21y x =的图象上, ∴217a=,解得3a =, 故答案为:3.【点睛】 本题考查反比例函数上点的坐标特征,掌握反比例函数上点的坐标特征是解题的关键. 18.【分析】过点C 作轴于点E 由AAS 可证进而得可求点C 坐标即可求解【详解】解:如图过点C 作轴于E ∵四边形是正方形∴∴∵∴∴又∵∴∴∴∴点∵反比例函数的图象过点C ∴∴反比例函数的解析式为故答案为:【点睛】 解析:12y x =【分析】过点C 作CE y ⊥轴于点E ,由“AAS”可证ABO BCE ≌,进而得6CE OB ==,8BE AO ==,可求点C 坐标,即可求解.【详解】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,∴10,90AB BC ABC ==∠=︒,∴22100646OB AB AO =-=-=,∵90ABC AOB ∠=∠=︒,∴90,90ABO CBE ABO BAO ∠+∠=︒∠+∠=︒,∴BAO CBE ∠=∠,又∵90AOB BEC ∠=∠=︒,∴()ABO BCE AAS ≌,∴6,8CE OB BE AO ====,∴2OE =,∴点()6,2C ,∵反比例函数(0)k y k x =≠的图象过点C , ∴6212k =⨯=, ∴反比例函数的解析式为12y x =, 故答案为:12y x=. 【点睛】本题主要是考查正方形的性质及反比例函数,关键是通过正方形的性质构造三角形全等,进而得到点C 的坐标,然后根据求解反比例函数解析式的知识进行求解即可. 19.【分析】过作轴于交于设根据直角三角形斜边中线是斜边一半得:设则因为都在反比例函数的图象上列方程可得结论【详解】如图过作轴于交于∵轴∴∵是等腰直角三角形∴设则设则∵在反比例函数的图象上∴解得∵∴∴∴∵ 解析:163【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上, ∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =, ∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅= 163= 故答案为:163. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.20.16【分析】设A (nm )B (t0)即可得到C 点坐标为(n0)D 点坐标为()利用待定系数法求出CD 的解析式可得E 点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm解析:16【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mn t n --),然后利用三角形的面积公式可得到mn=16,即得到k 的值.【详解】解:设A (n ,m ),B (t ,0),∵AC ⊥BC ,D 为AB 的中点,∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m ), 设直线CD 的解析式为y=ax+b ,把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t m a b ++=, 解得a=m t n-,b=mn t n --, ∴直线CD 的解析式为y=m mn x t n t n ---, ∴E 点坐标为(0,mn t n --), 由S △BCE =12•OE•BC=8, 可得,1()82mn t n t n-=-, ∴mn=16,∴k=mn=16;故答案为:16.【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键.三、解答题21.(1)553y x =--;30y x =-;(2)ADE 的面积为15. 【分析】(1)根据题意求得OE =6,OC =3,Rt △COD 中,5tan 3DCO ∠=,OD =5,即可得到A (﹣6,5),D (0,﹣5,C (﹣3,0),运用待定系数法即可求得反比例函数与一次函数的解析式;(2)利用三角形面积公式即可求得. 【详解】解:(1)由题意知:6OE =,3OC =,在Rt COD 中,5tan 3OD DCO CO ∠==, 5OD ∴=,()0,5D ∴-,()3,0C -,代入y=ax+b ,530b a b =-⎧∴⎨-+=⎩,解得535a b ⎧=-⎪⎨⎪=-⎩, ∴一次函数的解析式为553y x =--,当6x =-时,()56553y =-⨯--=, ()6,5A ∴-,()6530k ∴=-⨯=-∴反比例函数解析式为30y x=-; (2)由题意知:3EC =,5AE =,5OD =ADE ACE DCE S S S ∴=+△△△1122EC AE EC OD =⋅+⋅ 11353522=⨯⨯+⨯⨯ =15.ADE ∴的面积为15【点睛】本题主要考查了反比例函数与一次函数的交点问题以及解直角三角形的应用,解决问题的关键是掌握待定系数法求函数解析式的方法.22.8y x=,见解析 【分析】 把()2,m 代入2y x =求出m 的值,利用待定系数法即可求解.【详解】 解:由题意,反比例函数k y x =的图象与正比例函数2y x =的图象交于点()2,m , 则()2,m 在2y x =上,∴224m =⨯=,又∵()2,m 在k y x =上, ∴28k m ==,∴反比例函数的表达式:8y x=, 函数图象如图:.【点睛】本题考查反比例函数与一次函数的交点,掌握待定系数法求解析式是解题的关键. 23.(1)蓄电池的电压是36V ;(2)电阻R 的取值范围是318R ≤≤.【分析】(1)根据“电压=电流×电阻”即可求解;(2)先利用待定系数法即可求出这个反比例函数的解析式,再将212I ≤≤代入即可确定电阻的取值范围.【详解】(1)蓄电池的电压是4×9=36,∴蓄电池的电压是36V ;(2)电流I 是电阻R 的反比例函数,设k I R =, ∵图象经过(9,4),∴9436k =⨯=, ∴36I R=, 当I=2时,18R =,当I=12时,3R =,∵I 随R 的增大而减小,∴电阻R 的取值范围是:318R ≤≤.【点睛】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.24.(1)反比例函数的解析式是y=-2x,一次函数的解析式是y=-x-1;(2)1.5;(3)x<-2或0<x<1.【分析】(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y=kx+b即可求出函数的解析式;(2)求出C的坐标,求出△AOC和△BOC的面积,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.【详解】(1)∵把A(-2,1)代入y=mx得:m=-2,∴反比例函数的解析式是y=-2x∵B(1,n)代入反比例函数y=-2x得:n=-2,∴B的坐标是(1,-2),把A、B的坐标代入一次函数y=kx+b得:122k bk b-+⎧⎨-+⎩==,解得:k=-1,b=-1,∴一次函数的解析式是y=-x-1;(2)∵把y=0代入一次函数的解析式y=-x-1得:0=-x-1,x=-1∴C(-1,0),△AOB的面积S=S AOC+S△BOC=12×|-1|×1+12×|-1|×|-2|=1.5;(3)从图象可知:当一次函数的值大于反比例函数的值时x的取值范围x<-2或0<x<1.【点睛】本题是反比例函数与一次函数的综合题,考查了用待定系数法求一次函数的解析式,根据函数图像判断不等式解集等知识点的综合运用,以及学生的计算能力和观察图形的能力,运用了数形结合思想.25.(1)(3,1);3y x=;(2)(1,3)或(3,1)--. 【分析】 (1)由A B ,两点的坐标得出OAOB ,的长度,由题意得出D AOB B C ∆≅∆,进而得出BD CD ,的长度,从而得出OD 的长度,即可得出C 点的坐标;进而求出反比例函数的解析式;(2)分点P 在第一象限、第三象限两种情况分类讨论即可.【详解】解:(1)∵A B ,两点的坐标分别为(2,0),(0,3)-,∴23OA OB ==,,∵线段AB 绕点B 逆时针旋转90°得到线段BC ,CD OB ⊥,∴AB BC =,90ABO CBD CBD BCD ∠+∠=∠+∠=︒,∴ABO BCD ∠=∠,又∵==90AOB BDC ∠∠︒,∴D AOB B C ∆≅∆,∴32CD OB BD OA ====,,∴321OD OB BD =-=-=,∴C 点的坐标为(3,1),∵反比例函数k y x=的图象经过点(3,1)C , 1=3k ∴, 3k ∴=,∴反比例函数的解析式为3y x=; (2)∵3CD =,∴当PCD ∆的面积等于3时,以3CD =为底时,得出的高为2,∵(3,1)C ,∴P 点不会在C 点的右边;设点(,)P x y ,若点P 在第一象限,过点P 作PN CD ⊥,垂足为N , PCD ∴∆的面积为3,113(1)322CD PN y ∴⋅=⨯⨯-=, 解得3y =,将3y =代入3y x=,解得1x =,(1,3)P ∴,若点P 在第三象限,过点P 作PM CD ⊥,垂足为M , PCD 的面积为3, 113(1)322CD PM y ∴⋅=⨯⨯-=, 解得1y =-,将1y =-代入3y x=,解得3x =-, (3,1)P ∴--,综上所述,点P 的坐标是(1,3)或(3,1)--. 【点睛】本题主要考查的是反比例函数的图象与性质、待定系数法求关系式、旋转的性质、面积的存在性问题以及分类讨论思想的应用,解决本题的关键就是熟知性质,对于不确定的情况要分类讨论.26.(1)28y x =-+;(2)当01x <<或3x >时,60kx b x+-<;(3)8 【分析】 (1)把A ,B 两点的坐标分别代入6y x=中,求得m ,n 的值,即可确定A ,B 两点的坐标,再利用待定系数法求得一次函数的解析式; (2)将不等式60kx b x+-<转化为6kx b x +<,找出图象中一次函数图象低于反比例函数图象部分对应的x 的取值范围;(3)设一次函数图象分别与x 轴和y 轴交于点D 、C ,C 、D 的坐标都可以求得,则S S S S AOB COD COA BOD =--,求解即可.【详解】解:(1)分别把()(),6,3,A m B n 代入6(0)y x x=>得66,36m n ==, 解得1,2m n ==,所以A 点坐标为()1,6,B 点坐标为()3,2, 分别把()()1,6,3,2A B 代入y kx b =+得632k b k b +=⎧⎨+=⎩, 解得28k b =-⎧⎨=⎩, 所以一次函数解析式为28y x =-+; (2)60kx b x +-<,即 6kx b x +<,即要找一次函数图象低于反比例函数图象的部分对应的x 的取值范围,所以当01x <<或3x >时,60kx b x+-<; (3)一次函数图象分别与x 轴和y 轴交于点D 、C ,如图,当0x =时,288y x =-+=,则C 点坐标为()0,8,当0y =时,280x -+=,解得4x =,则D 点坐标为()4,0,所以S S S S AOB COD COA BOD =--111488142222=⨯⨯-⨯⨯-⨯⨯ 8=.【点睛】本题主要考查一次函数和反比例函数交点的问题,熟练掌握待定系数法求函数解析式、反比例函数图象上点的坐标特征、割补法求三角形的面积是解题的关键.。
最新人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(含答案解析)

一、选择题1.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数m y x =的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-82.已知反比例函数k y x =的图像过点(2,3)-,那么下列各点也在该函数图像上的是( ) A .(2,3) B .(2,3)-- C .(1,6) D .(6,1)-3.如图,正比例函数y = ax 的图象与反比例函数k y x =的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<k x的解集为( )A .x < - 2或x > 2B .x < - 2或0 < x < 2C .-2 < x < 0或0 < x < 2D .-2 < x < 0或 x > -2 4.已知0k >,函数y kx k =+和函数k y x=在同一坐标系内的图象大致是( ) A . B .C .D .5.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是( ) A .-1或1B .小于12的任意实数C .-1D .不能确定6.已知(5,-1)是双曲线(0)k y k x =≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2- 7.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =k x 的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求 8.同一坐标系中,函数()1y k x +=与k y x=的图象正确的是( ) A . B .C .D .9.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abc y x=在平面直角坐标系中的图象可能是( ).A .B .C .D .10.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .811.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形, 45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .4812.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)- B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题13.双曲线y =k x经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<). 14.如图,点 A 的坐标是(﹣2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A′B′C′.若反比例函数 y =k x的图象恰好经过 A′B 的中点 D ,则k _________.15.如图,在平面直角坐标系中,点(6,0)A 、(3,4)B ,点C 是OB 上一点,D 为AC 的中点,若反比例函数(0)k y x x=>过C 、D 两点,则k 的值为______.16.如果反比例函数2k y x -=的图像在第二、四象限内,那么k 的取值范围是______. 17.如图,反比例函数6y x =在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.18.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.19.如图,过x 轴正半轴上任意一点P 作x 轴的垂线,分别与反比例函数24y x =和12y x =的图象交于点A 和点B .若点C 是y 轴上任意一点,则ABC 的面积为______________.20.如图,反比例函数( 0)k y x x=>经过,A B 两点,过点A 作 AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.三、解答题21.如图,已知A 为反比例函数(0)k y x x=<的图像上一点,过点A 作AB y ⊥轴,垂足为B .若OAB 的面积为2,求k 的值.22.如图,直线AC 与函数()0k y x x=<的图象相交于点()1,6A -,与x 轴交于点C ,且45ACO ∠=︒,点D 是线段AC 上一点.(1)求k 的值;(2)若DOC △与OAC 的面积比为2∶3,求点D 的坐标;(3)将OD 绕点O 逆时针旋转90°得到OD ',点D 恰好落在函数()0k y x x=<的图象上,求点D 的坐标.23.如图,一次函数1522y x =-+的图象与反比例函数()0k y k x=>的图象交于,A B 两点,过点A 作x 轴的垂线,垂足为M ,AOM ∆面积为1.(1)求反比例函数的解析式.(2)求出A 、B 两点坐标,并直接写出不等式1522k x x <-+的解集. (3)在x 轴上找一点P ,并求出PA PB -取最大值时点P 的坐标. 24.