材料力学主要知识点归纳

合集下载

(完整版)材料力学重点总结

(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3。

材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5。

材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。

因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。

应力的单位是帕斯卡(Pa),即XXX/平方米。

第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。

应变分为线性应变和非线性应变两种。

线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。

非线性应变则不满足这个比例关系。

2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。

3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。

XXX模量的大小反映了材料的柔软程度和刚度。

杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。

综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。

构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。

截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。

胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。

应力是指在截面m-m上某一点K处的力量。

它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。

其中,σ称为正应力,τ称为切应力。

将应力的比值称为微小面积上的平均应力,用表示。

在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。

杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。

某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学主要知识点归纳

材料力学主要知识点归纳

材料力学主要知识点一、基本概念1、构件正常工作的要求:强度、刚度、稳定性。

2、可变形固体的两个基本假设:连续性假设、均匀性假设。

另外对于常用工程材料(如钢材),还有各向同性假设。

3、什么是应力、正应力、切应力、线应变、切应变。

杆件截面上的分布内力集度,称为应力。

应力的法向分量σ称为正应力,切向分量τ称为切应力。

杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。

4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。

5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。

6、强度理论及其相当应力(详见材料力学ⅠP229)。

7、截面几何性质A 、截面的静矩及形心①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=Ay xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。

B 、极惯性矩、惯性矩、惯性积、惯性半径① 极惯性矩:⎰=A P dA I 2ρ② 对x 轴惯性矩:⎰=A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=Axy xydA I ④ 惯性半径:A I i x x =,A I i y y =。

C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b为y c 距y 轴距离。

② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,b 为截面形心距y 轴距离。

二、杆件变形的基本形式1、轴向拉伸或轴向压缩:A 、应力公式 AF =σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。

C 、应变公式E σε=D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。

材料力学复习笔记

材料力学复习笔记

材料力学(一)轴向拉伸与压缩【内容提要】材料力学主要研究构件在外力作用下的变形、受力与破坏、失效的规律。

为设计既安全可靠又经济合理的构件,提供有关强度、刚度与稳定性分析的基本理论与方法。

【重点、难点】重点考察基本概念,掌握截面法求轴力、作轴力图的方法,截面上应力的计算。

【内容讲解】一、基本概念强度—-构件在外力作用下,抵抗破坏的能力,以保证在规定的使用条件下,不会发生意外的断裂或显著塑性变形.刚度-—构件在外力作用下,抵抗变形的能力,以保证在规定的使用条件下不会产生过分的变形。

稳定性--构件在外力作用下,保持原有平衡形式的能力,以保证在规定的使用条件下,不会产生失稳现象。

杆件——一个方向的尺寸远大于其它两个方向的尺寸的构件,称为杆件或简称杆。

根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。

二、材料力学的基本假设工程实际中的构件所用的材料多种多样,为便于理论分析,根据它们的主要性质对其作如下假设。

(一)连续性假设-—假设在构件所占有的空间内均毫无空隙地充满了物质,即认为是密实的。

这样,构件内的一些几何量,力学量(如应力、位移)均可用坐标的连续函数表示,并可采用无限小的数学分析方法。

(二)均匀性假设——很设材料的力学性能与其在构件中的位置无关。

按此假设通过试样所测得的材料性能,可用于构件内的任何部位(包括单元体).(三)各向同性假设——沿各个方向均具有相同力学性能。

具有该性质的材料,称为各向同性材料。

综上所述,在材料力学中,一般将实际材料构件,看作是连续、均匀和各向同性的可变形固体。

三、外力内力与截面法(一)外力对于所研究的对象来说,其它构件和物体作用于其上的力均为外力,例如载荷与约束力.外力可分为:表面力与体积力;分布力与集中力;静载荷与动载荷等.当构件(杆件)承受一般载荷作用时,可将载荷向三个坐标平面(三个平面均通过杆的轴线,其中两个平面为形心主惯性平面)内分解,使之变为两个平面载荷和一个扭转力偶作用情况.在小变形的情况下,三个坐标平面内的力互相独立,即一个坐标平面的载荷只引起这一坐标平面内的内力分量,而不会引起另一坐标平面内的内力分量。

材料力学各章重点内容总结

材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

“材料力学”重点归纳

“材料力学”重点归纳

“材料力学”重点归纳
第一章静力学基础
掌握:静力学基本概念和定理:力、力偶、平衡力系、等效力系、合力投影定理、合力矩定理、力线平移定理、静力学的基本任务等。

重点掌握:掌握各种力系的简化和平衡方程应用。

了解材料力学的发展沿革,理解本课程的任务、内容、目的。

第二章材料力学绪论
掌握:了解材料力学的基本任务和杆件的基本变形。

重点掌握:材料力学的基本概念:弹性变形、塑性变形、破坏、强度、刚度、稳定性、内力、应力、应变等。

第三章应力分析和应变分析理论
掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应变张量、偏斜应力张量、偏斜应变张量等概念。

应力分析理论、应变分析理论。

重点掌握:应力状态、应力张量、应力张量不变量、空间应力圆、等效应力、八面体应力、变形位移、应变状态、应力分析理论。

第四章固体材料的弹性本构关系和塑性本构关系
掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、主应力空间、屈服函数、常用屈服条件、常用强度理论等。

