Bulk metallic glass matrix composites
纳米晶对cuzr基非晶合金变形行为的影响

纳米晶对cuzr基非晶合金变形行为的影响纳米晶对CuZr基非晶合金变形行为的影响1. 引言纳米晶材料是指晶粒尺寸在纳米尺度范围内的材料。
由于其特殊的微观结构,纳米晶材料表现出许多优异的力学、电学和热学性能,引起了广泛关注。
在材料科学领域,研究纳米晶材料的力学行为对于了解材料的基本性质、改善材料的强度和塑性具有重要意义。
本文将从各个方面探讨纳米晶对CuZr基非晶合金变形行为的影响。
2. CuZr基非晶合金的特性CuZr基非晶合金是一类由铜(Cu)和锆(Zr)等元素构成的非晶态合金。
非晶合金是一类由于其快速凝固过程而具有非晶态结构的材料。
相较于晶体材料,非晶合金具有更高的硬度、强度和韧性。
然而,CuZr基非晶合金的局限也随之出现,一旦发生塑性变形,晶粒的尺寸会迅速增大,从而导致材料的强度大幅下降。
那么,通过引入纳米晶结构,能否改善CuZr基非晶合金的塑性行为?3. 纳米晶对CuZr基非晶合金的影响3.1 硬度和强度的提高纳米晶材料的晶粒尺寸在纳米级别,晶界的相互阻碍以及晶界弥散位错的形成使得材料的硬度和强度显著提高。
对于CuZr基非晶合金,纳米晶的引入也能够增加其硬度和强度。
研究表明,CuZr基非晶合金中引入纳米晶结构后,其硬度和强度可相应提高20%以上。
这使得CuZr 基非晶合金在实际应用中具有更好的机械性能。
3.2 塑性的保持虽然纳米晶材料具有优异的硬度和强度,但其塑性能够维持在一定范围内。
在应力条件下,纳米晶材料的晶界可以起到吸引与吞吐位错的作用,从而有助于分散应力并保持塑性。
对于CuZr基非晶合金来说,纳米晶结构可以抑制晶粒的长大,减少塑性失效,提高其塑性保持能力。
3.3 纳米晶化的方式在制备CuZr基非晶合金纳米晶材料时,常见的方式包括机械合金化、激光熔化和热处理等。
机械合金化是通过机械球磨等方式,使CuZr基非晶合金发生局部塑性变形,从而引入纳米晶结构。
激光熔化是利用激光束对非晶合金进行快速加热和快速冷却,形成纳米晶材料。
Metallic Glasses-University of Cambridge

Amorphous Bulk Metals ―Metallic GlassesA. L. GreerDept. of Materials Science & MetallurgyUniversity of Cambridge Materials on the HorizonCambridge, 9 December 2008Crystal•regular atomic arrangement •slip planes for plastic deformationGlass•no periodicity, but •density ~ same as crystal•local configurations ~ same as crystal •plastic flow is difficultHow to make a glass?•a glass forms if crystallization is avoided on cooling •the density of the glass depends on cooling rateThe Glassy State—is found for all classes of material:•oxide (e.g. SiO2)•ionic (e.g. ZnF2)•polymeric •metallic •carbohydratesMetallic Glasses•metals and alloys are naturally crystalline•pure metals cannot form glasses —their simple structure crystallizes too easily on cooling the liquid •alloying can stabilize the liquid, and aids glass formation (“confusion principle”)•for a binary alloy such as Fe80B20(atomic %), thecritical cooling rate for glass formation is 105to 106K s–1Metallic Glasses•are now understood to be true glassesOutline•new insights on atomic-level structure•metallic glasses as structural materials•current progress on understanding plastic flow •improving mechanical properties, and new horizonsJohn Desmond Bernal1901-1971The dense random packing model forthe structure of liquid metals.from The Times Higher Education Suppl. 3 Feb. 2006Short-to-medium-range order in metallic glasses:―solute-centred clustersH.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai & E. Ma, Nature439(2006) 419.D B. Miracle, Acta Mater. 54(2006) 4317.Dynamics in metallic glasses―atoms in icosahedral clusters are the least mobileYQ Cheng et al., Appl. Phys. Lett. (2008) 93, 111913Degree of icosahedral order increases on cooling, and is also different from composition to composition, correlating with glass-forming ability.YQ Cheng et al., Phys. Rev. B(2008) 78, 014207M.F. Ashby & A.L. Greer: Scripta Materialia 54(2006) 321.(in Viewpoint Set on Mechanical Behavior of Metallic Glasses , edited by T.C. Hufnagel)Elastic limit σy plotted against density ρfor 1507 metals, alloys, metal-matrix composites and metallic glasses. The contours show the specific strength σy /ρ.Metallic glasses for structural applicationsCe70Al10Cu20—Tg= 338 K, Tx= 390 KB. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang & A.L. Greer:“Amorphous metallic plastic”, Phys. Rev. Lett.94(2005) 205502.J Schroers et al., Scripta Mater. (2007) 57, 341Microformability of BMGs•of interest for micro-& nano-imprinting ofsurfacesAFM and SEMimages of a patterned(100) Si die and a Pt-based BMG imprintedwith the die (10 MPa,550 K, 300 s)Y. Saotome et al. “The micro-nanoformability of Pt-based metallic glass and the nanoforming of three-dimensional structures”, Intermetallics10(2005) 1241.J. Schroers: “The superplastic forming of bulk metallic glasses”, JOM57(5) (2005) 35.M.F. Ashby & A.L. Greer: Scripta Materialia 54(2006) 321.(in Viewpoint Set on Mechanical Behavior of Metallic Glasses , edited by T.C. Hufnagel)Fracture toughness and elastic limit for metals, alloys, ceramic, glasses, polymers and metallic glasses. The contours show the process-zone size din mm.The world’s smallest motorfrom Materials Selection in Mechanical Design(2nd ed.)M. F. Ashby, Butterworth-Heinemann, 1999metallic glasses —compared to metals and alloys in general, the glasses have high strength σand low stiffness E, that is, unusually high elastic strain —σσ/EJ.H. Tregilgas, “Amorphous titanium aluminide hinge”Adv. Mater. Proc . 162(Oct. 2004) 40.MEMS Applications of Metallic GlassesThe Texas Instruments Digital Light Processor (DLP) dataprojector technology is based on mirrors supported by amorphous Ti-Al hinges. DLP devices with >1.3 x 106addressable mirrors are in production, and the hinges still show no fatigue failures after 1012cycles.Pressure SensorsDiaphragmsAnnual production now nearly 50 million unitsfrom Materials Selection in Mechanical Design(2nd ed.) M. F. Ashby, Butterworth-Heinemann, 1999metallic glasses materials for elasticenergy storage—want to maximizeσ2/EStrain →S t r e s s →Within the elastic (reversible) regime ―σyEarea = σ2/2E = elastic energy stored per unit volumeStrain →S t r e s s →to increase the elastic stored energy ―Eincrease the yield stress, σyStrain →S t r e s s →Edecrease the Young modulus, Eto increase the elastic stored energy ―T Fukushige & S Hata, J. Microelectro. Syst . (2005) 14, 243MEMS ApplicationsA conical spring microactuatorwith a long stroke of 200 mmnormal to the substrate. Thespring is a 7.6 µm thick film ofPd 76Cu 7Si 17metallic glass.Golf clubs …. and tennis-racket frames, baseball bats, skis …from Materials Selection in Mechanical Design(2nd ed.) M. F. Ashby, Butterworth-Heinemann, 1999metallic glasses materials for elasticenergy storage—want to maximizeσ2/EM.F. Ashby & A.L. Greer: Scripta Materialia 54(2006) 321.Fracture toughness and Young’s modulus for metals, alloys, ceramic, glasses, polymers and metallic glasses. The contours show the toughness G c in kJ m –2.M.F. Ashby & A.L. Greer: Scripta Materialia 54(2006) 321.Fracture toughness and Young’s modulus for metals, alloys, ceramic, glasses, polymers and metallic glasses. The contours show the toughness G c in kJ m –2.Metals: Plasticity or Brittleness?•the plastic flow stress in shear is proportional to the elastic shear modulus —thus the shear modulus is a measure of the difficulty of plastic flow•similarly the bulk modulus is a measure of the difficulty of cracking •thus high values of the shear-to-bulk modulus ratio µ/B should favour brittleness and vice versa•proposed by Pugh in 1954, and developed by others —S.F. Pugh, Philos. Mag. 45823 (1954).A. Kelly, W.R. Tyson and A.H. Cottrell, Philos. Mag. 15567 (1967).J.R. Rice and R. Thomson, Philos. Mag. 