如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于A (1,a ),B (﹣3,c ),直线y =kx +b 交x 轴、y 轴于C 、D .(1)求m a c+的值; (2)求证:AD =BC ; (3)直接写出不等式0m kx b x -->的解集. 25.如图,已知()()4,2,4A B n --、是一次函数y kx b =+的图象与反比例函数m y x =的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)连接,OA OB ,求AOB ∆的面积;(3)根据图象直接写出使不等式m kx b x+>成立的x 的取值范围______________________.26.如图,一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x >0)的图象上,顶点B 在函数y 2=2k x (x >0)的图象上,∠ABO=30°,求12k k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0),∴OA=1,∵AE=BE ,BN ∥y 轴,∴OA=ON=1,∴AN=2,B 的横坐标为1,把x=1代入3y x=,得y=3, ∴B (1,3),∴BN=3,∵四边形ABCD 为正方形,∴AD=AB ,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM ,在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ),∴DM=AN=2,AM=BN=3,∴134OM OA AM =+=+= ,∴D 42-(,), ∵点D 在反比例函数m y x=,的图象上, ∴428m =-⨯=- ,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键. 2.D解析:D【分析】 先根据反比例函数k y x =经过点(-2,3)求出k 的值,再对各选项进行逐一分析即可. 【详解】解:∵反比例函数k y x=经过点(-2,3), ∴k=-2×3=-6.A 、∵2×3=6≠-6,∴此点不在函数图象上,故本选项错误;B 、∵(-2)×(-3)=6≠-6,∴此点不在函数图象上,故本选项错误;C 、∵1×6=6≠-6,∴此点不在函数图象上,故本选项错误;D 、∵6×(-1)=-6,∴此点在函数图象上,故本选项正确.故选:D .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 3.B解析:B【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象即可得出结论.【详解】∵正比例函数y ax =的图象与反比例函数k y x =的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数k y x=的图象的下方, ∴2x <-或02x <<,故选:B .【点睛】 本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.4.D解析:D【解析】根据题意,在函数y=kx+k 和函数k y x =中,有k >0,则函数y=kx+k 过一二三象限. 且函数k y x=在一、三象限, 则D 选项中的函数图象符合题意;故选D .5.C解析:C【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-是反比例函数, ∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.6.B解析:B【详解】解:因为点(5,-1)是双曲线(0)k y k x =≠上的一点, 将(5,-1)代入(0)k y k x=≠得k=-5; 四个选项中只有B 不符合要求:k=5×1≠-5.故选B .【点睛】本题考查反比例函数图象上点的坐标特征.7.C解析:C【分析】根据OA 、OC 的长度,可得反比例函数的比例系数k=6,设正方形ADEF 的边长为x ,则OD DE=(1x)x=6⋅+⋅,解得x 即为正方形的边长.⋅,解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6设正方形ADEF的边长为x,则OD=OA+AD=1+x,DE=x,⋅+⋅,解得:x=2或-3(舍),则OD DE=(1x)x=6故选:C.【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k.8.D解析:D【分析】先根据四个选项的共同点确定k的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】k>,则一次函数图象应该交y轴于正半轴,解:A、反比例函数图象位于一、三象限,0故本选项错误;<,则一次函数图象应该交y轴于负半轴,故本B、反比例函数图象位于二、四象限,k0选项错误;<,则一次函数应该是个减函数,故本选项错C、反比例函数图象位于二、四象限,k0误;k>,则一次函数图象应该交y轴于正半轴,故本D、反比例函数图象位于一、三象限,0选项正确;故选:D.【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k的取值确定函数所在的象限.9.C解析:C【分析】由二次函数的图像性质分析a,b,c的符号,从而判断bc和abc的符号,然后结合反比例函数和一次函数图像性质进行判断即可.【详解】解:由题意可知,二次函数开口向上,∴a>0由二次函数对称轴在y轴右侧,∴b<0由二次函数与y轴交于原点上方,∴c>0∴bc<0,abc<0∴一次函数图像经过一、三、四象限,反比例函数图像经过二四象限故选:C.本题考查一次函数、二次函数、反比例函数的图像性质,掌握函数图像性质,利用数形结合思想解题是关键.10.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭ ∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x =上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】 本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.11.A解析:A【分析】过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,,设OA=5k ,通过解直角三角形得出AM=4k,OM=3k,m=12k 2,,再根据S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN 得到S 梯形AMNF =S △AOF =12,得出12(4k+2k)⋅3k=12,得到k 2的值,再求m 得值即可. 【详解】解:过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,设OA=5k , ∵45sin AOB ∠= ∴AM=4k,OM=3k,m=12k 2,∵四边形OACB 是平行四边形,F 为BC 的中点,∴FN=2k ,ON=6k ,∵S △AOM =S △OFN ,S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN ,∴S 梯形AMNF =S △AOF =12, ∴12(4k+2k)⋅3k=12, ∴k 2=43, ∴m=12k 2=16.故选A.【点睛】本题考查反比例函数的性质、平行四边形的性质、三角形的面积、梯形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.12.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键.二、填空题13.>【分析】先求出反比例函数解析式判断函数的增减性﹣2>﹣3即可判断mn的大小【详解】∵双曲线y=经过点A(a﹣2a)∴k=﹣2a2<0∴双曲线在二四象限在每个象限内y随x的增大而增大∵B(﹣2m)C解析:>.【分析】先求出反比例函数解析式,判断函数的增减性﹣2>﹣3,即可判断m ,n的大小..【详解】∵双曲线y=k经过点A(a,﹣2a),x∴k=﹣2a2<0,∴双曲线在二、四象限,在每个象限内,y随x的增大而增大,∵B(﹣2,m),C(﹣3,n),﹣2>﹣3,∴m>n,故答案为:>.【点睛】本题利用函数的性质比较大小,关键是求出函数解析式,掌握反比例函数的性质.14.15【分析】作A′H⊥y轴于H证明△AOB≌△BHA′(AAS)推出OA=BHOB =A′H求出点A′坐标再利用中点坐标公式求出点D坐标即可解决问题【详解】作A′H⊥y轴于H∵∠AOB=∠A′HB=∠解析:15【分析】作A′H⊥y轴于H.证明△AOB≌△BHA′(AAS),推出OA=BH,OB=A′H,求出点A′坐标,再利用中点坐标公式求出点D坐标即可解决问题.【详解】作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA =BH ,OB =A′H ,∵点A 的坐标是(−2,0),点B 的坐标是(0,6),∴OA =2,OB =6,∴BH =OA =2,A′H =OB =6,∴OH =4,∴A′(6,4),∵BD =A′D ,∴D (3,5),∵反比例函数y =k x 的图象经过点D , ∴k =15.故答案为:15.【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化−旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题. 15.【分析】首先求出直线OB 的解析式设点C 的坐标为D 点坐标为分别代入求出k 的值即可【详解】解:设直线OB 的解析式为∵∴解得:∴直线的解析式为设则即则经检验t=是原方程的解故答案为:【点睛】此题主要考查了 解析:163【分析】 首先求出直线OB 的解析式,设点C 的坐标为(6,8)C t t ,D 点坐标为6608,22t t D ++⎛⎫⎪⎝⎭,分别代入(0)k y x x=>,求出k 的值即可. 【详解】解:设直线OB 的解析式为y kx =,∵(3,4)B∴3=4k ,解得:43k = ∴直线OB 的解析式为43y x =设(6,8)C t t ,则6608,22t t D ++⎛⎫ ⎪⎝⎭即(33,4)t t +, 则86433k t t k t t ⎧=⎪⎪⎨⎪=⎪+⎩,16313k t ⎧=⎪⎪∴⎨⎪=⎪⎩. 经检验,t=13是原方程的解. 故答案为:163. 【点睛】此题主要考查了求反比例函数解析式,设出点C 的坐标,求出点D 的坐标是解答此题的关键. 16.k <2【分析】由反比例函数的图象位于第二四象限得出k-2<0即可得出结果【详解】解:∵反比例函数的图象位于第二四象限∴k-2<0∴k <2故答案为:k <2【点睛】本题考查了反比例函数的图象以及性质;熟解析:k <2.【分析】由反比例函数的图象位于第二、四象限,得出k-2<0,即可得出结果.【详解】解:∵反比例函数的图象位于第二、四象限,∴k-2<0,∴k <2,故答案为:k <2.【点睛】本题考查了反比例函数的图象以及性质;熟练掌握反比例函数的图象和性质,并能进行推理论证是解决问题的关键.17.8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO=S △ACO =S △OBD =3得出S 四边形AODB 的值是解题关键【详解】解:如图所示:过点A 作AE ⊥x 轴于点E 过点B 作BD ⊥x 轴于点D ∵反比解析:8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO =S △ACO =S △OBD =3,得出S 四边形AODB 的值是解题关键.【详解】解:如图所示:过点A作AE⊥x轴于点E,过点B作BD⊥x轴于点D,∵反比例函数6yx在第一象限的图象上有两点A,B,它们的横坐标分别是1,3,∴x=1时,y=6;x=3时,y=2,故S△AEO=S△OBD=S△ACO=3,S四边形AEDB=12×(2+6)×2=8,故△AOB的面积是:S四边形AEDB + S四边形AECO-S△ACO-S△OBD=8.故答案为:8.【点睛】此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB的面积是解题关键.18.y=【分析】设A坐标为(xy)根据四边形OABC为平行四边形利用平移性质确定出A的坐标利用待定系数法确定出解析式即可【详解】解:设A坐标为(xy)∵B(2﹣2)C(30)以OCCB为边作平行四边形O解析:y=2 x【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【详解】解:设A坐标为(x,y),∵B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,∴x+3=0+2,y+0=0﹣2,解得:x=﹣1,y=﹣2,即A(﹣1,﹣2),设过点A的反比例解析式为y=kx,把A(﹣1,﹣2)代入得:k=2,则过点A的反比例函数解析式为y=2x,故答案为:y=2x.【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.19.1【分析】设线段OP=x则可求出APBP再根据三角形的面积公式得出△ABC 的面积=AB×OP代入数值计算即可【详解】解:设线段OP=x则PB=AP=∵AB=AP-BP=-=∴S△ABC=AB×OP=解析:1【分析】设线段OP=x,则可求出AP、BP,再根据三角形的面积公式得出△ABC的面积=12AB×OP,代入数值计算即可.【详解】解:设线段OP=x,则PB=2x,AP=4x,∵AB=AP-BP=4x -2x=2x,∴S△ABC=12AB×OP=12×2x×x=1.故答案为:1.【点睛】此题考查反比例函数的k的几何意义,三角形的面积公式,解题的关键是表示出线段OP、BP、AP的长度,难度一般.20.【分析】过点A作AH⊥x轴于点H交BD于点F则四边形ACOH和四边形ACDF均为矩形根据S矩形BEOD=16可得k的值即可得到矩形ACOH和矩形ACDF的面积进而求出S△ACD【详解】解:过点A作A解析:6【分析】过点A作AH⊥x轴于点H,交BD于点F,则四边形ACOH和四边形ACDF均为矩形,根据S矩形BEOD=16,可得k的值,即可得到矩形ACOH和矩形ACDF的面积,进而求出S△ACD.【详解】解:过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形∵S 矩形BEOD =16,反比例函数()0k y x x=>经过点B ∴k=16 ∵反比例函数()0k y x x=>经过点A ∴S 矩形ACOH =16∵AC=2∴OC=16÷2=8 ∴CD=OC-OD=OC-BE=8-2=6∴S 矩形ACDF =2×6=12∴S △ACD =12S 矩形ACDF =12×12=6. 故答案为6.【点睛】 本题主要考查了反比例函数系数k 的几何意义和性质. 通过矩形的面积求出k 的值是解本题的关键.三、解答题21.-4【分析】利用反比例函数比例系数k 的几何意义得到12|k|=2,然后根据反比例函数的性质确定k 的值.【详解】解:∵AB ⊥y 轴,∴S △OAB=12|k|=2, 而k <0,∴k=-4.故答案为-4.【点睛】本题考查了反比例函数比例系数k 的几何意义:在反比例函数y=k x 图象中任取一点,过这一个点向x轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 12|k|,且保持不变. 22.(1)k=-6;(2)(1,4);(3)(3,2)或(2,3)【分析】(1)将点()1,6A -代入反比例函数解析式中即可求出k 的值;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,根据三角形的面积比可得23DM AN =,再根据点A 的坐标即可求出DM ,然后证出ACN 和DCM 都是等腰直角三角形,即可求出OM ,从而求出结论;(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G ,设点D 的纵坐标为a (a >0),即DM=a ,然后用a 表示出OM ,利用AAS 证出△G D O ≌△MOD ,即可用a 表示出点D 的坐标,将D 的坐标反比例函数解析式中即可求出a 的值,从而求出点D 的坐标.