材料力学复习总结
材料力学复习总结

材料力学(拉伸压缩,剪切,扭转,弯曲)对比复习一,拉伸与压缩概念,公式,应用:1,与轴力FN 对应的应力是正应力 :-------与直杆轴向拉伸或压缩时斜截面上的应力:垂直于斜截面的正应力: 相切与斜截面的切应力:2,卸载定律:材料在卸载过程中应力和应变是线性关系。
冷作硬化:材料的比例极限增高,延伸率降低。
3,强度条件:强度校核-- ;设计截面- 许可载荷-- 4,轴向拉伸或压缩时的变形:纵向变形: ,( EA 为抗拉刚度), 其中为胡克定律的表达式,E 为弹性模量(因材料而不同)。
5,轴向拉伸或压缩时的应变能:固体在外力作用下,因变形而储存的能量。
,有胡克定律知:N F Aσ=2cos cos p αασασα==sin cos sin sin 22p ααστασααα===[]σN F A ≥[]σA F N ≤1l l l ∆=-l =εN A A σ==E Elσε==N F l Fll EA EA∆==12W F l =∆12V W F l ε==∆2122Fl F lF EA EA==6,静定问题:杆件的轴力都可由静力平衡方程解出; 超静定问题:杆件的轴力并不能全由静力平衡方程解出。
{超静定结构:结构的强度和刚度均得到提高}7,温度应力:,杆件的温度变形(伸长): ,杆端作用产生的缩短:变形条件:应用:为了避免过高的温度应力,可以增加伸缩节,留有伸缩缝。
二,剪切的相关问题;剪切受力特点:作用在构件两侧面上的外力合力大小相等、方向相反且作用线很近。
变形特点:位于两力之间的截面发生相对错动。
1,切应力强度条件:纯剪切:薄壁圆筒扭转时的切应力 ,2,切应力互等定理:在相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于两个平面的交线,方向则共同指向或共同背离这一交线。
T l l T lα∆=∆⋅RB F l l EA∆=-0T l l l ∆=∆+∆=RB l F lT l EAα∆⋅=[]ττ≤=AF s2e M r rπδτ=⋅⋅22e M r τπδ=3, 纯剪切:只有切应力并无正应力。
材料力学总复习

步 骤:1、近似微分方程 E Iw M (x)
2、积分
E Iw M (x )d x C 1
E I w [ M ( x ) d x ] d x C 1 x C 2
3、代入边界条件,解出积分常数
4、写出挠曲线方程和转角方程
材料力学
➢ 叠加法求挠度和转角
Fq
()
正确地、熟练地
A
B
C
a
a
使用附录Ⅳ
ε2 E 1[σ2(σ3σ1)]
ε3 E1[σ3(σ1σ2)]
材料力学
➢ 强度理论 ( )
相当应力 σr []
r1 1 σr2 σ1 (σ2 σ3)
σr3 σ1 σ3
σr4
1 2[(σ1
σ2
)2
(σ2
σ3
)2
(σ3
σ1)2
]
材料力学
强度计算的步骤
(1)外力分析:确定所需的外力值; (2)内力分析:画内力图,确定可能的危险面; (3)应力分析:画危面应力分布图,确定危险点并画出单元体,
25
材料力学
➢ 刚度条件
相对扭转角
Tl
GI p
刚度条件
max
Tmax GIp
180 []
26
材料力学
➢ 等直圆杆扭转时的应变能
应变能密度
vε
1
2
应变能
Vε
W
1T
2
1 T2l 2GIp
27
材料力学
1、等截面圆轴扭转时的危险点在
。
2、实心圆轴受扭,当其直径增加一倍时,则最大剪应力是
原来的(
截面应力:
T
Ip
()
T
max
材料力学知识点总结免费版

材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。
它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。
本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。
1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。
弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。
弹性力学的基本理论包括胡克定律、泊松比等。
2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。
塑性力学主要关注材料的塑性应变、塑性流动规律等。
常见的塑性变形方式包括屈服、硬化、流变等。
3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。
破裂力学主要关注材料的断裂韧性、断口形貌等。
常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。
4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。