2973 (1974).A.H. Cottrell, in Advances in Physical Metallurgy, edited by J.A. Charles andG.C. Smith (Institute of Metals, London, 1990), pp. 181–187.Compilation of all relevant and available data on as-cast(unannealed) metallic glasses(mostly, but not all BMGs)J.J. Lewandowski, W.H. Wang & A.L. Greer, “Intrinsic plasticity or brittleness ofDeformation of Metallic Glasses Ambient temperature / high stress--flow localization in shear bandsHigh temperature / low stress--homogeneous viscous flowF. Spaepen: “A microscopicmechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metall. 25(1977)407.Plastic deformation of a thin plate of a thin plate of Pd 77.5Cu 6Si 16.5glass in tension. Shear bands are consistent with work-softening .H. Kimura, PhD Thesis (1978) Tohoku Univ.L.A. Davis & S. Kavesh, J. Mater. Sci . 10(1975) 453.Fracture surface of Pd 77.5Cu 6Si 16.5 —characteristic vein pattern,formed by Saffman-Taylor fingering in a liquid-like layer.The thickness of the liquid-like layer must be at least several µm.050010001500200025000.010.020.030.040.050.06True StrainT r u e S t r e s s [M P a ]Vitreloy0.1 MPa Hydrostatic Pressure Yield/Fracture Strength = 1986 MPaεf = 0%J.J. LewandowskiAt ambient temperature, metallic glasses in tension can appear macroscopically brittle , despite extensive local deformation in the shear bands.Thickness of shear bands?TEM studies consistently suggest a shear-band thickness of ~10 nmM. Chen, A. Inoue, W. Zhang & T. Sakurai: “Extraordinary plasticity of ductile bulk metallic glasses”, Phys. Rev. Lett.96(2006) 245502.N.P. Bailey, J. Schiøtz & K.W. Jacobsen, Phys. Rev. B 73(2006) 064108.Molecular-dynamics simulations—also show a shear-band thickness of ~10 nmQ.-K. Li & M. Li, Appl. Phys. Lett . 88(2006) 241903.Operation of Shear BandsTEM shows that the shear is sharply localized ——thickness of shear band = 10 to 20 nmThe origins of localization remain controversial —structural change, or temperature rise?Measurements of temperature rise 0.4 K to 1000 KPredictions of temperature rise 40 K to 1000 KThe fusible-coating methodThe operation of a shear band in a BMG generates ahot plane and melts the coating (of tin). The total workdone by shear is proportional to the offset δ.Local melting of a tin coating at shear bands in other BMGs(Cu 50Zr 50)92Al 8La 55Al 25Cu 10Ni 5Co 5Average measuredtemperature rise inshear bands = 0.4 K(for observed width of0.15 mm)B. Yang, P.K. Liaw, G. Wang, M. Morrison,C.T. Liu, R.A. Buchanan & Y. Yokoyama: “In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments”, Intermetallics12(2004) 1265.Resolution of the fusible-coating method•temporal resolution ≈thermal diffusion time for coating thickness including latent heat of melting, the resolution≈30 ps•spatial resolution ≈scale of islands≈100 nmIn contrast for direct infrared measurements the best reported resolution combinations are —•for imaging 1.4 ms~11 µm•for single detector~10 µs100 µm。
材料专业英语复合材料 Composites

Fibers - Glass
Most widely used fiber——piping, tanks, boats, sporting goods Advantages low cost Corrosion resistant Low cost relative to other composites Disadvantages Relatively low strength High elongation Moderate strength and weight Types: Moisture ↓ strength E-Glass - electrical, cheaper S-Glass - high strength
Ceramics Composites
Brittle
Elastomers
Creep at low temp