【详解】解:(1)将点()1,6A -代入k y x=中,得 61k =- 解得k=-6;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N∵DOC △与OAC 的面积比为2∶3∴122132OC DM OC AN = ∴23DM AN = ∵()1,6A -∴AN=6,ON=1∴DM=4∵45ACO ∠=︒ ∴ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=4∴OM=CN -CM -ON=1∴点D 的坐标为(1,4);(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G设点D 的纵坐标为a (a >0),即DM=a ∵ACN 和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=a∴OM=CN -CM -ON=5-a∴点D 的坐标为(5-a ,a )∵∠D GO=∠OMD=∠D OD=90°∴∠G D O +∠D OG=90°,∠MOD +∠D OG=90°,∴∠G D O=∠MOD由旋转的性质可得D O=OD∴△G D O ≌△MOD∴G D =OM=5-a ,OG=DM=a∴D 的坐标为(-a ,5-a )由(1)知,反比例函数解析式为()06y x x=-< 将D 的坐标代入,得 56a a-=-- 解得:122,3a a ==∴点D 的坐标为(3,2)或(2,3).【点睛】此题考查的是反比例函数与几何图形的综合大题,掌握利用待定系数法求反比例函数解析式、等腰直角三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解题关键. 23.(1)2y x =;(2)()1,2A ,14,2B ⎛⎫ ⎪⎝⎭,解集为14x <<或0x <;(3)()5,0 【分析】(1)根据反比例函数比例系数k 的几何意义得出12|k|=1,进而得到反比例函数的解析式; (2)解析式联立求得A 、B 的坐标,根据图象即可求得不等式1522k x x <-+的解集; (3)一次函数1522y x =-+与x 轴的交点即为P 点,此时|PA−PB|的值最大,最大值为AB 的长;根据一次函数图象上点的坐标特征即可求得点P 的坐标.【详解】(1)∵反比例函数()0k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1, ∴1|k |12=, ∵0k >, ∴2k =, 故反比例函数的解析式为:2y x=; (2)由15-222y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩, ∴()1,2A ,14,2B ⎛⎫ ⎪⎝⎭, ∴不等式1522k x x <-+的解集为14x <<或0x <; (3)一次函数1522y x =-+的图象与x 轴的交点即为P 点, 此时PA PB -的值最大,最大值为AB 的长.∵一次函数1522y x =-+, 令0y =,则15022x -+=,解得5x =, ∴P 点坐标为()5,0.【点睛】本题考查的是反比例函数图象与一次函数图象的交点问题,解题的关键是确定|PA−PB|的值最大时,点P 的位置,灵活运用数形结合思想是解题的关键.24.(1)32m a c =+;(2)见解析;(3)0m kx b x -->的解集为x >3或﹣1<x <0.【分析】(1)点A 、B 都在反比例函数y=m x 的图象上,则a=-3c=m ,故m a c +=33c c c --+=32; (2)求出D (0,-2c ),C (-2,0),则AD 2=1+9c 2;BC 2=1+9c 2,即可证明;(3)观察函数图象即可求解.【详解】 解:(1)∵点A 、B 都在反比例函数y =m x 的图象上, ∴a =﹣3c =m , ∴3332m c a c c c -==+-+; (2)将A (1,﹣3c )、B (﹣3,c ),分别代入y =kx +b 得33k b c k b c +=-⎧⎨-+=⎩,解得2k c b c =-⎧⎨=-⎩, ∴y =﹣cx ﹣2c ,令x =0,y =﹣2c ,令y =0,即y =﹣cx ﹣2c =0,解得x =﹣2,∴D (0,﹣2c ),C (﹣2,0),∴AD 2=1+9c 2;BC 2=1+9c 2,∴AD =BC ;(3)∵y =kx ﹣b =﹣cx +2c ,∴点(3,﹣c )、(﹣1,3c )为直线y =kx ﹣b =﹣cx +2c 与双曲线m y x =的交点, ∴0m kx b x -->的解集为x >3或﹣1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,使用一次函数,体现了方程思想,综合性较强.25.(1)一次函数的解析式是2y x =--;(2)6AOB S ∆=;(3)x 的取值范围是4x <-或02x <<.【分析】(1)把A 的坐标代入反比例函数解析式求得m 的值,从而求得反比例函数解析式,然后把B 的坐标代入n 的值,再利用待定系数法求得一次函数的解析式;(2)求得AB 与x 轴的交点,然后根据三角形的面积公式求解;(3)一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围.【详解】解:(1)把()4,2-代入m y x =得24m =-,则8m =-, 则反比例函数的解析式是8y x =-; 把(),4n -代入8y x=-得824n =-=-, 则B 的坐标是()2,4-,根据题意得:2442k b k b =-+⎧⎨-=+⎩,解得12k b =-⎧⎨=-⎩, 则一次函数的解析式是2y x =--;(2)设AB 与x 轴的交点是C ,则C 的坐标是()2,0-,则2OC =,11222,24422AOC BOC S S ∆∆=⨯⨯==⨯⨯=, 则6AOB S ∆=;(3)由函数图象可知x 的取值范围是4x <-或02x <<.【点睛】本题考待定系数法求函数的解析式以及函数与不等式的关系,理解求一次函数的值大于反比例函数的值的x 的取值范围就是一次函数的图象在反比例函数图象上方的自变量的取值范围是关键.26.13【分析】设AC=a ,则OA=2a ,3,根据直角三角形30°角的性质和勾股定理分别计算点A 和B 的坐标,写出A 和B 两点的坐标,代入解析式求出k 1和k 2的值,即可求12k k 的值. 【详解】设AB 与x 轴交点为点CRt △AOB 中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB ⊥OC ,∴∠ACO=90°,∴∠AOC=30°,设AC=a ,则OA=2a ,22OA AC -3, ∴3,a),∵A 在函数y 1=1k x(x >0)的图象上, ∴k 1332,Rt △BOC 中,3,∴22OB OC -,∴B 3a ,-3a ),∵B 在函数y 2=2k x(x >0)的图象上, ∴k 2332, ∴12k k 223a 33a -=-13, 故答案为:-13. 【点睛】本题考查了反比例函数图象上点的坐标特征.直角三角形30°的性质,熟练掌握直角三角形30°角所对的直角边是斜边的一半,正确写出A .B 两点的坐标是本题的关键.。
新人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(含答案解析)

一、选择题1.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数my x=的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-82.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和ky x=(k ≠0)的图象大致是( )A .B .C .D .3.如图,A 、B 是函数1y x=的图像上关于原点对称的任意两点,BC //x 轴,AC //y 轴,ABC 的面积记为S ,则( )A .1S =B .2S =C .24S <<D .4S =4.如图,过反比例函数()0ky x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .55.下列函数中,y 总随x 的增大而减小的是( ) A .4y x =- B .4y x =-C .4y x=D .4y x=-6.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<< 7.已知反比例函数aby x=,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根8.如图,在平面直角坐标系中,直线y x =-与双曲线ky x=交于A 、B 两点,P 是以点(2,2)C 为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .12-B .32-C .2-D .14-9.已知11(,)x y ,22(,)x y , 33(,)x y 是反比例函数2y x=-的图象上的三个点,且120x x <<,30x >,则123,,y y y 的大小关系是( )A .213y y y <<B .312y y y <<C .123y y y <<D .321y y y <<10.如图,菱形ABCD 的边AD y ⊥轴,垂足为点E ,顶点A 在第二象限,顶点B 在y轴的正半轴上,反比例函数ky x=(0k ≠,0x >)的图像同时经过顶点C 、D ,若点D 的横坐标为1,3BE DE =.则k 的值为( )A .52B .3C .154D .511.如图,在平面直角坐标系中,点A 是函数()0ky x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小12.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .8二、填空题13.某药品研究所开发一种抗新冠肺炎的新药,经大量动物实验,首次用于临床人体实验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间的函数关系如图所示,即2,(04)32,(4)x x y x x≤≤⎧⎪=⎨>⎪⎩,若血液中药物浓度不低于4微克/毫升的持续时间不低于7小时,则称药物治疗有效.请根据图中信息计算并判断:血液中药物浓度不低于4微克/毫升的持续时间为______个小时,这种抗菌新药________(“可以”或“不可以”)作为有效药物投入生产.14.如图,反比例函数6y x=在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.15.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABOS=,则k 的值为______.16.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.17.如图,点P,Q在反比例函数y=kx(k>0)的图像上,过点P作PA⊥x轴于点A,过点Q作QB⊥y轴于点B.若△POA与△QOB的面积之和为4,则k的值为_________.18.反比例函数2(0)my xx+=<的图象如图所示,则m的取值范围为__________.19.如图,四边形OABC和ADEF均为正方形,反比例函数8yx=的图象分别经过AB的中点M及DE的中点N,则正方形ADEF的边长为___20.如图,点A是反比例函数y=kx(k>0,x>0)图象上一点,B、C在x轴上,且AC⊥BC,D为AB的中点,DC的延长线交y轴于E,连接BE,若△BCE的面积为8,则k 的值为_____.三、解答题21.如图,反比例函数(0,0)ky k x x=≠<经过ABO 边AB 的中点D ,与边AO 交于点C ,且:1:2AC CO =,连接DO ,若AOD △的面积为78,则k 的值为_______.22.如图,已知一次函数y=x+b 的图像与反比例函数ky x=(x <0)的图像相交于点A (-1,2)和点B ,点P 在y 轴上.(1)求b 和k 的值;(2)当PA+PB 的值最小时,点P 的坐标为______; (3)当x+b <kx时,请直接写出x 的取值范围. 23.如图,Rt △ABO 的顶点A 是双曲线y =kx与直线y =﹣x +(k +1)在第四象限的交点,AB ⊥x 轴于点B ,且S △ABO =32.(1)求这两个函数的表达式;(2)求直线与双曲线的交点A和C的坐标及△AOC的面积.(3)写出反比例函数y=kx的值大于一次函数y=﹣x+(k+1)时的x的取值范围.24.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为(1,0),反比例函数y=kx(x>0)的图象经过BC的中点D,交AB于点E.已知AB=4,BC=5.求k的值25.如图,点A在双曲线23y=(x>0)上,点B在双曲线kyx=(x>0)上(点B在点A的右侧),且AB∥x轴,若四边形OABC是菱形,且∠AOC=60°.(1)求k的值;(2)求菱形OABC的面积.26.为了探索函数1(0)y x xx=+>的图象与性质,我们参照学习函数的过程与方法.列表:x14 13 121 234 5y174 10352252103174265x y 为纵坐标,描出相应的点,如图1所示:(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象; (2)已知点1122(,),(,)x y x y 在函数图象上,结合表格和函数图象,回答下列问题: 若1201x x <<≤,则1y 2y ; 若121x x <<,则1y 2y ;若121x x ⋅=,则1y 2y (填“>”,“=”,“<”).(3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米,设水池底面一边的长为x 米,水池总造价为y 千元. ①请写出y 与x 的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x 应控制在什么范围内?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值. 【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0), ∴OA=1,∵AE=BE ,BN ∥y 轴, ∴OA=ON=1,∴AN=2,B 的横坐标为1, 把x=1代入3y x=,得y=3, ∴B (1,3), ∴BN=3,∵四边形ABCD 为正方形, ∴AD=AB ,∠DAB=90°, ∴∠MAD+∠BAN=90°, 而∠MAD+∠ADM=90°, ∴∠BAN=∠ADM , 在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ), ∴DM=AN=2,AM=BN=3, ∴134OM OA AM =+=+= , ∴D 42-(,) , ∵点D 在反比例函数my x=,的图象上, ∴428m =-⨯=- , 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D的坐标是解题的关键.2.C解析:C【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】①当k> 0时,y=kx+1过第一、二、三象限,kyx=过第一、三象限;②当k<0时,y= kx+1过第一、二、四象限,kyx=过第二、四象限,观察图形可知,只有C选项符合题意,故选:C.【点睛】此题考查了依据一次函数与反比例函数的图象,正确掌握各函数的图象与字母系数的关系是解题的关键.3.B解析:B【分析】设A点的坐标是(a,b),则根据函数的对称性得出B点的坐标是(﹣a,﹣b),求出AC =2b,BC=2a,根据反比例函数图象上点的坐标特征求出ab=1,再根据三角形的面积公式求出即可.【详解】解:设A点的坐标是(a,b),则根据函数的对称性得出B点的坐标是(﹣a,﹣b),则AC=2b,BC=2a,∵A点在y=1x的图象上,∴ab=1,∴ABC的面积S=12BC AC ⨯⨯=122 2a b ⨯⨯=2ab=2×1=2,故选:B.【点睛】本题考查了三角形的面积,反比例函数图象上点的坐标特征,反比例函数系数k 的几何意义等知识点,能求出ab =1是解此题的关键.4.C解析:C【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值.【详解】解:∵点A 在反比例函数k y x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =, ∵点A 在第一象限,x y ∴、都是正数,1122AOB S OB AB xy ∴=⋅=, 2AOB S =,4k xy ∴==.故选:C .