重点掌握:固体材料弹性变形和塑性变形的主要特点、弹性本构关系(广义胡克定律)、常用屈服条件和强度理论等。

第五章材料力学实验
了解和掌握金属材料单轴拉伸和压缩力学实验的原理和方法。

材料力学知识点总结

材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学主要知识点
一、基本概念
1、构件正常工作的要求:强度、刚度、稳定性。

2、可变形固体的两个基本假设:连续性假设、均匀性假设。

另外对于常用工程材料(如钢材),还有各向同性假设。

3、什么是应力、正应力、切应力、线应变、切应变。

杆件截面上的分布内力集度,称为应力。

应力的法向分量σ称为正应力,切向分量τ称为切应力。

杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。

4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。

5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。

6、强度理论及其相当应力(详见材料力学ⅠP229)。

7、截面几何性质
A 、截面的静矩及形心
①对x 轴静矩⎰=A x ydA S ,对y 轴静矩⎰=A
y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。

B 、极惯性矩、惯性矩、惯性积、惯性半径
① 极惯性矩:⎰=A P dA I 2ρ
② 对x 轴惯性矩:⎰=
A x dA y I 2,对y 轴惯性矩:⎰=A y dA x I 2 ③ 惯性积:⎰=A
xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。

C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b
为y c 距y 轴距离。

② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离,
b 为截面形心距y 轴距离。

二、杆件变形的基本形式
1、轴向拉伸或轴向压缩:
A 、应力公式 A
F =
σ B 、杆件伸长量EA F N l l =∆,E 为弹性模量。

C 、应变公式E σ
ε=
D 、对于偏心拉压时,通常将荷载转换为轴心受力与偏心矩进行叠加。

2、扭转
A 、切应力:p W T Tr ==p I τ,r
I W p p =;p I 为圆截面极惯性轴,p W 为扭转截面系数。

B 、切应变G τγ=
,G 为切变模量。

3、剪切
A 、切应力一般公式b S F z s z *I =τ,s F 为横截面上剪力;z I 为横截面对中性轴的惯性矩;b 为计算点处截面宽度;*z S 为横截面上距中性轴为y 的横线以外部分的面积对中性轴的静矩。

B 、矩形截面切应力A 23s F =
τ, C 、圆形截面:A
34s F =τ; 注:在剪切实用计算中采用名义切应力A s F =
τ进行简化计算(详见材料力学ⅠP270)。

D 、工字型截面:d
S F z s z *I =τ,d 为腹板厚度。

4、弯曲
A 、中性轴:①中性轴处正应力为0;②中性轴通过截面形心。

B 、正应力公式z
I My =σ 最大正应力z max W M =
σ,max y z z I W =;z W 称为弯曲截面系数。

三、弯矩及剪力图绘制
1、左端向上,右端向下相对错动时,剪力为证;微段弯曲为向下凸起,弯矩为正。

注:剪力图正值汇在梁体上侧,弯矩正值画在梁的受拉侧。

2、对弯矩函数求导,可得剪力函数;对剪力函数求导,可得均布荷载集度。

3、弯矩图与剪力图特征(详见材料力学ⅠP105)。

4、利用叠加原理进行内力图绘制。

四、梁弯曲时的位移计算
1、基本方程:)('
'x M EI -=ω;ω为梁变形后轴线函数,)(x M 为梁弯矩函数。

2、对基本方程进行积分,利用已知边界条件求出积分常数,即可得挠曲线方程。

注:挠度以向下为正值。

3、梁的挠度和转角同样可以通过叠加原理求解。

4、梁的刚度校核:挠度与跨度比满足条件。

五、超静定问题处理
1、确定基本静定系:解除多余约束,并在该处施加与该解除的约束相对应的支反力,从而得到一个作用有荷载和多余未知力的静定结构。

2、根据变形的几何相容条件建立附加的几何相容方程。

六、强度理论
A 、在验算截面正应力与切应力组合时,采用如下公式判断:
][322στσ≤+(由形状改变能密度理论推导出)
七、组合变形及连接部分计算
1、连接件的计算:
在工程设计中,通常按照连接的破坏可能性,采用既能反映受力的基本特征,又能简化计算的假设,计算其名义应力,然后根据直接实验的结果,确定其相应的需用应力,来进行强度计算。

这种简化计算方法,称为工程实用计算法。

2、剪切实用计算:][ττ≤=s
s A F ;式中Fs 为剪切面上的剪力,As 为剪切面的面积。

3、挤压实用计算:][bs bs bs A F σσ≤=
;bs F 为接触面上的挤压力,bs A 为计算挤压面积(当接触面为圆柱面时,计算挤压面面积取为实际接触面在直径平面上的投影面积);
4、铆钉组承受扭转荷载计算:
A 、确定铆钉组截面形心
B 、每个铆钉所受的力与该铆钉截面中心至截面形心的距离成正比,其方向垂直于铆钉截面中心与截面形心的连线。

C 、计算公式:i
i e a F Fe M ∑== 注:当铆钉组同时承受横向荷载和扭转荷载时,两者剪力叠加。

八、压杆稳定计算
1、细长中心受拉杆临界力欧拉公式:)
(22l EI F cr μπ= 2、柔度i l μλ=
;i 为惯性半径,l 为杆长,μ为长度因数; 3、][σϕ≤A
F ,ϕ为压杆稳定系数,可通过μ查表求得。

4、压杆稳定的适用范围:p cr E σλ
πσ≤=22 九、组合梁计算:
1、换算截面,确定中性轴;
2、计算换算截面应力;
3、计算实际截面应力。

相关文档
最新文档