Glasses
Brittle
Reinforcement Matrix A B advantages * advantages * disadvantages disadvantages * * C1 C3 C2
Polyester:Most common, lower cost, solvent resistance Epoxy resins: Superior performance, relatively costly
Matrices – Polymeric:Thermoplastics
Formed by heating to elevated temperature at which softening occurs
Kevlar fibers in an epoxy matrix Rubber with carbon (tires); Boron, Carbon reinforced plastics
非晶合金的制备方法

纳米非晶合金制备简介摘要:本文主要介绍了国内外几种非晶合金制备技术,其中包括水淬法、射流成型法、金属模铸造、复合爆炸焊接法及机械合金化法、粉末固结成形法等,并对各种制备技术的进行了比较分析。
关键词:块体金属玻璃块体金属玻璃的连接制备Introduction of the Preparation amorphous alloyAbstract:In this paper, Several fabricating methods of bulk metallic glass matrix composites from both home and abroad were presented,such as water quenching method, jet molding, metal mold casting, composite explosive welding and mechanical alloying, powder consolidation and forming method,than Analysis and comparing these preparation techniques bulk metallic glass.Key words:bulk metallic glass, joining of bulk metallic glass, preparation1.引言非晶态合金也称金属玻璃,与晶态合金相比,其三维空间的原子排列呈拓扑无序状,结构上没有晶界与堆垛层错等缺陷存在,但原子的排列也不像理想气体那样的完全无序。
非晶合金是以金属键作为其结构特征,虽然不存在长程有序,但在几个晶格常数范围内保持短程有序[1]。
与非晶聚合物及无机非晶材料一样,非晶合金在物理性能、化学性能及力学性能方面是各向同性的,并随着温度的变化呈现连续性[2]。
通常其具有以下四个基本特征:(1)结构上呈拓扑密堆长程无序,但在长程无序的三维空间又无序的分布着短程有序的“晶态小集团”或“伪晶核”,其大小不超过几个晶格的范围;(2)不存在晶界、位错、层错等晶体缺陷;(3)具有非晶体的一般特性:物理、化学和机械性能各向同性;(4)热力学上处于亚稳态,当处于晶化温度以上时将发生晶态结构相变,但晶化温度以下能长期稳定存在[3]。
铜玻璃复合材料的制备和性能分析

铜/玻璃复合材料的制备和性能分析材料094班:王波指导教师:郭宏伟陕西科技大学材料科学与工程学院陕西西安710021摘要:本文采用铝硼硅酸盐玻璃粉与铜粉,经过不同铜玻璃配比用高温烧结的方法得到铜/玻璃复合材料。
通过抗折强度测试,得出不同烧结温度、不同配比与强度的关系。
再通过XRD、SEM、热膨胀等方法对复合材料进行探究。
结果表明:铜/玻璃复合材料中主要是由玻璃相、铜相、亚铜相组成,玻璃完全包裹铜相和亚铜相,烧结致密,没有气泡,复合材料的强度高。
关键词:玻璃粉,导电性,复合材料Preparation and P erformance of C opper-glassABSTRACT:In this paper,aluminum borosilicate glass powder and copper powder,copper glass ratio through different methods used to obtain high-temperature sintering of copper-glass composite materials.By flexural strength tests,the different sintering temperatures and in different proportions and intensity relationships.Through XRD,SEM,and other methods of thermal expansion composites were explored.The results showed that:Copper-glass composite material is mainly made of glass phase and copper phase, cuprous phase composition,the glass completely wrapped cuprous copper phase and phase sintering,no bubbles,high strength composite material.KEY WORDS:Glass frit,conductive,composite materials近几年块状金属玻璃(BMG)引起了人们的广泛关注,其主要原因是金属玻璃作为高强度结构材料表现出的应用潜力[1]。
(2021年整理)材料专业常用术语英语单词表

材料专业常用术语英语单词表编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(材料专业常用术语英语单词表)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为材料专业常用术语英语单词表的全部内容。
Unit 1property (材料的)性质heat treatment 热处理metal 金属glass 玻璃plastics 塑料fiber 纤维electronic devices 电子器件component 组元,组分semiconducting materials 半导体材料materials science and engineering 材料科学与工程materials science 材料科学materials engineering 材料工程materials scientist 材料科学家materials engineer 材料工程师synthesize 合成synthesissubatomic structure 亚原子结构electron 电子atom 原子nuclei 原子核nucleusmolecule 分子microscopic 微观的microscope 显微镜naked eye 裸眼macroscopic 宏观的specimen 试样deformation 变形polished 抛光的reflect 反射magnitude 量级solid materials 固体材料mechanical properties 力学性质force 力elastic modulus 弹性模量strength 强度electrical properties 电学性质electrical conductivity 导电性dielectric constant 介电常数electric field 电场thermal behavior 热学行为heat capacity 热容thermal