【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键. 5.A解析:A【分析】根据正比例函数的性质,可判断A ;根据一次函数的性质,可判断B ;根据反比例函数的性质,可判断C 、D .【详解】A 选项:y 随x 的增大而减小,符合题意,故A 正确;B 选项:y 随x 的增大而增大,不符合题意,故B 错误;C 选项:在每个象限内y 随x 的增大而减小,不符合题意,故C 错误;D 选项:在每个象限内y 随x 的增大而增大,不符合题意,故D 错误.故选:A .【点睛】本题主要考查了反比例函数的增减性,关键是要注意反比例函数在叙述增减性时必须强调在每个象限内.6.C解析:C【解析】试题根据图象可得当12y y <时,x 的取值范围是:x <−6或0<x <2.故选C.7.C解析:C【分析】先根据反比例函数的性质得到0ab <,再利用根的判别式进行判断.【详解】 解:因为反比例函数ab y x =,当x >0时,y 随x 的增大而增大, 所以0ab <,所以△440ab =->,所以方程有两个实数根, 再根据120b x x a=<, 故方程有一个正根和一个负根.故选C .8.A解析:A【分析】连接BP ,证得OQ 是△ABP 的中位线,当P 、C 、B 三点共线时PB 长度最大,PB=2OQ=4,设 B 点的坐标为(x ,-x ),根据点(2,2)C ,可利用勾股定理求出B 点坐标,代入反比例函数关系式即可求出k 的值.【详解】解:连接BP ,∵直线y x =-与双曲线k y x=的图形均关于直线y=x 对称, ∴OA=OB ,∵点Q 是AP 的中点,点O 是AB 的中点∴OQ 是△ABP 的中位线,当OQ 的长度最大时,即PB 的长度最大,∵PB≤PC+BC ,当三点共线时PB 长度最大,∴当P 、C 、B 三点共线时PB=2OQ=4,∵PC=1,∴BC=3,设B 点的坐标为(x ,-x ),则()()22BC=2-23x x ++=, 解得1222,22x x ==-(舍去) 故B 点坐标为22,22⎛⎫- ⎪ ⎪⎝⎭,代入k y x=中可得:12k =-, 故答案为:A .【点睛】本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.9.B解析:B【分析】先根据反比例函数2y x=-的系数20-<判断出函数图象在二、四象限,在每个象限内,y 随x 的增大而增大,再根据120x x <<,30x >,判断出1y 、2y 、3y 的大小.【详解】解:反比例函数2y x=-中,20k =-<, ∴此函数的图象在二、四象限,在每一象限内y 随x 的增大而增大,∵120x x <<,30x >30y ,210y y >>,∴312y y y <<,故选:B .【点睛】本题考查了二次函数图象上点的坐标特征.用到的知识点为:k 0<时,反比例函数k y x=图象的分支在二、四象限,在第四象限的函数值总小于在第二象限的函数值;在同一象限内,y 随x 的增大而增大. 10.C解析:C【分析】过点D 作DF ⊥BC 于点F ,设BC =x ,在Rt △DFC 中利用勾股定理列方程即可求出x ,然后设OB =a ,即可表示出C ,D 的坐标,再代入k y x=可求出a ,k 的值. 【详解】解:过点D 作DF ⊥BC 于点F ,∵点D 的横坐标为1,∴BF =DE =1,∴DF =BE =3DE =3,设BC =x ,则CD =x ,CF =x -1,在Rt △DFC 中,由勾股定理得:222DF CF CD +=,∴2223(1)x x +-=,解得:x =5.设OB =a ,则点D 坐标为(1,a +3),点C 坐标为(5,a ),∵点D 、C 在双曲线上∴1×(a +3)=5a∴a =34, ∴点C 坐标为(5,34), ∴k =154. 故选:C.【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,根据勾股定理列出方程求出BC 的长度是本题的关键.11.A解析:A【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.12.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标.二、填空题13.6不可以【分析】分别求出y=4时的两个函数值再求时间差即可解决问题【详解】解:当y=4则4=2x解得:x=2当y=4则4=解得:x=8∵8﹣2=6<7∴血液中药物浓度不低于4微克/毫升的持续时间为6解析:6,不可以【分析】分别求出y=4时的两个函数值,再求时间差即可解决问题.【详解】解:当y=4,则4=2x,解得:x=2,当y=4,则4=32x,解得:x=8,∵8﹣2=6<7,∴血液中药物浓度不低于4微克/毫升的持续时间为6小时,这种抗菌新药不可以作为有效药物投入生产.故答案为:6,不可以.【点睛】本题考查一次函数的应用、反比例函数的应用等知识,解题的关键是灵活应用待定系数法解决问题,学会利用函数图象解决实际问题,属于中考常考题型.14.8【分析】根据题意结合反比例函数图象上点的坐标性质S△AEO=S△ACO =S△OBD=3得出S四边形AODB的值是解题关键【详解】解:如图所示:过点A作AE⊥x轴于点E过点B作BD⊥x轴于点D∵反比解析:8【分析】根据题意结合反比例函数图象上点的坐标性质S△AEO=S△ACO=S△OBD=3,得出S四边形AODB的值是解题关键.【详解】解:如图所示:过点A作AE⊥x轴于点E,过点B作BD⊥x轴于点D,∵反比例函数6yx在第一象限的图象上有两点A,B,它们的横坐标分别是1,3,∴x=1时,y=6;x=3时,y=2,故S △AEO =S △OBD =S △ACO=3,S 四边形AEDB =12×(2+6)×2=8, 故△AOB 的面积是:S 四边形AEDB + S 四边形AECO -S △ACO -S △OBD =8.故答案为:8.【点睛】此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB 的面积是解题关键. 15.【分析】设点B 的坐标为先根据三角形的面积公式可得从而可得点A 的坐标为再根据线段中点的定义可得点C 的坐标为然后将点C 的坐标代入双曲线的解析式即可得【详解】设点B 的坐标为则解得点C 是OA 的中点即又点在双 解析:32【分析】设点B 的坐标为(,0)(0)a a >,先根据三角形的面积公式可得6AB a=,从而可得点A 的坐标为6(,)A a a ,再根据线段中点的定义可得点C 的坐标为3(,)2a C a,然后将点C 的坐标代入双曲线的解析式即可得.【详解】设点B 的坐标为(,0)(0)a a >,则OB a =, 132ABC S OB AB =⋅=, 32a AB ∴⋅=,解得6AB a=, 6(,)A a a∴, 点C 是OA 的中点,600(,)22a a C ++∴,即3(,)2a C a, 又点3(,)2a C a在双曲线上, 3322a k a ∴=⋅=, 故答案为:32. 【点睛】 本题考查了反比例函数的几何应用,熟练掌握反比例函数的图象与性质是解题关键. 16.(22)或(-2-2)【分析】先求得反比例函数的解析式为设C 点的坐标为()根据AC=BC 得出方程求出即可【详解】由图象可知:点A 的坐标为(-1-4)代入得:所以这个反比例函数的解析式是设C 点的坐标为解析:(2,2)或(-2,-2)【分析】 先求得反比例函数的解析式为4y x =,设C 点的坐标为(x ,4x ),根据AC=BC 得出方程,求出x 即可.【详解】由图象可知:点A 的坐标为(-1,-4), 代入k y x=得:4k xy ==, 所以这个反比例函数的解析式是4y x =, 设C 点的坐标为(x ,4x), ∵A (-1,-4),B (-4,-1),AC=BC , 即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭, 解得:2x =±,当2x =时,422y ==, 当2x =-时,422y ==--, 所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.17.4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2然后根据反比例函数的比例系数的几何意义确定其值即可【详解】根据题意得:点P 和点Q 关于原点对称所以△POA 与△QOB 的面积相等∵△POA解析:4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2,然后根据反比例函数的比例系数的几何意义确定其值即可.【详解】根据题意得:点P 和点Q 关于原点对称,所以△POA 与△QOB 的面积相等,∵△POA 与△QOB 的面积之和为4,∴△POA 与△QOB 的面积均为2, ∴2k=2,∴|k|=4,∵反比例函数的图象位于一、三象限,∴k=4,故答案为4.【点睛】此题考查了反比例函数的比例系数的几何意义及反比例函数的图象上点的坐标特征的知识,解题的关键是求得△POA 与△QOB 的面积,难度不大.18.【分析】直接利用反比函数图象的分布得出m+2<0进而得出答案;【详解】解:∵反比例函数图象分布在第二象限∴m+2<0解得:m <-2;故答案为:m <-2【点睛】本题考查了反比例函数图象上的性质正确掌握解析:2m <-【分析】直接利用反比函数图象的分布得出m+2<0,进而得出答案;【详解】解:∵反比例函数图象分布在第二象限,∴m+2<0,解得:m <-2;故答案为:m <-2.【点睛】本题考查了反比例函数图象上的性质,正确掌握反比例函数的增减性是解题的关键. 19.【分析】设正方形的边长为正方形的边长为再由是的中点是的中点可知再代入反比例函数求出的值即可【详解】解:设正方形的边长为正方形的边长为是的中点是的中点反比例函数的图象分别经过的中点及的中点解得故答案为解析:2-+【分析】设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,再由M 是AB 的中点,N 是DE 的中点可知(,)2a M a ,(,)2b N a b ,再代入反比例函数8y x=求出b 的值即可. 【详解】 解:设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,M 是AB 的中点,N 是DE 的中点, (,)2a M a ,(,)2b N a b .反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N , ∴82a a ,82b a b ,解得4a =,225b .故答案为:2-+【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.16【分析】设A (nm )B (t0)即可得到C 点坐标为(n0)D 点坐标为()利用待定系数法求出CD 的解析式可得E 点坐标为(0)然后利用三角形的面积公式可得到mn=16即得到k 的值【详解】解:设A (nm解析:16【分析】设A (n ,m ),B (t ,0),即可得到C 点坐标为(n ,0),D 点坐标为(2n t +,2m ),利用待定系数法求出CD 的解析式,可得E 点坐标为(0,mn t n --),然后利用三角形的面积公式可得到mn=16,即得到k 的值.【详解】解:设A (n ,m ),B (t ,0),∵AC ⊥BC ,D 为AB 的中点,∴C 点坐标为(n ,0),D 点坐标为(2n t +,2m ), 设直线CD 的解析式为y=ax+b ,把C (n ,0),D (2n t +,2m ),代入得:na+b=0,22n t m a b ++=, 解得a=m t n-,b=mn t n --, ∴直线CD 的解析式为y=m mn x t n t n ---, ∴E 点坐标为(0,mn t n --), 由S △BCE =12•OE•BC=8, 可得,1()82mn t n t n-=-, ∴mn=16,∴k=mn=16;故答案为:16.【点睛】本题考查了反比例函数的综合题的解法,熟练掌握并灵活运用是解题的关键.三、解答题21.74- 【分析】设点D 的坐标为(),y D D D x ,得12DOB D D Sx y =-,结合题意得:D D x y k =,从而推导得12DOB S k =-;结合AB 的中点为点D ,得78AOD DOB S S ==,经计算即可完成求解. 【详解】设点D 的坐标为(),y D D D x∴12DOB D D S x y =- ∵D D x y k =∴()111222D D DOB S DB OB y x k =⨯=⨯-=- 又∵AB 的中点为点D ∴78AOD DOB S S == ∴1728k -= 故答案为:74-. 【点睛】 本题考查了反比例函数、直角坐标系、一元一次方程的知识;解题的关键是熟练掌握反比例函数、直角坐标系、一元一次方程、三角形中线的性质,从而完成求解.22.(1)b=3,k=-2;(2)5()3P 0,;(3)x<-2或-1<x<0 【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A 、B 的坐标,再根据点A′与点A 关于y 轴对称,求出点A′的坐标,设出直线A′B 的解析式为y =mx +n ,结合点的坐标利用待定系数法即可求出直线A′B 的解析式,令直线A′B 解析式中x 为0,求出y 的值,即可得出结论;(3)根据两函数图象的上下关系结合点A 、B 的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y=x+b的图象与反比例函数kyx=(x<0)的图象交于点A(−1,2),把A(−1,2)代入两个解析式得:2=(−1)+b,2=−k,解得:b=3,k=−2;(2)作点A关于y轴的对称点A′,连接A′B交y轴于点P,此时点P即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m nm n+-+==,解得:1353mn⎧⎪⎪⎨⎪⎪⎩==,∴直线A′B的解析式为y=13x+53.令x=0,则y=53,∴点P的坐标为(0,53);(2)观察函数图象,发现:当x<−2或−1<x<0时,一次函数图象在反比例函数图象下方,∴当x+b<kx时,x的取值范围为x<−2或−1<x<0.【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.23.(1)y=3x -和y=-x-2;(2)交点A 为(1,-3),C 为(-3,1);4;(3)-3<x <0或x >1.【分析】(1)设出A 坐标(x ,y ),表示出OB 与AB ,进而表示出三角形ABO 面积,由已知面积确定出反比例函数k 的值,进而确定出一次函数;(2)联立反比例函数与一次函数解析式,求出A 与C 坐标即可;由一次函数解析式求出交点的坐标,然后三角形AOC 面积=两个三角形面积的和,求出即可;(3)根据图象即可求得.【详解】解:(1)设A 点坐标为(x ,y ),且x >0,y <0, 则113||||(),222ABO S OB AB x y ∆=⋅⋅=⋅⋅-= ∴xy=-3,∴k=xy=-3,代入y =﹣x +(k +1),得y=-x-2;∴所求的两个函数的解析式分别为y=3x-和y=-x-2; (2)解:求两个函数图象交点,得 32y x y x ⎧=-⎪⎨⎪=--⎩ 13,?31x x y y ==-⎧⎧⎨⎨=-=⎩⎩∴交点A 为(1,-3),C 为(-3,1);由y=-x-2,令x=0,得y=-2.∴直线y=-x+2与y 轴的交点的坐标为(0,-2), 则112123422AOC S ∆=⨯⨯+⨯⨯= (3)∵交点A 为(1,-3),C 为(-3,1),∴由图象可知:反比例函数y=k x的值大于一次函数y=-x+(k+1)时, x 的取值范围为-3<x <0或x >1.【点睛】 此题考查了一次函数与反比例函数的交点问题,以及三角形面积,解题关键是熟练掌握待定系数法.24.k=5【分析】先由勾股定理求出AC的长度,得到点C坐标,再确定出点B的坐标,由中点坐标公式得出点D的坐标,最后把点D坐标代入反比例函数解析式中即可求得k的值.【详解】∵在Rt△ABC中,AB=4,BC=5,∴,∵点C坐标(1,0),∴OC=1,∴OA=OC+AC=4,∴点A坐标(4,0),∴点B(4,4),∵点C(1,0),点B(4,4),∴BC的中点D(5,2),2∵反比例函数y=k(x>0)的图象经过BC的中点D,x∴k=xy=52=5⨯2【点睛】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.25.(1)2)2.【分析】(1)首先根据点A在双曲线y=x>0)上,设A点坐标为(a),再利用含30°直角三角形的性质算出OA=2a,再利用菱形的性质进而得到B点坐标,即可求出k 的值;(2)先求出菱形OABC的高,再根据菱形的面积公式求菱形OABC的面积.【详解】解:(1)解:因为点A在双曲线y=x>0)上,设A点坐标为(a),因为四边形OABC是菱形,且∠AOC=60°,所以OA=2a,),可得B点坐标为(3a,a=可得:k=3a×a故答案为:63; (2)由 (1)得OA=2a ,而∠AOC=60°,∴菱形OABC 的高h=2a·sin60°=2a·32=3a , ∴222323OABC S a h a a a =⋅=⋅=菱形 .【点睛】本题考查了待定系数法求反比例函数及菱形的面积,关键是根据菱形的性质求出B 点坐标,即可算出反比例函数解析式.26.(1)见解析;(2)>;<;=;(3)①11y x x =++;②122x ≤≤. 【分析】(1)用一条光滑曲线将点顺次连接起来,作出函数图象即可;(2)观察函数图象可以看出有最低点,即函数有最小值,结合表格提供的信息即可解决问题;(3)①根据底面面积可求出底面另一条边长,进而可求出水池的侧面积,分别表示出底面和侧面的造价,从而可表示出y 与x 的函数关系式;②根据函数关系式结合表格可得出x 的控制范围.【详解】(1)如图1所示;(2)根据图象和表格可知,当1201x x <<≤时,1y >2y ;当121x x <<,则1y <2y ;当121x x ⋅=,则1y =2y ;(3)①∵底面面积为1平方米,一边长为x 米,∴与之相邻的另一边长为1x米, ∴水池侧面面积的和为:1112122()x x x x ⨯⨯+⨯⨯=+ ∵底面造价为1千元/平方米,侧面造价为0.5千元/平方米, ∴11112()0.51y x x xx=⨯++⨯=++ 即:y 与x 的函数关系式为:11y x x=++; ②∵该农户预算不超过3.5千元,即y≤3.5 ∴11 3.5x x++≤ ∴1 2.5x x +≤, 根据图象或表格可知,当2≤y≤2.5时,122x ≤≤, 因此,该农户预算不超过3.5千元,则水池底面一边的长x 应控制在122x ≤≤. 【点睛】本题考查反比例函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(含答案解析)