疲劳力学主要关注材料的疲劳寿命、疲劳强度等。
材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。
5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。
断裂力学主要关注材料的应力集中系数、应力集中因子等。
在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。
6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。
成形加工力学主要关注材料的流变性质、加工硬化等。
常见的成形加工方式包括挤压、拉伸、压缩等。
7.热力学力学热力学力学研究材料在高温条件下的力学行为。
热力学力学主要关注材料的热膨胀、热应力等。
材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。
通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。
在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。
因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。
材料力学性能复习总结

材料力学性能复习总结材料力学性能是指材料在外力作用下所表现出的力学特性和性能。
在材料力学性能的学习中,不仅需要了解材料的基本力学性质,还需要掌握材料的破坏机制、变形行为以及材料的力学性能测试方法等方面的知识。
以下是对材料力学性能复习的总结。
1.材料的破坏机制和破坏形态材料的破坏机制是指材料在受力作用下发生破坏的方式和过程。
常见的破坏机制有拉伸破坏、压缩破坏、剪切破坏等。
拉伸破坏时,材料会发生断裂;压缩破坏时,材料会出现压缩变形和压碎现象;剪切破坏时,材料会出现剪切变形和断裂等。
材料的破坏形态是指材料在受力作用下发生的形态变化。
常见的破坏形态有脆性断裂、塑性变形和疲劳破坏等。
脆性断裂是指材料在受静态或低应力下发生迅速断裂的性质;塑性变形是指材料在受力作用下发生塑性流动,而不发生断裂;疲劳破坏是指材料在反复受力下产生裂纹并最终导致断裂。
2.材料的变形行为和变形机制材料的变形行为是指材料在受力作用下发生的形变现象。
常见的变形行为有弹性变形、塑性变形和粘弹性变形等。
弹性变形是指材料在受力作用下发生的可逆性变形。
材料在弹性变形时能够恢复到原始形状和尺寸。
弹性变形的机制是原子之间的键能发生弹性形变,即在受力作用下原子间的距离发生变化,但不改变原子间的相对位置。
塑性变形是指材料在受力作用下发生的不可逆性变形。
材料在塑性变形时会发生晶格的滑移和位错的运动。
塑性变形的机制是原子间的键能发生塑性形变,即原子间的相对位置发生改变。
粘弹性变形是指材料在受力作用下表现出介于弹性变形和塑性变形之间的性质。
材料在粘弹性变形时有一部分能量会被消耗掉,导致材料的不完全恢复。
粘弹性变形的机制是在外力作用下,分子间的键发生的弹性形变和分子间的长距离位移。
3.材料力学性能的测试方法拉伸试验是指将材料置于拉力下进行测试。
通过拉伸试验可以了解材料的弹性性能、破坏强度、延展性以及断裂形态等。
压缩试验是指将材料置于压力下进行测试。
通过压缩试验可以了解材料的强度和刚度等。
材料力学知识点总结

材料力学知识点总结材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
它是工程力学的一个重要分支,对于机械、土木、航空航天等工程领域具有重要的意义。
以下是对材料力学主要知识点的总结。
一、拉伸与压缩拉伸和压缩是材料力学中最基本的受力形式。
在拉伸或压缩时,杆件的内力称为轴力。
通过截面法可以求出轴力的大小,轴力的正负规定为拉力为正,压力为负。
胡克定律描述了应力与应变之间的线性关系,在弹性范围内,应力与应变成正比,即σ =Eε,其中σ为正应力,ε为线应变,E 为材料的弹性模量。
材料在拉伸和压缩过程中会经历不同的阶段。
低碳钢的拉伸实验是研究材料力学性能的重要手段,其拉伸曲线可分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。
通过拉伸实验可以得到材料的屈服极限、强度极限等重要力学性能指标。
二、剪切与挤压剪切是指在一对大小相等、方向相反、作用线相距很近的横向外力作用下,杆件的横截面发生相对错动的变形形式。
剪切面上的内力称为剪力,其大小可以通过截面法求得。
在工程中,通常还需要考虑连接件的挤压问题。
挤压面上的应力称为挤压应力,其大小与挤压面的面积和外力有关。
三、扭转扭转是指杆件受到一对大小相等、方向相反、作用面垂直于杆件轴线的力偶作用时,杆件的横截面将绕轴线发生相对转动的变形形式。
