材料力学重点总结-材料力学重点
材料力学知识点归纳总结(完整版)

材料力学知识点归纳总结(完整版)K点相邻的微小面积取得越来越小,使得合力趋近于一个点力,这个点力就是在K点处的应力。
因此,应力是指杆件横截面上单位面积内的内力分布情况,通常用符号σ表示。
应力的单位是帕斯卡(Pa),即XXX/平方米。
第三章:应变、XXX定律和XXX模量1.应变的概念:应变是指固体在外力作用下发生形状和尺寸改变的程度,通常用符号ε表示。
应变分为线性应变和非线性应变两种。
线性应变是指应变与应力成正比,即应变与内力的比值为常数,这个常数被称为材料的弹性模量。
非线性应变则不满足这个比例关系。
2.胡克定律:胡克定律是描述材料弹性变形的基本定律,它规定了应力和应变之间的关系,即在弹性阶段,应力与应变成正比,比例系数为弹性模量。
3.XXX模量:杨氏模量是描述材料抗拉、抗压变形能力的物理量,它是指单位面积内拉应力或压应力增加一个单位时,材料相应的纵向应变的比值。
XXX模量的大小反映了材料的柔软程度和刚度。
杨氏模量的单位是帕斯卡(Pa)或兆帕(MPa)。
综上所述,材料力学是研究构件在外力作用下内力、变形、破坏等规律的科学。
构件应具备足够的强度、刚度和稳定性以负荷所承受的载荷。
截面法是求解内力的基本方法,应力是指杆件横截面上单位面积内的内力分布情况,应变是指固体在外力作用下发生形状和尺寸改变的程度。
胡克定律描述了材料弹性变形的基本定律,而XXX模量则描述了材料抗拉、抗压变形能力的物理量。
应力是指在截面m-m上某一点K处的力量。
它的方向与内力N的极限方向相同,并可分解为垂直于截面的分量σ和切于截面的分量τ。
其中,σ称为正应力,τ称为切应力。
将应力的比值称为微小面积上的平均应力,用表示。
在国际单位制中,应力的单位是帕斯卡(Pa),常用兆帕(MPa)或吉帕(GPa)。
杆件是机器或结构物中最基本的构件之一,如传动轴、螺杆、梁和柱等。
某些构件,如齿轮的轮齿、曲轴的轴颈等,虽然不是典型的杆件,但在近似计算或定性分析中也可简化为杆。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N FAσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F Aσσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F Aσσ=≤一定要有结论 2.设计截面[],maxN F A σ≥3.确定许可荷载[],maxN F A σ≤七、线应变ll ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F ll EA∆=注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l llδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学章节重点和难点

材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。
2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。
3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。
2.重点:剪力方程和弯矩方程、剪力图和弯矩图。
3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。
第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。
2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。
3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。
2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。
3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。
第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。
2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。
3.难点:主应力方位确定。
第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。
3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。
材料力学重点总结要点

材料力学重点总结要点1、材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2、材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3、材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
正应力应变:反映杆件的变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4、物理关系、本构关系虎克定律;剪切虎克定律:适用条件:应力~应变是线性关系:材料比例极限以内。
5、材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料的比较:变形强度抗冲击应力集中塑性材料流动、断裂变形明显拉压的基本相同较好地承受冲击、振动不敏感脆性无流动、脆断仅适用承压非常敏感6、安全系数、许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
塑性材料脆性材料7、材料力学的研究方法1)所用材料的力学性能:通过实验获得。
2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3)截面法:将内力转化成“外力”。