一、选择题1.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数my x=的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-82.已知反比例函数13y x=-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭B .y 随x 的增大而增大C .图象在第二、四象限内D .若1x >,则103y -<< 3.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .y=5x 2C .y=21x D .y=13x4.如图,已知双曲线()0ky x x=>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .45.如图,正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式kax x<的解集为( )A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >6.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<7.如图,过y 轴上一个动点M 作x 轴的平行线,交双曲线y=4x-于点A ,交双曲线10y x=于点B ,点C 、点D 在x 轴上运动,且始终保持DC =AB ,则平行四边形ABCD 的面积是( )A .7B .10C .14D .288.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求9.函数y kx k =-+与ky x=在同一坐标系中的图象可能是( ) A . B . C . D .10.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abcy x=在平面直角坐标系中的图象可能是( ).A .B .C .D .11.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .512.在平面直角坐标系中,对于不在坐标轴上的任意一点P (x ,y ),我们把的P '(1x,1y )称为点P 的“倒影点”.直线y =﹣2x +1上有两点A 、B ,它们的倒影点A '、B '均在反比例函数y kx=的图象上,若AB 5=,则k 的值为( )A .83-B .43-C .5D .10二、填空题13.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.14.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABOS=,则k 的值为______.15.如图,在方格纸中(小正方形的边长为1),反比例函数ky x=的图象与直线AB 的交点A 、B 在图中的格点上,点C 是反比例函数图象上的一点,且与点A 、B 组成以AB 为底的等腰△,则点C 的坐标为________.16.过原点直线l 与反比例函数ky x=的图像交于点(2,)A a -,(,3)B b -,则k 的值为____.17.已知点(1,),(3,)A a B b 都在反比例函数4y x=的图像上,则,a b 的大小关系为____.(用“<”连接)18.已知,点P (a ,b )为直线3y x =-与双曲线2y x=-的交点,则11b a -的值等于__.19.已知点(,)P a b 为直线2y x =-与双曲线1y x=-的交点,则11b a -的值等于__________.20.如图,已知反比例函数y =kx(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.三、解答题21.已知,反比例函数ky x=(k 是常数,且0k ≠)的图象经过点(,3)A b . (1)若4b =,求y 关于x 的函数表达式.(2)若点(3,3)B b b 也在该反比例函数图象上,求b 的值.22.如图,反比例函数(0,0)ky k x x=≠<经过ABO 边AB 的中点D ,与边AO 交于点C ,且:1:2AC CO =,连接DO ,若AOD △的面积为78,则k 的值为_______.23.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式. (2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由. ②当AB nOA =时,请直接写出FG 与BG 之间的数量关系. 24.如图,已知函数()0ky x x=>的图象经过点,,A B 点A 的坐标为()1,2.过点A 作//AC y 轴,1AC =(点C 位于点A 的下方),过点C 作//CD x 轴,与函数的图象交于点D ,过点B 作BE CD ⊥,垂足E 在线段CD 上,连接,OC OD .()1求OCD ∆的面积;()2当12BE AC =时,求CE 的长.25.如图,直线AC 与函数()0ky x x=<的图象相交于点()1,6A -,与x 轴交于点C ,且45ACO ∠=︒,点D 是线段AC 上一点. (1)求k 的值;(2)若DOC △与OAC 的面积比为2∶3,求点D 的坐标; (3)将OD 绕点O 逆时针旋转90°得到OD ',点D 恰好落在函数()0ky x x=<的图象上,求点D 的坐标.26.如图,在平面直角坐标系xOy 中,反比例函数y =mx的图象与一次函数y =k (x -2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式;(2)若C是y轴上的点,且满足△ABC的面积为10,求C点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】作DM⊥x轴于M,BN⊥x轴于N,如图,先根据题意求得AN=2,然后证明△ADM≌△BAN得到DM=AN=2,AM=BN=3,则D(-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM⊥x轴于M,BN⊥x轴于N,如图,∵点A的坐标为(-1,0),∴OA=1,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为1,把x=1代入3yx,得y=3,∴B(1,3),∴BN=3,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ), ∴DM=AN=2,AM=BN=3, ∴134OM OA AM =+=+= , ∴D 42-(,) , ∵点D 在反比例函数my x=,的图象上, ∴428m =-⨯=- , 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键.2.B解析:B 【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k ,可以判断出A 的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大可判断出B 、C 、D 的正误. 【详解】A 选项:将1x =-代入得13y =故过11,3⎛⎫-- ⎪⎝⎭,故A 正确;B 选项:103k =-<,故在每个象限内y 随x 的增大而增大,故B 错误; C 选项:103k =-<,故图象过二、四象限,故C 正确; D 选项:若1x >,则103y -<<,故D 正确. 故选:B . 【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y =kx(k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.3.D解析:D【分析】根据反比例函数的定义逐项分析即可. 【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x2,y 是x 的正比例函数,故不符合题意; C. 21y x=,y 是x²的反比例函数,故不符合题意; D. y=13x ,y 是x 的反比例函数,符合题意; 故选:D . 【点睛】本题考查了反比例函数的定义,一般地,形如ky x=(k 为常数,k ≠0)的函数叫做反比例函数.4.A解析:A 【分析】通过设F的坐标,得到点B 的坐标,再利用四边形面积OFBE 等于矩形面积OABC 减去三角形COE 和△AOF 的面积作等量,解得k 值即可. 【详解】解:设点F 的坐标(m ,km), ∵点F 是AB 的中点, ∴点B 的坐标(m ,2km), 则 S 四边形OEBF =S 矩形OABC -S △COE -S △AOF ,∴2=m21122k k k m --(k>0) ∴2=2k-k , ∴k=2, 故选:A . 【点睛】本题考查反比例函数的k 的几何意义以及反比例函数上的点的坐标特点、矩形的性质,难点是根据一点的坐标表示其他点的坐标.5.B解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象可得kax x<,求出x 的取值范围即可. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.6.C解析:C 【解析】 试题根据图象可得当12y y <时, x 的取值范围是:x <−6或0<x <2. 故选C.7.C解析:C 【分析】设出M 点的坐标,可得出过M 与x 轴平行的直线方程为y=m ,将y=m 代入反比例函数y=4x-中,求出对应的x 的值,即为A 的横坐标,将y=m 代入反比例函数10y x =中,求出对应的x 的值,即为B 的横坐标,用B 的横坐标减去A 的横坐标求出AB 的长,根据DC=AB ,且DC 与AB 平行,得到四边形ABCD 是平行四边形,过B 作BN 垂直于x 轴,平行四边形底边为DC ,DC 边上的高为BN ,由B 的纵坐标为m得到BN=m ,再由求出的AB 的长,得到DC 的长,利用平行四边形的面积等于底乘以高可得出平行四边形ABCD 的面积. 【详解】解:设M 的坐标为(0,m )(m >0)则直线AB 的方程为:y=m , 将y=m 代入y=4x-中得:4x m =-,∴A (4m -,m )将y=m代入10yx=中得:10xm=,∴B(10m,m)∴DC=AB=10m -(4m-)=14m过B作BN⊥x轴,则有BN=m,则平行四边形ABCD的面积S=DC·BN=14m×m=14.故选C.【点睛】本题考查反比例函数综合题.8.C解析:C【分析】根据OA、OC的长度,可得反比例函数的比例系数k=6,设正方形ADEF的边长为x,则OD DE=(1x)x=6⋅+⋅,解得x即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅,设正方形ADEF的边长为x,则OD=OA+AD=1+x,DE=x,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍),故选:C.【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k.9.D解析:D【分析】根据题意,分类讨论k>0和k<0,两个函数图象所在的象限,即可解答本题.【详解】解:当k>0时,函数y=-kx+k的图象经过第一、二、四象限,函数kyx=(k≠0)的图象在第一、三象限,故选项A、选项C错误,当k<0时,函数y=-kx+k的图象经过第一、三、四象限,函数kyx=(k≠0)的图象在第二、四象限,故选项B错误,选项D正确,故选:D.【点睛】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论,数形结合的思想解答.10.C解析:C【分析】由二次函数的图像性质分析a,b,c的符号,从而判断bc和abc的符号,然后结合反比例函数和一次函数图像性质进行判断即可.【详解】解:由题意可知,二次函数开口向上,∴a>0由二次函数对称轴在y轴右侧,∴b<0由二次函数与y轴交于原点上方,∴c>0∴bc<0,abc<0∴一次函数图像经过一、三、四象限,反比例函数图像经过二四象限故选:C.【点睛】本题考查一次函数、二次函数、反比例函数的图像性质,掌握函数图像性质,利用数形结合思想解题是关键.11.D解析:D【分析】过点B作BH⊥x轴于H,根据坐标特征可得点A和点B的纵坐标相同,由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a),即可求出BH和AB,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B作BH⊥x轴于H∵四边形ABCD为平行四边形∴//AB x轴,CD=AB∴点A和点B的纵坐标相同由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a )∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCDS=BH·CD=5故选D . 【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.12.A解析:A 【分析】设点A (a ,-2a+1),B (b ,-2b+1)(a <b ),则A '(1a ,112a -),B '(1b ,112b-),由AB =b=a+1,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值. 【详解】设点A (a ,﹣2a +1),B (b ,﹣2b +1)(a <b ),则A '(1a ,112a -),B '(1b ,112b-).∵AB===(b ﹣a )=∴b ﹣a =1,即b =a +1. ∵点A ',B '均在反比例函数y kx=的图象上, ∴k 1a =•1112a b =-•112b-,解得:k 83=-. 故选:A . 【点睛】此题考查反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键.二、填空题13.6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD=|k|=16则求出k 得到反比例函数的解析式为y =再利用A 点的横坐标为2可计算出A 点的纵坐标为8从而得到CD=6然后根据三角形面积公式计解析:6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD =|k|=16,则求出k 得到反比例函数的解析式为y =16x,再利用A 点的横坐标为2可计算出A 点的纵坐标为8,从而得到CD=6,然后根据三角形面积公式计算S △ACD . 