圆轴扭转时,横截面上的内力为扭矩。
扭矩的正负规定为右手螺旋法则,拇指指向截面外为正,指向截面内为负。
根据材料力学的理论,圆轴扭转时横截面上的切应力呈线性分布,最大切应力发生在圆周处。
四、弯曲弯曲是指杆件在垂直于轴线的外力或外力偶作用下,轴线由直线变为曲线的变形形式。
梁在弯曲时,横截面上会产生弯矩和剪力。
弯矩的正负规定为使梁下侧受拉为正,上侧受拉为负;剪力的正负规定为使截面顺时针转动为正,逆时针转动为负。
弯曲正应力和弯曲切应力是弯曲问题中的重要应力。
弯曲正应力沿截面高度呈线性分布,最大正应力发生在截面的上下边缘处。
弯曲切应力在矩形截面梁中,其分布规律较为复杂,但在一些常见的情况下,可以通过公式进行计算。
材料力学知识点总结(重、难点部分)

第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。
(2)理解变形固体的基本假设、条件及其意义。
(3)明确内力的概念、初步掌握用截面法计算内力的方法。
(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。
(5)了解杆件变形的受力和变形特点。
二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。
在外力作用下,构件内部两部分间的附加相互作用力称为内力。
内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。
2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。
截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。
一点处的全应力可以分解为两个应力分量。
垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。
应力单位为Pa 。
1MPa=610Pa, 1GPa=910Pa 。
应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。
3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。
利用截面法求内力的四字口诀为:切、抛、代、平。
一切:在欲求内力的截面处,假想把构件切为两部分。
二抛:抛去一部分,留下一部分作为研究对象。
至于抛去哪一部分,视计算的简便与否而定。
三代:用内力代替抛去部分队保留部分的作用力。
一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。
四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。
4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。
完整版材料力学复习总结

1、材料力学的任务:强度、刚度和稳定性;应力单位面积上的内力。
平均应力P m F(1.1)A全应力p lim p m lim —dF(1.2)A A 0 A dA正应力垂直于截面的应力分量,用符号表示。
切应力相切于截面的应力分量,用符号表示。
应力的量纲:国际单位制:Pa(N/m2)、MPa、GPa工程单位制:kgf/m2、kgf/cm2线应变单位长度上的变形量,无量纲,其物理意义是构件上一点沿某一方向变形量的大小。
外力偶矩传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速n与传递的功率P来计算当功率P单位为千瓦(kW),转速为n (r/min )时,外力偶矩为PM e 9549 (N .m)n当功率P单位为马力(PS),转速为n (r/min)时,外力偶矩为PM e 7024 (N .m)n拉(压)杆横截面上的正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为甩(3-1)A式中F N为该横截面的轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)的适用条件:(1 )杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角200时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力p cos(3-2)正应力 2 cos(3-3)切应力1sin 22(3-4)式中为横截面上的应力。
正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
图1.2对脱离体内一点产生顺时针力矩的为正,反之为负。