conductivity 热传导(导热性)magnetic properties 磁学性质magnetic field 磁场optical properties 光学性质electromagnetic radiation 电磁辐射light radiation 光辐射index of refraction 折射率reflectivity 反射率deteriorative characteristics 劣化特性processing 加工performance 性能linear 线性的integrated circuit chip 集成电路芯片strength 强度ductility 延展性deterioration 恶化,劣化mechanical strength 机械强度elevated temperature 高温corrosive 腐蚀性的fabrication 制造Unit 2chemical makeup 化学组成atomic structure 原子结构advanced materials 先进材料high-technology 高技术smart materials 智能材料nanoengineered materials 纳米工程材料metallic materials 金属材料nonlocalized electrons 游离电子conductor 导体electricity 电heat 热transparent 透明的visible light 可见光polished 抛光的surface 表面lustrous 有光泽的aluminum 铝silicon 硅alumina 氧化铝silica 二氧化硅oxide 氧化物carbide 碳化物nitride 氮化物dioxide 二氧化物clay minerals 黏土矿物porcelain 瓷器cement 水泥mechanical behavior 力学行为ceramic materials 陶瓷材料stiffness 劲度strength 强度hard 坚硬brittle 脆的fracture 破裂insulative 绝缘的resistant 耐……的resistance 耐力,阻力,电阻molecular structures 分子结构chain-like 链状backbone 骨架carbon atoms 碳原子low densities 低密度mechanical characteristics 力学特性inert 隋性synthetic (人工)合成的fiberglass 玻璃纤维polymeric 聚合物的epoxy 环氧树脂polyester 聚酯纤维carbon fiber—reinforced polymer composite 碳纤维增强聚合物复合材料glass fiber-reinforced materials 玻璃纤维增强材料high-strength, low-density structural materials 高强度低密度结构材料solar cell 太阳能电池hydrogen fuel cell 氢燃料电池catalyst 催化剂nonrenewable resource 不可再生资源Unit 3periodic table (元素)周期表atomic structure 原子结构magnetic 磁学的optical 光学的microstructure 微观结构macrostructure 宏观结构positively charged nucleus 带正电的原子核atomic number 原子序数proton 质子atomic weight 原子量neutron 中子negatively charged electrons 带负电的电子shell 壳层magnesium 镁chemical bonds 化学键partially-filled electron shells 未满电子壳层bond 成键metallic bond 金属键nonmetal atoms 非金属原子covalent bond 共价键ionic bond 离子键Unit 4physical properties 物理性质chemical properties 化学性质flammability 易燃性corrosion 腐蚀oxidation 氧化oxidation resistance 抗氧化性vapor (vapour)蒸汽,蒸气,汽melt 熔化solidify 凝固vaporize 汽化,蒸发condense 凝聚sublime 升华state 态plasma 等离子体phase transformation temperatures 相变温度density 密度specific gravity 比重thermal conductivity 热导linear coefficient of thermal expansion 线性热膨胀系数electrical conductivity and resistivity 电导和电阻corrosion resistance 抗腐蚀性magnetic permeability 磁导率phase transformations 相变phase transitions 相变crystal forms 晶型melting point 熔点boiling point 沸腾点vapor pressure 蒸气压atm 大气压glass transition temperature 玻璃化转变温度mass 质量volume 体积per unit of volume 每单位体积the acceleration of gravity 重力加速度temperature dependent 随温度而变的,与温度有关的grams/cubic centimeter 克每立方厘米kilograms/cubic meter 千克每立方米grams/milliliter 克每毫升grams/liter 克每升pounds per cubic inch 磅每立方英寸pounds per cubic foot 磅每立方英尺alcohol 酒精benzene 苯magnetize 磁化magnetic induction 磁感应强度magnetic field intensity 磁场强度constant 常数vacuum 真空magnetic flux density 磁通密度diamagnetic 反磁性的factor 因数paramagnetic 顺磁性的ferromagnetic 铁磁性的non-ferrous metals 非铁金属,有色金属brass 黄铜ferrous 含铁的ferrous metals 含铁金属,黑色金属relative permeability 相对磁导率transformer 变压器,变换器eddy current probe 涡流探针Unit 5hardness 硬度impact resistance 耐冲击性fracture toughness 断裂韧度,断裂韧性structural materials 结构材料anisotropic 各向异性orientation 取向texture 织构fiber reinforcement 纤维增强longitudinal 纵向transverse direction 横向short transverse direction 短横向a function of temperature 温度的函数,温度条件room temperature 室温elongation 伸长率tension 张力,拉力compression 压缩bending 弯曲shear 剪切torsion 扭转static loading 静负荷dynamic loading 动态载荷cyclic loading 