【详解】解:∵BE ⊥x 轴于E ,BD ⊥y 轴于D , ∴S 矩形BEOD =|k |=16,而0k >, ∴k =16,∴反比例函数的解析式为y =16x, ∵AC ⊥y 轴,AC =2, ∴A 点的横坐标为2, 当x =2时,y =16÷2=8, ∴CD =OC ﹣OD =8﹣2=6, ∴S △ACD =12×2×6=6. 故答案为6. 【点睛】本题考查了反比例函数比例系数k 的几何意义:在反比例函数图象y =kx中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.【分析】设点B 的坐标为先根据三角形的面积公式可得从而可得点A 的坐标为再根据线段中点的定义可得点C 的坐标为然后将点C 的坐标代入双曲线的解析式即可得【详解】设点B 的坐标为则解得点C 是OA 的中点即又点在双解析:32【分析】设点B 的坐标为(,0)(0)a a >,先根据三角形的面积公式可得6AB a=,从而可得点A 的坐标为6(,)A a a ,再根据线段中点的定义可得点C 的坐标为3(,)2a C a,然后将点C 的坐标代入双曲线的解析式即可得. 【详解】设点B 的坐标为(,0)(0)a a >,则OB a =,132ABCSOB AB =⋅=, 32a AB ∴⋅=,解得6AB a=,6(,)A a a∴,点C 是OA 的中点,600(,)22aa C ++∴,即3(,)2a C a, 又点3(,)2a C a 在双曲线上,3322a k a ∴=⋅=,故答案为:32.【点睛】 本题考查了反比例函数的几何应用,熟练掌握反比例函数的图象与性质是解题关键.15.(22)或(-2-2)【分析】先求得反比例函数的解析式为设C 点的坐标为()根据AC=BC 得出方程求出即可【详解】由图象可知:点A 的坐标为(-1-4)代入得:所以这个反比例函数的解析式是设C 点的坐标为解析:(2,2)或(-2,-2) 【分析】先求得反比例函数的解析式为4y x =,设C 点的坐标为(x ,4x),根据AC=BC 得出方程,求出x 即可. 【详解】由图象可知:点A 的坐标为(-1,-4), 代入ky x=得:4k xy ==, 所以这个反比例函数的解析式是4y x=, 设C 点的坐标为(x ,4x), ∵A (-1,-4),B (-4,-1),AC=BC ,即()()2222441441x x x x ⎛⎫⎛⎫--+--=--+-- ⎪ ⎪⎝⎭⎝⎭, 解得:2x =±, 当2x =时,422y ==, 当2x =-时,422y ==--, 所以点C 的坐标为(2,2)或(-2,-2).故答案为:(2,2)或(-2,-2).【点睛】本题考查了等腰三角形的性质、用待定系数法求反比例函数的解析式、反比例函数图象上点的坐标特征等知识点,能求出反比例函数的解析式是解此题的关键.16.-6【分析】由AB在过原点的直线l上且在反比例函数的图像上可得AB关于原点对称根据关于原点对称的点的坐标特征可求出ab的值把a值代入反比例函数解析式即可得答案【详解】∵过原点的直线l与反比例函数y=解析:-6【分析】由A、B在过原点的直线l上且在反比例函数的图像上可得A、B关于原点对称,根据关于原点对称的点的坐标特征可求出a、b的值,把a值代入反比例函数解析式即可得答案.【详解】∵过原点的直线l与反比例函数y=kx的图象交于点A(−2,a),B(b,−3),∴A、B两点关于原点对称,∵关于原点对称的点的横坐标和纵坐标都互为相反数,A(−2,a),B(b,−3),∴a=3,b=2,把A(-2,3)代入y=kx得3=k−2,解得k=-6,故答案为:-6【点睛】本题考查反比例函数图象的性质,反比例函数的图象关于原点对称,熟练掌握图象性质是解题关键.17.【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式求出a与b的值比较大小即可【详解】解:点A(1a)在反比例函数的图像上则有点B (3b)在反比例函数的图像上则有所以故答案为:【点睛】本题主要考解析:b a<【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式,求出a与b的值,比较大小即可.【详解】解:点A(1,a)在反比例函数4yx=的图像上,则有441a==,点B(3,b)在反比例函数4yx=的图像上,则有43b=,所以b a<.故答案为:b a<.【点睛】本题主要考查反比例函数图象上点的坐标特征,注意掌握所有在反比例函数上的点的横纵坐标的积等于比例系数.18.-【分析】将点P分别代入两函数解析式得到:b=a﹣3b=﹣进而得到a﹣b=3ab=﹣2将其代入求值即可【详解】∵点P(ab)为直线y=x﹣3与双曲线y=﹣的交点∴b=a﹣3b=﹣∴a﹣b=3ab=﹣解析:-3 2【分析】将点P分别代入两函数解析式得到:b=a﹣3,b=﹣2a,进而得到a﹣b=3,ab=﹣2.将其代入求值即可.【详解】∵点P(a,b)为直线y=x﹣3与双曲线y=﹣2x的交点,∴b=a﹣3,b=﹣2a,∴a﹣b=3,ab=﹣2.∴1b ﹣1a=a bab-=32-=﹣32.故答案是:﹣32.【点睛】考查了反比例函数与一次函数的交点,解题关键是是得到a﹣b=3,ab=﹣2.19.-2【分析】将点P分别代入两函数解析式得到:b=a-2b=-进而得到a-b=2ab=-1将其代入求值即可【详解】∵点P(ab)为直线y=x-2与双曲线的交点∴b=a-2b=-∴a-b=2ab=-1∴解析:-2【分析】将点P分别代入两函数解析式得到:b=a-2,b=-1a,进而得到a-b=2,ab=-1.将其代入求值即可.【详解】∵点P(a,b)为直线y=x-2与双曲线1yx=-的交点,∴b=a-2,b=-1a,∴a-b=2,ab=-1.∴11b a-=2-1a b ab -==-2. 故答案是:-2. 【点睛】此题考查反比例函数与一次函数的交点,解题关键是得到a-b=2,ab=-1.20.【分析】先根据点A 的坐标求出反比例函数的解析式然后求出点的坐标由点B 在直线上设出点B 的坐标为(aa )从而利用平行四边形的性质可得到的坐标因为在反比例函数图象上将点代入反比例函数解析式中即可求出a 的值解析:【分析】先根据点A 的坐标求出反比例函数的解析式,然后求出点A '的坐标,由点B 在直线上,设出点B 的坐标为(a,a ),从而利用平行四边形的性质可得到B '的坐标,因为B '在反比例函数图象上,将点B '代入反比例函数解析式中即可求出a 的值,从而可确定点B 的坐标. 【详解】 ∵反比例函数y =kx(x >0)过点A (1,4), ∴k =1×4=4,∴反比例函数解析式为:y =4x. ∵点A '(4,b )在反比例函数的图象上, ∴4b =4, 解得:b =1, ∴A '(4,1). ∵点B 在直线y =x 上, ∴设B 点坐标为:(a ,a ). ∵点A (1,4),A '(4,1),∴A 点向下平移3个单位,再向右平移3个单位,即可得到A '点. ∵四边形AA 'B 'B 是平行四边形,∴B 点向下平移3个单位,再向右平移3个单位,即可得到B '点(a +3,a ﹣3). ∵点B '在反比例函数的图象上, ∴(a +3)(a ﹣3)=4,解得:a =或a =舍去),故B 点坐标为:.故答案为:. 【点睛】本题主要考查反比例函数与几何综合,掌握待定系数法,平行四边形的性质,点的平移规律和一元二次方程的解法是解题的关键.三、解答题21.(1)12y x=;(2)13b =【分析】(1)把A 点代入反比例函数即可求解;(2)把A 、B 两点代入反比例函数列出方程组即可求解; 【详解】解:(1)∵4b =, ∴A (4,3),把A 点代入反比例函数得:34k =, 即k=12,∴函数解析式为:12y x=; (2)把A 、B 代入反比例函数得:333k bk b b ⎧=⎪⎪⎨⎪=⎪⎩①② 解得:13b =. 【点睛】本题主要考查的是反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键.22.74-【分析】设点D 的坐标为(),y D D D x ,得12DOBD D S x y =-,结合题意得:D D x y k =,从而推导得12DOBSk =-;结合AB 的中点为点D ,得78AODDOBS S==,经计算即可完成求解. 【详解】设点D 的坐标为(),y D D D x ∴12DOBD D Sx y =-∵D D x y k = ∴()111222D D DOBSDB OB y x k =⨯=⨯-=-又∵AB 的中点为点D ∴78AOD DOB S S == ∴1728k -= 故答案为:74-. 【点睛】 本题考查了反比例函数、直角坐标系、一元一次方程的知识;解题的关键是熟练掌握反比例函数、直角坐标系、一元一次方程、三角形中线的性质,从而完成求解.23.(1)16y x =;(2)①13FG BG =,理由见解析;②(21)FG n BG =+ 【分析】(1)根据题意求出OBD S △,根据反比例函数k 的几何意义求出过点B 的反比例函数解析式;(2)①设OC a =,用a 表示出点A 的坐标,根据相似三角形的性质表示出点B 的坐标,求出FG 和BG ,计算即可;②用与①相似的方法分别求出FG 和BG ,计算即可.【详解】解:(1)设点E 的坐标为(,)x y ,∵点E 在反比例函数4y x =的图象上, ∴4xy =,则122xy =, ∴2ODE S =△,又6OBE S =△,∴8OBD S =△,∴过点B 的反比例函数解析式为:16y x=; (2)①设OC a =,则点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭, ∵AB OA =,∴点B 的坐标为82,a a ⎛⎫ ⎪⎝⎭, ∵84a x =,2a x =,∴2a FG =,又2FB a =, ∴32BG a =, ∴13FG BG =; ②设OC b =,则点A 的坐标为4,b b ⎛⎫ ⎪⎝⎭,∵AB nOA =, ∴11OA OB n =+, ∴点B 的坐标为4(1)(1),n n b b +⎛⎫+ ⎪⎝⎭, ∵4(1)4n b x +=,1b x n =+, ∴1b FG n =+,又2FB b =, ∴211n BG b n +=+, ∴(21)FG n BG =+.【点睛】本题考查的是反比例函数知识的综合运用,掌握待定系数法求反比例函数解析式、反比例函数k 的几何意义是解题的关键.24.(1)12;(2)13 【分析】(1)根据点A 坐标求出函数表达式及点C 坐标,再求出点D 坐标,然后根据坐标计算面积即可;(2)先求出BE 得到点B 的纵坐标,再利用表达式求出横坐标,从而计算即可.【详解】解:(1)∵函数()0k y x x =>的图象经过点A(1,2), ∴21k =,即2k =, ∴2y x=, ∵//AC y 轴,1AC =,∴点C 的坐标为(1,1),∵//CD x 轴,点D 在函数图象上,∴点D 的坐标为(2,1),∴CD=1, ∴111122OCD S =⨯⨯=△; (2)∵12BE AC =, ∴12BE =, ∵BE CD ⊥,∴点B 的纵坐标是32, ∴点B 的横坐标是43, ∴41133CE =-=. 【点睛】本题考查了反比例函数的应用,熟练掌握待定系数法求表达式及特殊点的坐标特征是解题的关键.25.(1)k=-6;(2)(1,4);(3)(3,2)或(2,3)【分析】(1)将点()1,6A -代入反比例函数解析式中即可求出k 的值;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,根据三角形的面积比可得23DM AN =,再根据点A 的坐标即可求出DM ,然后证出ACN 和DCM 都是等腰直角三角形,即可求出OM ,从而求出结论;(3)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N ,过点D 作D G ⊥x 轴于G ,设点D 的纵坐标为a (a >0),即DM=a ,然后用a 表示出OM ,利用AAS 证出△G D O ≌△MOD ,即可用a 表示出点D 的坐标,将D 的坐标反比例函数解析式中即可求出a 的值,从而求出点D 的坐标.【详解】解:(1)将点()1,6A -代入k y x=中,得 61k =- 解得k=-6;(2)过点D 作DM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N∵DOC△与OAC的面积比为2∶3∴122132OC DMOC AN=∴23DMAN=∵()1,6A-∴AN=6,ON=1∴DM=4∵45ACO∠=︒∴ACN和DCM 都是等腰直角三角形∴CN=AN=6,CM=DM=4∴OM=CN-CM-ON=1∴点D的坐标为(1,4);(3)过点D作DM⊥x轴于M,过点A作AN⊥x轴于N ,过点D作D G ⊥x轴于G设点D的纵坐标为a(a>0),即DM=a∵ACN和DCM都是等腰直角三角形∴CN=AN=6,CM=DM=a∴OM=CN-CM-ON=5-a∴点D的坐标为(5-a,a)∵∠D GO=∠OMD=∠D OD=90°∴∠G D O+∠D OG=90°,∠MOD+∠D OG=90°,∴∠G D O=∠MOD由旋转的性质可得D O=OD∴△G D O≌△MOD∴G D=OM=5-a,OG=DM=a∴D 的坐标为(-a ,5-a )由(1)知,反比例函数解析式为()06y x x=-< 将D 的坐标代入,得 56a a-=-- 解得:122,3a a ==∴点D 的坐标为(3,2)或(2,3).【点睛】此题考查的是反比例函数与几何图形的综合大题,掌握利用待定系数法求反比例函数解析式、等腰直角三角形的判定及性质、全等三角形的判定及性质和旋转的性质是解题关键. 26.(1)y =6x ,y =2x -4;(2)C 点的坐标为()0,1或()0,9-. 【分析】(1)将点()3,2A 分别代入反比例函数和一次函数解析式中,求得参数m 和k 的值,即可得到两个函数的解析式;(2)联立反比例函数和一次函数的解析式,求得B 的坐标,再利用一次函数的解析式求得一次函数与y 轴交点的坐标点M 的坐标为()0,4-,设C 点的坐标为(0,y c ),根据12×3×|y c -(-4)|+12×1×|y c -(-4)|=10解得y c 的值,即可得到点C 的坐标. 【详解】(1)∵点()3,2A 在反比例函数y =m x 和一次函数y =k (x -2)的图象上, ∴2=3m ,2=k (3-2),解得m =6,k =2, ∴反比例函数的解析式为y =6x,一次函数的解析式为y =2x -4. (2)∵点B 是一次函数与反比例函数的另一个交点, ∴6x=2x -4,解得x 1=3,x 2=-1, ∴B 点的坐标为()1,6--.设点M 是一次函数y =2x -4的图象与y 轴的交点,则点M 的坐标为()0,4-. 设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-4)|+12×1×|y c -(-4)|=10, ∴|y c +4|=5.当y c +4≥0时,y c +4=5,解得y c =1;当y c +4<0时,y c +4=-5,解得y c =-9,∴C 点的坐标为()0,1或()0,9-.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出两个函数的解析式以及直线AB与y轴的交点坐标.。
人教版九年级数学下册《反比例函数》单元测试及答案

.
7、如图,面积为 3 的矩形 OABC的一个顶点 B 在反比例函数 y k x
的图象上,另三点在坐标轴上,则 k =
。
k 8、反比例函数 y 与一次函数 y kx m 的图象有一个交点是
x
( -2 , 1),则它们的另一个交点的坐标是
。
9.收音机刻度盘的波长 λ 和频率 f 分别用米( m )的千赫兹( kHz )为单位标刻的。波
-6-
16. 某商场出售一批进价为 2 元的贺卡,在市场营销中发现此商品的日销售单价
销售量 y 个之间有如下关系: ( 10
)
x( 元 )
3
y(个) 20
4
5
6
15
12
10
x 元与日
( 1) 根 据表中数据,在直角坐标系中描出实数对( x,y )的对应点; ( 2) 猜 测并确定 y 与 x 之间的函数关系式,并画出图象; ( 3) 设 经营此贺卡的销售利润为 W元,试求出 W与 x 之间的函数关系式,若物价局规 定此贺卡的销售价最高不能超过 10 元,请你求出当日销售单价 x 定为多少元时,才能使 获利润最大?
药物燃烧后, y 关于 x 的函数关系式为
(2)研究表明,当空气中每立方米的含药量低于
1.6
毫克时学生方可进教室,那么从消毒开始,至少需要经过
分钟后,学生才能回到教室:
(3)研究表明,当空气中每立方米的含药量不低于3
毫克且持续时间不低于10分钟, 才能有效杀灭空气中的病
毒,那么此次消毒有效吗?为什么?