两点结论:(2)当45时,即与杆轴成450的斜截面上,达到最大值,即()max 乙1 . 2拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学复习总结 Revised by Liu Jing on January 12, 2021《材料力学》第五版刘鸿文 主编第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:NF Aσ=注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F Aσσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F Aσσ=≤一定要有结论 2.设计截面[],maxN F A σ≥3.确定许可荷载[],max N F A σ≤七、线应变ll ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F ll EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l llδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
对没有明显屈服极限的塑性材料,如何来确定其屈服指标见课本第24页。
十一、重点内容:1.画轴力图;2.利用强度条件解决的三种问题;3.强度校核之后一定要写出结论,满足强度要求还是不满足强度要求;4.利用胡克定律N F ll EA∆=求杆的变形量:注意是伸长还是缩短。
典型例题及习题:例 例 习题 第三章 扭转一、如何根据功率和转速计算作用在轴上的外力偶矩,注意功率、转速和外力偶矩的单位。
9549e P M n= 二、扭矩及扭矩图:利用右手螺旋规则(见课本75页倒数第二段)判断的是扭矩的正负号而不是外力偶矩的正负号,扭矩是内力而外力偶矩是外力 。
三、圆轴在扭转时横截面的切应力分布规律:习题四、圆轴在扭转时横截面上距圆心为ρ处的切应力的计算公式pT I ρρτ=五、对于实心圆轴和空心圆轴极惯性矩和抗扭截面系数的计算公式实心圆:432p D I π= 316t D W π=空心圆:()44132p D I πα=- ()34116t D W πα=- 其中d Dα=六、轴在扭转时的切应力强度条件[]maxmax tT W ττ=≤及解决的3种问题:强度校核(一定要有结论)、设计截面、确定许可荷载。
七、相距为l 的两截面间的相对扭转角pTlGI ϕ=,单位是rad ;单位长度扭转角'pTGI ϕ=,单位是/rad m 八、圆轴在扭转时的刚度条件''max max 180p T GI ϕϕπ⎡⎤=⨯≤⎣⎦(注意单位:给出的许用单位长度扭转角是度/米还是弧度/米)九、切应力互等定理及剪切胡克定律:见课本78,79页十、重点内容:1.画扭矩图;2.强度条件及刚度条件的校核,校核之后一定要写出结论,满足要求还是不满足要求;3.极惯性矩和抗扭截面系数的计算公式;4.利用强度条件和刚度条件来设计截面尺寸,最后要选尺寸大的那个。
典型例题及习题:例 例 习题 第四章 弯曲内力一、剪力和弯矩正负号的规定:课本117,118页二、如何快速利用简便方法来计算任意截面上的剪力和弯矩:横截面上的剪力在数值上等于左侧或右侧梁段上所有外力的代数和,对于左侧梁段,向上的外力将产生正值的剪力,向下的外力将产生负值的剪力。
对于右侧梁段,向下的外力将产生正值的剪力,向上的外力将产生负值的剪力。
横截面上的弯矩在数值上等于左侧或右侧梁段上所有外力对该截面形心产生的力矩的代数和。
无论左侧梁段还是右侧梁段,向上的外力均产生正值的弯矩,向下的外力均产生负值的弯矩;对于左侧梁段,顺时针方向的外力偶将产生正值的弯矩,逆时针方向的外力偶将产生负值的弯矩。
对于右侧梁段,逆时针的外力偶将产生正值的弯矩,顺时针的外力偶将产生负值的弯矩。
三、利用写剪力方程和弯矩方程的方法来画剪力图和弯矩图四、用剪力、弯矩、均布荷载三者间的微分关系来画剪力图和弯矩图,利用三者间的微分关系也可以来检查画的图是否正确。
五、掌握上课时画在黑板上的表,准确判断当外力为不同情况时剪力图和弯矩图的规律及突变规律。
六、剪力为零的位置弯矩有极值,要把极值弯矩求出来,可利用积分关系来求。
七、重点内容:画剪力图和弯矩图典型例题及习题:做过的题目 第五章 弯曲应力一、基本概念(见课本139页相关知识):纯弯曲、横力弯曲、中性层、中性轴(实际是过形心的形心轴)二、弯曲时横截面上距中性轴为y 处正应力的计算公式zMyI σ=正应力正负号的判断:根据变形特征来判断,如果处于受拉部分则为拉应力,如果处于受压部分则为压应力。