运用力学原理分析计算。
8、材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
材料力学性能复习重点

期末复习资料一 名词解释1. 弹性比功:又称弹性比能、应变比能,表示金属材料吸收弹性变形功的能力。
金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3. 循环韧性:金属材料在交变载荷(振动)下吸收不可逆变形功的能力。
也叫金属的内耗。
4. 包申格效应:金属材料经过预先加载产生少量塑性变形(残余应变为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象。
5. 应力状态软性系数:金属所受的最大切应力τmax 与最大正应力σmax 的比值大小。
即:()32131max max 5.02σσσσσστα+--== 6. 缺口效应:绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。
缺口第一效应:引起应力集中,改变了缺口前方的应力状态,使缺口试样所受的应力由原来的单向应力状态改变为两向或三向应力状态。
缺口第二效应:缺口使塑性材料强度增高,塑性降低。
7. 缺口敏感度:缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即:8. 缺口试样静拉伸试验:轴向拉伸、偏斜拉伸两种。
9. 布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。
10. 洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度11. 维氏硬度——以两相对面夹角为136°的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。
材料力学知识点总结

材料力学总结一、基本变形二、还有:(1)外力偶矩:)(9549m N nNm ∙= N —千瓦;n —转/分 (2)薄壁圆管扭转剪应力:tr T22πτ=(3)矩形截面杆扭转剪应力:hb G Th b T 32max ;βϕατ==三、截面几何性质(1)平行移轴公式:;2A a I I ZC Z += a b A I I c c Y Z YZ += (2)组合截面: 1.形 心:∑∑===ni ini cii c AyA y 11; ∑∑===ni ini cii c AzA z 112.静 矩:∑=ci i Z y A S ; ∑=ci i y z A S 3. 惯性矩:∑=i Z Z I I )( ;∑=i y y I I )(四、应力分析:(1)二向应力状态(解析法、图解法)a . 解析法: b.应力圆:σ:拉为“+”,压为“-” τ:使单元体顺时针转动为“+”α:从x 轴逆时针转到截面的 法线为“+”ατασσσσσα2sin 2cos 22x yx yx --++=ατασστα2cos 2sin 2x yx +-=yx xtg σστα--=220 22minmax 22x y x yx τσσσσσ+⎪⎪⎭⎫⎝⎛-±+=c :适用条件:平衡状态(2)三向应力圆:1m a x σσ=; 3min σσ=;231max σστ-=x(3)广义虎克定律:[])(13211σσνσε+-=E [])(1z y x x E σσνσε+-=[])(11322σσνσε+-=E [])(1x z y y E σσνσε+-=[])(12133σσνσε+-=E [])(1y x z z E σσνσε+-=*适用条件:各向同性材料;材料服从虎克定律(4)常用的二向应力状态 1.纯剪切应力状态:τσ=1 ,02=σ,τσ-=32.一种常见的二向应力状态:223122τσσσ+⎪⎭⎫⎝⎛±=2234τσσ+=r2243τσσ+=r五、强度理论*相当应力:r σ11σσ=r ,313σσσ-=r ,()()()][212132322214σσσσσσσ-+-+-=r xσ六、材料的力学性质脆性材料 δ<5% 塑性材料 δ≥5%低碳钢四阶段: (1)弹性阶段(2)屈服阶段 (3)强化阶段 (4)局部收缩阶段 强度指标 σσb s ,塑性指标 δψ,E tg ==σα七.组合变形ε八、压杆稳定欧拉公式:2min2)(l EI P cr μπ=,22λπσE cr =,应用范围:线弹性范围,σcr <σp ,λ>λp柔度:iul =λ;ρρσπλE=;ba s σλ-=0,柔度是一个与杆件长度、约束、截面尺寸、 形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:22λπσE cr =λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σs稳定校核:安全系数法:w I cr n P P n ≥=,折减系数法:][σϕσ≤=AP提高杆件稳定性的措施有:1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学重点公式复习要点

1、应力全应力正应力切应力线应变外力偶矩当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为PMe 9549(N.m) n当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为PMe 7024(N.m) n拉(压)杆横截面上的正应力F拉压杆件横截面上只有正应力 ,且为平均分布,其计算公式为 N (3-1) A 式中FN为该横截面的轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)的适用条件:(1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处的横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化的直杆,杆件两侧棱边的夹角 20时拉压杆件任意斜截面(a图)上的应力为平均分布,其计算公式为全应力正应力 0p cos (3-2) cos2 (3-3)1sin2 (3-4) 2切应力式中 为横截面上的应力。