六.解:( 1)设轮船上的货物总量为 k 吨,则根据已知条件有
240 k 30 8 240 ∴ v 与 t 的函数式为 v
t
( 2)把 t
最新人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)(2)

一、选择题1.如图,过反比例函数()0ky x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .52.已知反比例函数13y x=-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭B .y 随x 的增大而增大C .图象在第二、四象限内D .若1x >,则103y -<< 3.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5y x=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123y y y <<B .312y y y <<C .132y y y <<D .231y y y <<4.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .5.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A.3 B.4 C.5 D.66.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若(x﹣3)(mx﹣n)=0是倍根方程,则n=6m或3n=2m;④若点(m,n)在反比例函数y=2x的图象上,则关于x的方程mx2﹣3x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④7.在同一直角坐标系中,反比例函数y=abx与一次函数y=ax+b的图象可能是()A.B.C.D.8.已知反比例函数y=21kx+的图上象有三个点(2,1y), (3, 2y),(1-, 3y),则1y,2y,3y的大小关系是()A.1y>2y>3y B.2y>1y>3y C.3y>1y>2y D.3y>2y>1y 9.如图,矩形OABC的顶点A、C分别在x轴、y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转600得到线段OP,连接AP,反比例函数y=kx过P、B两点,则k的值为()A .23B .233C .43D .4310.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .811.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)-B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <. 12.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.14.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.15.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =kx交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF 的面积为S 2,则12S S =_____.16.如图,A 、B 两点在双曲线()30y x x=>,分别经过A 、B 两点向坐标轴作垂线段,已知1S =阴影,则12S S +=______.17.如图,已知双曲线()0ky x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.18.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415价应定为_______元.19.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____. 20.如图,反比例函数(0)ky x x=>经过,A B 两点,过点A 作AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.三、解答题21.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数my x=的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x的取值范围;(3)若点P在y轴上,且使四边形OMDP的面积与四边形OMNC的面积相等,求点P 的坐标.22.已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b<mx的解集(直接写出答案).23.如图,已知一次函数y=x+b的图像与反比例函数kyx(x<0)的图像相交于点A(-1,2)和点B,点P在y轴上.(1)求b和k的值;(2)当PA+PB 的值最小时,点P 的坐标为______; (3)当x+b <kx时,请直接写出x 的取值范围. 24.如图,已知A (−4,2),B (n ,−4)是一次函数y kx b =+的图象与反比例函数my x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求不等式0mkx b x+->的解集(请直接写出答案).25.如图,已知一次函数1332y x =-与反比例函数2ky x =的图象相交于点A (4,n )和M(m ,﹣6),与x 轴相交于点B . (1)求m ,n 的值;(2)观察图象,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为 ,若y 1﹣y 2<0时自变量x 的取值范围为 ;(3)若P 点为x 轴上一点, Q 点为平面直角坐标系中的一点,以点A 、B 、P 、Q 为顶点的四边形为菱形,求Q 点的坐标.26.如图在平面直角坐标系xOy 中,函数14(0)y x x=>的图象与一次函数2y kx k =-的图象的交点为(,2)A m . (1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若点P 是x 轴上一点,且满足PAB ∆的面积是6,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值. 【详解】解:∵点A 在反比例函数ky x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =,∵点A 在第一象限,x y ∴、都是正数,1122AOBSOB AB xy ∴=⋅=, 2AOBS=,4k xy ∴==.故选:C . 【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键.2.B解析:B 【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k ,可以判断出A 的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大可判断出B 、C 、D 的正误. 【详解】A 选项:将1x =-代入得13y =故过11,3⎛⎫-- ⎪⎝⎭,故A 正确;B 选项:103k =-<,故在每个象限内y 随x 的增大而增大,故B 错误; C 选项:103k =-<,故图象过二、四象限,故C 正确; D 选项:若1x >,则103y -<<,故D 正确. 故选:B . 【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y =kx(k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.3.C解析:C 【分析】根据反比例函数图象的性质可得双曲线5y x=在一、三象限,且在每个象限内,y 随x 的增大而减小,即可求解. 【详解】 解:双曲线5y x=在一三象限,且在每个象限内,y 随x 的增大而减小, ∵1230x x x <<<, ∴132y y y <<, 故选:C . 【点睛】本题考查反比例函数图象与性质,掌握反比例函数图象与性质是解题的关键.4.B解析:B 【分析】分a >0与a <0两种情况,根据一次函数和反比例函数的图象与性质解答即可. 【详解】解:当a>0时,y=|a|x+a=ax+a的图象在第一、二、三象限,ayx=的图象在第一、三象限,此时选项B正确;当a<0时,y=|a|x+a=﹣ax+a的图象在第一、三、四象限,ayx=的图象在第二、四象限,此时没有正确选项;故选:B.【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键.5.D解析:D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3x,故BO=x+ 3x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+ 3x)2﹣x2﹣29x=6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键. 6.D解析:D【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y =2x 的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论;【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4,∴方程x 2+2x-8=0不是倍根方程,故①错误;②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2,∵x 1+x 2=-a ,x 1•x 2=2,∴2x 12=2,解得x 1=±1,∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m ==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23n m ⨯=, ∴n=6m 或3m=2n ,故③错误;④∵点(m ,n )在反比例函数y =2x 的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m -+=, 解方程得1212,x x m m==, ∴x 2=2x 1, ∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确;故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.D解析:D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.A解析:A【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=21kx的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y 2<y 1,y 3<0,∴y 1>y 2>y 3.故选:A .【点睛】本题考查了反比例函数图象的性质,对于反比例函数y =k x(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内,本题先判断出比例系数k 2+1是正数是解题的关键.9.D解析:D【分析】本题先设A 点坐标(x ,0),则点B (x ,1),由等边三角性质可知P (12x,2 x )代入函数表达式即可求出结果.【详解】由题意设A 点坐标(x ,0),则点B (x ,1),将点B 代入函数式得k=x ,又由题意将线段OA 绕点O 按逆时针方向旋转60°得到线段OP ,∴OP=OA ,则△AOP 为等边三角形,∴由等边三角形性质设点P (12k),把点P=12kk , ∴k=2 k 12⨯k=2122k ⨯, ∵k 0≠,∴k=3,即选D . 【点睛】此题考查反比例函数,等边三角形性质,解题关键是找出点P 坐标,即运用等边三角形性质解题.10.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标. 11.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键. 12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x 1<0<x 2,可比较出y 1、y 2的大小,进而得到答案.【详解】 解:由反比例函数k y x=(k <0),可知函数的图象在二、四象限, ∵x 1<0<x 2,∴A (x 1,y 1)在第二象限,y 1>0,B (x 2,y 2)在第四象限,y 2<0,∴y 2<0<y 1,故选:B .【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD=|k|=16则求出k 得到反比例函数的解析式为y =再利用A 点的横坐标为2可计算出A 点的纵坐标为8从而得到CD=6然后根据三角形面积公式计解析:6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD =|k|=16,则求出k 得到反比例函数的解析式为y =16x,再利用A 点的横坐标为2可计算出A 点的纵坐标为8,从而得到CD=6,然后根据三角形面积公式计算S △ACD .【详解】解:∵BE ⊥x 轴于E ,BD ⊥y 轴于D ,∴S 矩形BEOD =|k |=16,而0k >,∴k =16, ∴反比例函数的解析式为y =16x , ∵AC ⊥y 轴,AC =2,∴A 点的横坐标为2,当x =2时,y =16÷2=8,∴CD =OC ﹣OD =8﹣2=6,∴S △ACD =12×2×6=6. 故答案为6.【点睛】本题考查了反比例函数比例系数k 的几何意义:在反比例函数图象y =k x中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 14.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+∴()7436255x x k x x ++=⋅=⋅+∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.15.【分析】过点B 作BH ⊥OC 于H 构造出矩形利用矩形的性质进而求解出CDEF 的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B 作BH ⊥OC 于H ∵A (04)B (24)∴OA =4AB =2AB ∥OC ∴ 解析:2360【分析】过点B 作BH ⊥OC 于H ,构造出矩形,利用矩形的性质,进而求解出C 、D 、E 、F 的坐标,最终分别计算出S 1,S 2,即可求出结果.【详解】如图,过点B 作BH ⊥OC 于H .∵A (0,4)、B (2,4),∴OA =4,AB =2,AB ∥OC ,∴∠ABO =∠BOC ,∵OB 平分∠ABC ,∴∠ABO =∠OBC ,∴∠BOC =∠OBC ,∴CB =OC ,设BC =OC =m ,∵BH ⊥OC ,AB ∥OC ,∴∠AOH =∠OHB =∠ABH =90°,∴四边形ABHO 是矩形,∴BH =OA =4,AB =OH =2,在Rt △BCH 中,则有m 2=42+(m ﹣2)2,∴m =5,∴C (5,0),∴直线B C 的解析式为42033=-+y x , ∵反比例函数k y x=经过点B (2,4), ∴k =8,由842033yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,解得24xy=⎧⎨=⎩或383xy=⎧⎪⎨=⎪⎩,∴D(3,83),∴直线OD的解析式为89y x=,∵OE=EC,∴E(52,0),∴直线BE的解析式为y=﹣8x+20,由82089y xy x=-+⎧⎪⎨=⎪⎩,解得942xy⎧=⎪⎨⎪=⎩,∴F(94,2),∴S1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S2=12×52×2=52,∴122323245602SS==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.16.4【分析】根据反比例函数系数k的几何意义求出S1+S阴影和S2+S阴影求出答案【详解】解:∵AB两点在双曲线上∴S1+S阴影=3S2+S阴影=3∴S1+S2=6-2=4故答案为:4【点睛】本题考查的解析:4【分析】根据反比例函数系数k 的几何意义,求出S 1+S 阴影和S 2+S 阴影,求出答案.【详解】解:∵A 、B 两点在双曲线3y x=上, ∴S 1+S 阴影=3,S 2+S 阴影=3,∴S 1+S 2=6-2=4,故答案为:4.【点睛】本题考查的是反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|. 17.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.18.300【分析】先利用待定系数法求出再根据利润(售价进价)销量建立方程然后解方程即可得【详解】由题意设将代入得:解得则设要使该款运动鞋每天的销售利润达到元其售价应定为元则整理得:解得经检验是所列方程的 解析:300【分析】 先利用待定系数法求出6000y x=,再根据“利润=(售价-进价)⨯销量”建立方程,然后解方程即可得.【详解】 由题意,设k y x=, 将(200,30)代入得:30200k =,解得6000k =, 则6000y x=, 设要使该款运动鞋每天的销售利润达到2400元,其售价应定为a 元,则()60001802400a a-⋅=, 整理得:()51802a a -=,解得300a =,经检验,300a =是所列方程的解,故答案为:300.【点睛】本题考查了利用待定系数法求反比例函数的解析式、分式方程的应用,正确求出售价与销量之间的反比例函数关系式是解题关键.19.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】 解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.20.【分析】过点A 作AH ⊥x 轴于点H 交BD 于点F 则四边形ACOH 和四边形ACDF 均为矩形根据S 矩形BEOD=16可得k 的值即可得到矩形ACOH 和矩形ACDF 的面积进而求出S △ACD 【详解】解:过点A 作A解析:6【分析】过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形,根据S 矩形BEOD =16,可得k 的值,即可得到矩形ACOH 和矩形ACDF 的面积,进而求出S △ACD .