三、弯曲时横截面上正应力的分布规律图:见141页图和147页图四、正应力强度条件[]max max maxmax z zM y M I W σσ==≤及解决的3种问题 五、矩形截面、实心圆及空心圆惯性矩z I 及抗弯截面系数z W 的计算公式矩形截面:312z bh I = 26z bh W = 实心圆:464z D I π= 332z D W π=空心圆:()44164z D I πα=- ()34132z D W πα=- 其中dDα=六、矩形截面梁切应力的分布规律:2224SzFh y I τ⎛⎫=- ⎪⎝⎭见150页图 最大切应力:,max max 1.5S F bhτ=七、切应力的强度校核[]*max max maxS z z F S I bττ=≤*max z S 是中性轴以下部分截面对中性轴的静矩,b 是中性轴穿过的截面宽度八、重点内容:利用正应力强度条件解决3种问题,切应力的强度校核 典型例题及习题:例 例 习题 附录一、静矩z AS ydA =⎰ y AS zdA =⎰,其量纲是长度的三次方。
二、形心:1.不规则图形:_AzydA S y AA==⎰ _y AzdA S z AA==⎰2.规则图形:__i iiA yy A=∑∑ __i iiA z z A=∑∑三、静矩与形心的关系:课本374页四、惯性矩2y AI z dA =⎰,2z AI y dA =⎰,极惯性矩2p AI dA ρ=⎰,惯性矩和极惯性 矩之间的关系p y z I I I =+ ,各种常用图形惯性矩和极惯性矩的计算见第三章和第五章有关公式。
五、惯性矩的平行移轴公式2y yc I I a A =+,2z zc I I b A =+,其中yc 轴和zc 轴是图形的形心轴,a 是两平行轴y 轴和yc 轴之间的距离;b 是两平行轴z 轴和zc 轴之间的距离。
六、重点内容:1.静矩和形心的计算;2.静矩和形心的关系;3.各种常用图形惯性矩和极惯性矩的计算;4.利用平行移轴公式计算不对称图形的惯性矩。
典型例题及习题:例 例 例 习题第六章 弯曲变形一、衡量弯曲变形的两个指标是:挠度和转角(挠度以向上为正,向下为负;转角以逆时针为正,顺时针为负)二、挠曲线的近似微分方程是:()''EI M x ω= 三、转角方程:()'EI EI M x dx C θω==+⎰挠曲线方程:()EI M x dxdx Cx D ω=++⎰⎰四、求积分常数时的边界条件及连续性条件是如何确定的见课本180页图和图 五、用叠加法求弯曲变形六、重点内容: 衡量弯曲变形的两个指标、挠曲线的近似微分方程及边界条件和连续性条件、叠加法的应用。
典型例题及习题:第七章 应力和应变分析 强度理论一、正应力和切应力正负号的规定:正应力以拉伸为正,压缩为负;切应力对单元体内一点产生的力矩顺时针为正,逆时针为负。
α角是指从x 轴到截面的外法线方向,逆时针为正,顺时针为负。
二、会画轴向拉压、扭转及弯曲时任一点处的应力状态,尤其是对弯曲的情况应力状态比较复杂,见课本221页图三、掌握主平面及主应力的概念,3个主应力的大小顺序:123σσσ≥≥ 四、几个主要公式:1. 任意斜截面上的正应力及切应力计算公式cos 2sin 222x yx yxy ασσσσσατα+-=+- sin 2cos 22x yxy ασστατα-=+2.最大正应力及最小正应力的计算公式max min 2x y σσσσ+⎫=⎬⎭max σ和min σ实际上是主应力。
3.最大切应力及最小切应力的计算公式max min ττ⎫=⎬⎭4.主平面的方位02tan 2xyx yτασσ=--,可以求出相差为90度的两个角度0α;如约定用x σ表示两个正应力中代数值较大的一个,即x y σσ≥,则两个角度0α中,绝对值较小的一个确定max σ所在的平面。
要求:能在单元体上画出主平面的位置。
五、如何画应力圆六、应力圆圆周上的点和单元体上的面存在着一一对应的关系。
见课本224页第二段七、广义胡克定律:()()()111x x y z y y z x z z x y EE E εσμσσεσμσσεσμσσ⎫⎡⎤=-+⎪⎣⎦⎪⎪⎡⎤=-+⎬⎣⎦⎪⎪⎡⎤=-+⎪⎣⎦⎭ xy xy yz yz zx zx G G G τγτγτγ⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭当单元体的六个面皆为主平面时,广义胡克定律的表达式见课本238页公式及公式d ,此时的线应变称为主应变。
八、强度理论及4个相当应力第一强度理论:最大拉应力理论 11r σσ=第二强度理论:最大伸长线应变理论 ()2123r σσμσσ=-+ 第三强度理论:最大切应力理论 313r σσσ=-第四强度理论:畸变能密度理论 4r σ=其中第一、二强度理论适用于脆性材料,第三、四强度理论适用于塑性材料 要求记住四个强度理论的内容及各自的相当应力的表达式。
九、 重点内容:1.会画单元体的应力状态2.求任意斜截面上的正应力及切应力3.由应力状态求主应力的大小、主平面的位置、在单元体上绘出主平面的位置及主应力的方向、最大切应力。