正负号规定:由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩的 为正,反之为负。
两点结论:。
当(1)当 0时,即横截面上, 达到最大值,即 max=90时,即纵截面上, =90=0。
00000(2)当 45时,即与杆轴成45的斜截面上, 达到最大值,即( )max1.2 拉(压)杆的应变和胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形 l l1 l 轴向线应变横向线应变 l 横向变形 b b1 b l b 正负号规定伸长为正,缩短为负。
b(2)胡克定律当应力不超过材料的比例极限时,应力与应变成正比。
即 E (3-5)或用轴力及杆件的变形量表示为 l FNl (3-6) EA式中EA称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学阶段总结一.材料力学的一些基本概念1.材料力学的任务:解决安全可靠与经济适用的矛盾。
研究对象:杆件强度:抵抗破坏的能力刚度:抵抗变形的能力稳定性:细长压杆不失稳。
2.材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。
均匀性:构件内各处的力学性能相同。
各向同性:物体内各方向力学性能相同。
3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体。
内力:附加内力。
应指明作用位置、作用截面、作用方向、和符号规定。
应力:正应力、剪应力、一点处的应力。
应了解作用截面、作用位置(点)、作用方向、和符号规定。
压应力正应力拉应力线应变应变:反映杆件的变形程度角应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。
4.物理关系、本构关系虎克定律;剪切虎克定律:拉压虎克定律:线段的拉伸或压缩。
E ——Pl lEA剪切虎克定律:两线段夹角的变化。
Gr适用条件:应力~应变是线性关系:材料比例极限以内。
5.材料的力学性能(拉压):一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。
拉压弹性模量,剪切弹性模量,泊松比v , GE(V)E G2 1塑性材料与脆性材料的比较:变形强度抗冲击应力集中塑性材料流动、断裂变形明显较好地承受冲击、振动不敏感拉压s 的基本相同脆性无流动、脆断仅适用承压非常敏感6.安全系数、许用应力、工作应力、应力集中系数安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。
过小,使构件安全性下降;过大,浪费材料。
许用应力:极限应力除以安全系数。
s0塑性材料sn sb脆性材料0bn b7.材料力学的研究方法1)所用材料的力学性能:通过实验获得。
2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。
3)截面法:将内力转化成“外力” 。
运用力学原理分析计算。
8.材料力学中的平面假设寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。
1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面上正应力为零。
3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
9小变形和叠加原理小变形:①梁绕曲线的近似微分方程② 杆件变形前的平衡③ 切线位移近似表示曲线④ 力的独立作用原理叠加原理:① 叠加法求内力② 叠加法求变形。
10材料力学中引入和使用的的工程名称及其意义(概念)1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载。
2)单元体,应力单元体,主应力单元体。
3) 名义剪应力,名义挤压力,单剪切,双剪切。
4) 自由扭转,约束扭转,抗扭截面模量,剪力流。
5) 纯弯曲, 平面弯曲, 中性层, 剪切中心 (弯曲中心),主应力迹线 , 刚架,跨度 , 斜 弯曲,截面核心,折算弯矩,抗弯截面模量。
6) 相当应力,广义虎克定律,应力圆,极限应力圆。
7) 欧拉临界力,稳定性,压杆稳定性。
8) 动荷载,交变应力,疲劳破坏。
二 . 杆件四种基本变形的公式及应用1. 四种基本变形 :基本变形截面几何 刚度应力公式变形公式备注性质拉伸与压缩面积: A抗拉(压)NlNl注意变截面及刚度 EA变轴力的情况AEA面积: A剪切——Q—— 实用计算法A圆轴扭转极惯性矩 抗扭刚度M T maxM T l2dAGI PmaxI pW pGI P纯弯曲惯性矩抗弯刚度Mmaxd 2 y M ( x ) 挠度 ydyI z2EI Zdx 2EI Z 转角y dAmaxW Zdx1 M ( x )(EI Z2. 四种基本变形的刚度,都可以写成:刚度 = 材料的物理常数×截面的几何性质1) 物理常数:某种变形引起的正应力:抗拉(压)弹性模量E ; 某种变形引起的剪应力:抗剪(扭)弹性模量G 。
2) 截面几何性质:拉压和剪切:变形是截面的平移:取截面面积 A ;扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩 I ;梁弯曲:各截面绕轴转动一角度:取对轴的惯性矩I Z 。
3. 四种基本变形应力公式都可写成:内力应力 =截面几何性质I对扭转的最大应力 :截面几何性质取 抗扭截面模量Wpmax对弯曲的最大应力:截面几何性质取 抗弯截面模量W ZI Zy max4. 四种基本变形的变形公式,都可写成:变形 =内力长度刚度因剪切变形为实用计算方法,不考虑计算变形。