【详解】解:过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形∵S 矩形BEOD =16,反比例函数()0k y x x=>经过点B ∴k=16 ∵反比例函数()0k y x x=>经过点A ∴S 矩形ACOH =16∵AC=2∴OC=16÷2=8 ∴CD=OC-OD=OC-BE=8-2=6∴S 矩形ACDF =2×6=12∴S △ACD =12S 矩形ACDF =12×12=6. 故答案为6.【点睛】 本题主要考查了反比例函数系数k 的几何意义和性质. 通过矩形的面积求出k 的值是解本题的关键.三、解答题21.(1)反比例函数的解析式为6y x =-,一次函数的解析式为1y x =--;(2)x <-3或0<x <2;(3)703⎛⎫ ⎪⎝⎭,【分析】(1)由正方形OABC 的顶点C 坐标,确定出边长,及四个角为直角,根据2AD AM ==,求出AD 的长,确定出D 坐标,代入反比例解析式求出m 的值,再由2AD AM ==,确定出MO 的长,即M 坐标,将M 与D 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)联立方程组求得一次函数与反比例函数的交点坐标,然后结合函数图像确定使一次函数值大于反比例函数值的x 的取值范围;(3)设P (0,y ),根据四边形OMDP 的面积与四边形OMNC 的面积相等,列方程求出y 的值,确定出P 坐标即可.【详解】解:(1)∵正方形OABC 的顶点C (0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵2AD AM ==∴D (-3,2),M (-1,0)把D (-3,2)代入反比例函数m y x =中,23m =-,解得m=-6 把D (-3,2),M (-1,0)代入一次函数y kx b =+中320k b k b -+=⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩∴反比例函数的解析式为6y x=-,一次函数的解析式为1y x =-- (2)联立方程组61y x y x ⎧=-⎪⎨⎪=--⎩,解得1132x y =-⎧⎨=⎩,222-3x y =⎧⎨=⎩ ∴使一次函数值大于反比例函数值的x 的取值范围为x <-3或0<x <2(3)连接MN ,DP ,OD由题意可得N (-2,3) ∴119()(12)3222OMNC S OM NC OC =+=+⨯=四边形 1131231222OMD OPD OMDP S S S y y =+=⨯⨯+⨯=+△△四边形 由题意,391=22y +,解得7=3y ∴P 点坐标为703⎛⎫ ⎪⎝⎭,【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.22.(1)反比例函数关系式:4y=x;一次函数关系式:y=2x+2;(2)2;(3)x<-2或0<x<1.【分析】(1)由B点在反比例函数y=mx图象上,可求出m,再由A,B点在一次函数图象上,由待定系数法求出函数解析式;(2)由(1)可得A,C两点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=mx的图象在一次函数y=kx+b图象的上方,即可求出对应的x的范围.【详解】(1)∵B(1,4)在反比例函数y=mx的图象上,∴m=4,又∵A(n,−2)在反比例函数y=mx的图象上,∴n=−2,又∵A(−2,−2),B(1,4)是一次函数y=kx+b图象上的点,∴可得224k bk b-+=-⎧⎨+=⎩,解得k=2,b=2,∴反比例函数关系式为4yx=;一次函数关系式:y=2x+2;(2)如图,过点A作AE⊥CE,由(1)可得A(−2,−2),C(0,2),∴AE=2,CO=2, ∴1122222AOC S CO AE =⨯=⨯⨯=. (3)由图象知:当0<x<1和x<−2时函数 y=m x 的图象在一次函数y=kx+b 图象的上方, ∴不等式kx+b<m x的解集为:0<x<1或x<−2. 【点睛】 本题考查一次函数与反比例函数的综合运用,灵活运用一次函数和反比例函数的图象、性质及解析式是解题关键.23.(1)b=3,k=-2;(2)5()3P 0,;(3)x<-2或-1<x<0 【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A 、B 的坐标,再根据点A′与点A 关于y 轴对称,求出点A′的坐标,设出直线A′B 的解析式为y =mx +n ,结合点的坐标利用待定系数法即可求出直线A′B 的解析式,令直线A′B 解析式中x 为0,求出y 的值,即可得出结论;(3)根据两函数图象的上下关系结合点A 、B 的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y =x +b 的图象与反比例函数k y x=(x <0)的图象交于点A (−1,2),把A (−1,2)代入两个解析式得:2=(−1)+b ,2=−k ,解得:b =3,k =−2;(2)作点A 关于y 轴的对称点A′,连接A′B 交y 轴于点P ,此时点P 即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m nm n+-+==,解得:1353mn⎧⎪⎪⎨⎪⎪⎩==,∴直线A′B的解析式为y=13x+53.令x=0,则y=53,∴点P的坐标为(0,53);(2)观察函数图象,发现:当x<−2或−1<x<0时,一次函数图象在反比例函数图象下方,∴当x+b<kx时,x的取值范围为x<−2或−1<x<0.【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B 的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.24.(1)8yx=-;2y x=--;(2)C(-2,0);6;(3)0<x<2或x<-4.【分析】(1)根据A(-4,2)在反比例函数myx=的图象上求出m的值,根据题意求出n的值,再运用待定系数法求出一次函数的解析式;(2)求出y=-x-2与x 轴的交点C 的坐标,根据△AOB 的面积=△AOC 的面积+△COB 的面积求出△AOB 的面积;(3)观察图象得到答案.【详解】(1)∵A (-4,2)在m y x =上, ∴m=-8.∴反比例函数的解析式为8y x =-. ∵B (n ,﹣4)在8y x=-上, ∴n=2. ∴B (2,-4). ∵y=kx+b 经过A (﹣4,2),B (2,﹣4),4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩ ∴一次函数的解析式为2y x =--.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=-2.∴点C (-2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =112224622⨯⨯+⨯⨯= (3)不等式0m kx b x +-<的解集为0<x <2或x <-4. 【点睛】本题考查的是一次函数与反比例函数的交点和待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.25.(1)m =-2,n=3 ;(2)x ≤﹣2或x >0;0<x <4或x <﹣2; (3)点Q 的坐标为(4,3)或(43)或(34,3)或(4,﹣3) 【分析】(1)把点A 、B 的坐标代入直线的解析式求解即可;(2)满足条件y 2≥﹣6且y 2≠0时的x 的取值范围即为反比例函数2k y x=在直线y =﹣6与x 轴之间的图象与第一象限内的图象对应的x 的范围,满足y 1﹣y 2<0时自变量x 的取值范围即为反比例函数比直线高的图象部分对应的x 的取值范围,据此解答即可;(3)先求出点B 的坐标,再分三种情况:①AB 、BP 为菱形的边,如图1;②AB 为菱形的对角线,如图2;③AB 为边、BP 为对角线,如图3;分别利用菱形的性质和勾股定理求解即可.【详解】解:(1)把点A (4,n )和M (m , ﹣6)代入一次函数1332y x =-, 得:34332n =⨯-=,3632m -=-, ∴2m =-,3n =;(2)对2k y x=,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为x ≤﹣2或x >0; 若y 1﹣y 2<0即y 1<y 2时自变量x 的取值范围为0<x <4或x <﹣2; (3)对1332y x =-,可得点B 的坐标为(2,0), ①若AB 、BP 为菱形的边,则()()22423013AB =-+-=,若点P 在点B 右侧,如图1,则BP=AQ=AB=13,所以点Q 的坐标为(413+,3);若点P 在点B 左侧,同理可得点Q 的坐标为(413-,3);②若AB 为菱形的对角线,如图2,设点Q 坐标为(n ,3),则BQ=AQ=4-n , 过点Q 作QF ⊥x 轴于点F ,则BF=2-n ,QF=3,在Rt △BQF 中,根据勾股定理,得()()222324n n +-=-,解得34n =, ∴点Q 的坐标为(34,3);③若AB 为边、BP 为对角线,如图3,由菱形的性质知:点Q 、A 关于x 轴对称,∴点Q 的坐标为(4,﹣3);综上,点Q 的坐标为(413,3)或(413+,3)或(34,3)或(4,﹣3). 【点睛】 本题主要考查了一次函数与反比例函数的图象与性质、菱形的性质以及勾股定理等知识,属于常考题型,熟练掌握相关知识、灵活应用数形结合的思想是解题的关键.26.(1)22y x =-;(2)(4,0),(2,0)-.【分析】(1)将点A 的坐标代入反比例函数解析式中即可求出m ,然后将点A 的坐标代入一次函数解析式中即可求出结论;(2)将三角形以x 轴为分界线,分为两个三角形,先求出点C 和点B 的坐标,再把两个三角形的面积相加即可求出CP 的长,从而求出结论.【详解】(1)根据题意,将点(,2)A m 代入4y x=, 得:42m=, 解得:2m =,即点(2,2)A , 将点(2,2)A 代入y kx k =-,得:22k k =-,解得:2k =,∴一次函数的解析式为22y x =-;(2)如图,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数单元测试题一、选择题(每小题3分,共30分)
1.当x>0时,函数y=-的图象在()
A.第四象限B.第三象限C.第二象限D.第一象限2.设点A(x1,y1)和B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1<y2,
则一次函数y=-2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限
3.在同一直角坐标系中,函数和(k≠0)的图象大致是()
4.如图所示,矩形ABCD中,,动点P从A点出发,按的方向在AB和BC上移动.记,点D到直线PA的距离为y,则y关于x的函数图象大致是()
ABCD5.反比例函数y=的图象经过点(-2,3),则k的值为()A.6B.-6C.D.-6.(2014·兰州中考)若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.0B.2C.3D.47.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度(单位:kg/m3)与体积V(单位:m3)满足函数关系式=(k为常数,k≠0),其图象如图所示,则k的值
为()A.9B.-9C.4D.-4
8.已知点、、都在反比例函数的图象上,则的大小关系是()A.B.C.D.
第4题图9.如图所示,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为()
A.8B.10C.12D.24
第9题图第10题图10.如图所示,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=(x
>0)的图象与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤8二、填空题(每小题3分,共24分)
11.已知反比例函数的图象经过点A(–2,3),则当时,y=_____.12.如图所示,已知一次函数y=kx-4的图象与x轴,y轴分别交于A,B两点,与反比例函数y=在第一象限内的图象交于点C,且A为BC的中点,则k=.
13.已知反比例函数,当时,其图象的两个分支在第一、三象限内;当时,
其图象在每个象限内随的增大而增大.14.已知,是同一个反比例函数图象上的两点.若,且,则这
个反比例函数的表达式为.
15.现有一批救灾物资要从A市运往B市,如果两市的距离为500千米,车速为每小时千米,从A市到B
市所需时间为y小时,那么y与x之间的函数关系式为_________,y是x的________函数.16.如图所示,点A、B在反比例函数(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别
为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为.17.若一次函数的图象与反比例函数的图象没有公共点,则实数k的取值范围是.
18.若M(2,2)和N(b,-1-n2)是反比例函数y=图象上的两点,则一次函数
y=kx+b的图象经过第象限.
第16题图
第12题图三、解答题(共46分)
19.已知一次函数的图象与反比例函数的图象交A,B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.
20.如图所示,直线y=mx与双曲线相交于A,B两点,A点的坐标为(1,2).(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;
(3)计算线段AB的长.
第20题图21.如图所示是某一蓄水池的排水速度v(m3/h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的关系式;(3)若要6h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是,那么水池中的水要用多少小时排完?
22.(7分)若反比例函数与一次函数的图象都经过点A(a,2).(1)求反比例函数的解析式;(2)当反比例函数的值大于一次函数的值时,求自变量x的取值范围.23.(7分)如图所示,已知函数y=(x>0)的图象经过点A,B,点A的坐标为(1,2).过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;
(2)当BE=AC时,求CE的长.
24.(7分)如图所示,已知直线与轴、轴分别交于点A、B,与反比例函数()的图象分别交于点C、D,且C点的坐标为(,2).⑴分别求出直线AB及反比例函数的表达式;⑵求出点D的坐标;⑶利用图象直接写出:当x在什么范围内取值时,>?
25.(7分)如图所示,一次函数y1=x+1的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y1与y2的大小.第二十六章反比例函数单元测试题参考答案1.A解析:因为函数y=-中k=-5<0,所以其图象位于第二、四象限,当x>0时,其图象位于第四象限.2.A解析:对于反比例函数,∵x1<x2<0时,y1<y2,说明在同一个象限内,y随x的增大而增大,
∴k<0,∴一次函数y=-2x+k的图象与y轴交于负半轴,其图象经过第二、三、四象限,不经过第一象限.
3.A解析:由于不知道k的符号,此题可以分类讨论,当时,反比例函数的图象在第一、三象限,一次函数的图象经过第一、二、三象限,可知A项符合;同理可讨论当时的情况.
4.B解析:当点P在AB上移动时,点D到直线PA的距离为DA的长度,且保持不变,其图像为经过点(0,4)且与x轴平行的一条线段,当点P在BC上移动时,△PAD的面积为,不会发生变化,又
因为,所以,所以,所以其图像为双曲线的一支,故选B.5.C解析:把点(-2,3)代入反比例函数y=中,得3=,解得k=.6.A解析:∵反比例函数的图象位于第二、四象限,∴k-1<0,∴k<1.只有A项符合题意.
7.A解析:由图象可知,函数图象经过点(6,1.5),则1.5=,解得k=9.
8.D解析:因为反比例函数的图象在第一、三象限,且在每个象限内y随x的增大而减小,所以.又因为当时,,当时,,所以,,故选D.9.C解析:∵点A、B都在反比例函数的图象上,∴A(-1,6),B(-3,2).设直线AB的解析式
为,则解得∴直线AB的表达式为,∴C(-4,0).在△中,OC=4,OC边上的高(即点A到x轴的距离)为6,∴△的面积
10.A解析:当反比例函数图象经过点C(1,2)时,k=2;当反比例函数图象与直线AB只有一个交点时,令-x+6=,得x2-6x+k=0,此时方程有两个相等的实数根,故=36-4k=0,所以k=9,所以k的取值范围是2≤k≤9,故选A.11.2解析:把点A(–2,3)代入中,得k=–6,即.把x=–3代入中,得y=2.12.4解析:因为一次函数的图象与y轴交于点B,所以B点坐标为(0,-4).第12题答图13.>1<1
14.解析:设反比例函数的表达式为,因为,,所以
.因为,所以,解得k=4,所以反比例函数的表达式为.15.反比例16.4解析:设点A(x,),∵OM=MN=NC,∴AM=,OC=3x.由S△AOC=·AM=·3x·=6,解
得k=4.17.解析:若一次函数的图象与反比例函数的图象没有公共点,则方程
没有实数根,将方程整理得Δ<0,即1+4k<0,解得.18.一、三、四解析:把M(2,2)代入y=得2=,解得k=4.把N(b,-1-n2)代入y=得-1-n2=,即﹣(1+n2)=,∴b<0,∴y=kx+b中,k=4>0,b<0,∴图象经过第一、三、四象限.19.解:(1)将与联立,得
(1)∵点A是两个函数图象的交点,将代入(1)式,得
,解得.
故一次函数解析式为,反比例函数解析式为.
将代入,得.∴点A的坐标为.
(2)点B在第四象限,理由如下:方法一:∵一次函数的图象经过第一、三、四象限,
反比例函数的图象经过第二、四象限,∴它们的交点都在第四象限,∴点B在第四象限.
方法二:由得,,解得.
代入方程组得即点B的坐标为(1,-4),∴点B在第四象限.
20.解:(1)把A(1,2)代入中,得.
∴反比例函数的表达式为.(2)或.(3)如图所示,过点A作AC⊥x轴,垂足为C.
第20题答图∵A(1,2),∴AC=2,OC=1.∴OA=.∴AB=2OA=2.21.分析:(1)观察图象易知蓄水池的蓄水量.
(2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数关系式.(3)求当h时的值.(4)求当时t的值.解:(1)蓄水池的蓄水量为12×4=48().
(2)函数的关系式为.