1 d2 yl 的纯弯曲梁有:弯曲变形的曲率dx 2 ,一段长为(x )lM xl ( x ) EI z补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆的轴线重合;若外荷载作用线不与轴线重合,就成为拉 (压)与弯曲的组合变形问题; 杆的压缩问题, 要注意它的长细比(柔度)。
这里的简单压缩是指“小柔度压缩问题” 。
2、关于“剪切”实用性的强度计算法,作了剪应力在受剪截面上均匀分布的假设。
要注意有不同的受剪截面:a. 单面受剪:受剪面积是铆钉杆的横截面积;b. 双面受剪:受剪面积有两个:考虑整体结构,受剪面积为 2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积。
c. 圆柱面受剪:受剪面积以冲头直径 d 为直径,冲板厚度t 为高的圆柱面面积。
3. 关于扭转表中公式只实用于 圆形截面的直杆和空心圆轴 。
等直圆杆扭转的应力和变形计算公式可近似分析螺旋弹簧的应力和变形问题是应用杆件基本变形理论解决实际问题的很好例 子。
4. 关于纯弯曲纯弯曲,在梁某段剪力Q=0 时才发生,平面假设成立。
横力弯曲(剪切弯曲)可以视作剪切与纯弯曲的组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出的正应力公式可以在剪切弯曲中使用。
5. 关于横力弯曲时梁截面上剪应力的计算问题为计算剪应力,作为初等理论的材料力学方法作了一些巧妙的假设和处理,在理解矩 形截面梁剪应力公式时,要注意以下几点:度上不变,方向与荷载(剪力)平行。
2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有n(h)bdhQ ,因(h) 的函数形式未知,无法积分。
但由剪应力互等定理,考虑微梁段左、右内力的平衡,可以得出:QS *ZI z b剪应力在横截面上沿高度的变化规律就体现在静矩S z *上, S z *总是正的。
剪应力公式及其假设: a. 矩形截面假设 1:横截面上剪应力 τ 与矩形截面边界平行,与剪应力 Q 的方向一致;假设 2:横截面上同一层高上的剪应力相等。
剪应力公式:QS *( y)( y)zI z b,* y )b(y2y2S (Z2)2max3Q32 bh2平均b. 非矩形截面积假设 1: 同一层上的剪应力作用线通过这层两端边界的切线交点,剪应力的方向与剪力的方向。
假设 2:同一层上的剪应力在剪力Q 方向上的分量 y 相等。
剪应力公式:QS z * ( y) y ( y)b( y) I z2(R 2 3S *( y)y 2 ) 2z34Q y22 y ( y)213Rmax 43平均c. 薄壁截面假设 1:剪应力与边界平行,与剪应力谐调。
假设 2:沿薄壁 t ,均匀分布。
剪应力公式:*QS z学会运用“剪应力流”概念确定截面上剪应力的方向。
三. 梁的内力方程,内力图,挠度,转角遵守材料力学中对剪力Q 和弯矩M 的符号规定。
在梁的横截面上,总是假定内力方向与规定方向一致,从统一的坐标原点出发划分梁的区间,且把梁的坐标原点放在梁的左端(或右端),使后一段的弯矩方程中总包括前面各段。
均布荷载q、剪力 Q、弯矩 M、转角θ、挠度y 间的关系:由:EI d2 y M ,dMQ ,dQ q dx2dx dx有EI d 3 y dMQ( x) EId 4 yq( x)dx3dx dx4设坐标原点在左端,则有:q: EI d 4 y q ,q 为常值dx4Q: EId 3 yqx Adx 32M:EI d y q x 2Ax B2dx2: EI dy q x3A x2Bx Cdx62y:EI y q x 4A x3B x2Cx D2462其中 A 、 B 、C 、 D 四个积分常数由边界条件确定。
例如,如图示悬臂梁:则边界条件为:Q |x0 A 0 M |x 0B 0|xlC ql36y |xlDql48EIyq x 4 ql 3 x ql 4246 8y截面法求内力方程:4ql内力是梁截面位置的函数,内力方程是分段函数,它们以集中力偶的作用点,分布的起始、终止点为分段点;1) 在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变; 2) 在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;3)剪力等于脱离梁段上外力的代数和。
脱离体截面以外另一端,外力的符号同剪力符号规定,其他外力与其同向则同号,反向则异号;4)弯矩等于脱离体上的外力、外力偶对截面形心截面形心的力矩的代数和。
外力矩及外力偶的符号依弯矩符号规则确定。
梁内力及内力图的解题步骤:1) 建立坐标,求约束反力; 2) 划分内力方程区段;3) 依内力方程规律写出内力方程;4)运用分布荷载 q 、剪力 Q 、弯矩 M 的关系作内力图;d 2MdQq x ,dMQ xdx2dxdx关系:Q CdM DM CdQ Dq x d xQ x d xcc规定:①荷载的符号规定:分布荷载集度q 向上为正; ②坐标轴指向规定:梁左端为原点,x 轴向右为正。
剪力图和弯矩图的规定:剪力图的 Q 轴向上为正,弯矩图的M 轴向下为正。
5) 作剪力图和弯矩图:① 无分布荷载的梁段,剪力为常数,弯矩为斜直线;Q > 0,M 图有正斜率(﹨) ; Q < 0,有负斜率(/) ;② 有分布荷载的梁段(设为常数) ,剪力图为一斜直线,弯矩图为抛物线; q <0,Q 图有负斜率(﹨), M 图下凹(︶) ; q > 0,Q 图有正斜率(/) , M 图上凸(︵) ; ③ Q=0 的截面,弯矩可为极值;④ 集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图的斜率也突变,弯矩图有尖角;⑤ 集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥ 在剪力为零,剪力改变符号,和集中力偶作用的截面(包括梁固定端截面) ,确定最大弯矩(M max );⑦ 指定截面上的剪力等于前一截面的剪力与该两截面间分布荷载图面积值的和; 指定截面积上的弯矩等于前一截面的弯矩与该两截面间剪力图面积值的和。