循环载荷,周期载荷cross-sectional area 横截面stress 应力stress distribution 应力分布strain 应变engineering strain 工程应变perpendicular 垂直normal axis 垂直轴elastic deformation 弹性形变plastic deformation 塑性形变quality control 质量控制nondestructive tests 无损检测tensile property 抗张性能,拉伸性能Unit 6lattice 晶格positive ions 正离子a cloud of delocalized electrons 离域电子云ionization 电离,离子化metalloid 准金属,类金属nonmetal 非金属diagonal line 对角线polonium 钋semi—metal 半金属lower left 左下方upper right 右上方conduction band 导带valence band 价带electronic structure 电子结构synthetic materials (人工)合成材料oxygen 氧oxide 氧化物rust 生锈potassium 钾alkali metals 碱金属alkaline earth metals 碱土金属volatile 活泼的transition metals 过渡金属oxidize 氧化barrier layer 阻挡层basic 碱性的acidic 酸性的electrochemical series 电化序electrochemical cell 电化电池cleave 解理,劈开elemental 元素的,单质的metallic form 金属形态tightly-packed crystal lattice 密排晶格,密堆积晶格atomic radius 原子半径nuclear charge 核电荷number of bonding orbitals 成键轨道数overlap of orbital energies 轨道能重叠crystal form 晶型planes of atoms 原子面a gas of nearly free electrons 近自由电子气free electron model 自由电子模型an electron gas 电子气band structure 能带结构binding energy 键能positive potential 正势periodic potential 周期性势能band gap 能隙Brillouin zone 布里渊区nearly-free electron model 近自由电子模型solid solution 固溶体pure metals 纯金属duralumin 硬铝,杜拉铝Unit 9purification 提纯,净化raw materials 原材料discrete 离散的,分散的iodine 碘long—chain 长链alkane 烷烃,链烃oxide 氧化物nitride 氮化物carbide 碳化物diamond 金刚石graphite 石墨inorganic 无机的mixed ionic—covalent bonding 离子-共价混合键constituent atoms 组成原子conduction mechanism 传导机制phonon 声子photon 光子sapphire 蓝宝石visible light 可见光computer-assisted process control 计算机辅助过程控制solid—oxide fuel cell 固体氧化物燃料电池spark plug insulator 火花塞绝缘材料capacitor 电容electrode 电极electrolyte 电解质electron microscope 电子显微镜surface analytical methods 表面分析方法Unit 12macromolecule 高分子repeating structural units 重复结构单元covalent bond 共价键polymer chemistry 高分子化学polymer physics 高分子物理polymer science 高分子科学molecular structure 分子结构molecular weights 分子量long chains 长链chain—like structure 链状结构monomer 单体plastics 塑料rubbers 橡胶thermoplastic 热塑性thermoset 热固性vulcanized rubbers 硫化橡胶thermoplastic elastomer 热塑弹性体natural rubbers 天然橡胶synthetic rubbers 合成橡胶thermoplastic 热塑性thermoset 热固性resin 树脂polyethylene 聚乙烯polypropylene 聚丙烯polystyrene 聚苯乙烯polyvinyl—chloride 聚氯乙烯polyvinyl 聚乙烯的chloride 氯化物polyester 聚酯polyurethane 聚氨酯polycarbonate 聚碳酸酯nylon 尼龙acrylics 丙烯酸树脂acrylonitrile-butadiene—styrene ABS树脂polymerization 聚合(作用)condensation polymerization 缩聚addition polymerization 加聚homopolymer 均聚物copolymer 共聚物chemical modification 化学改性terminology 术语nomenclature 命名法chemist 化学家the Noble Prize in Chemistry 诺贝尔化学奖catalyst 催化剂atomic force microscope 原子力显微镜(AFM) Unit 15composite 复合材料multiphase 多相bulk phase 体相matrix 基体matrix material 基质材料reinforcement 增强体reinforcing phase 增强相reinforcing material 加强材料metal—matrix composite 金属基复合材料ceramic—matrix composite 陶瓷基复合材料resin—matrix composite 树脂基复合材料strengthening mechanism 增强机理dispersion strengthened composite 弥散强化复合材料particle reinforced composites 颗粒增强复合材料fiber—reinforced composites 纤维增强复合材料Unit 18nanotechnology 纳米技术nanostructured materials 纳米结构材料nanometer 纳米nanoscale 纳米尺度nanoparticle 纳米颗粒nanotube 纳米管nanowire 纳米线nanorod 纳米棒nanoonion 纳米葱nanobulb 纳米泡fullerene 富勒烯size parameters 尺寸参数size effect 尺寸效应critical length 临界长度mesoscopic 介观的quantum mechanics 量子力学quantum effects 量子效应surface area per unit mass 单位质量的表面积surface physics and chemistry 表面物理化学substrate 衬底,基底graphene 石墨烯chemical analysis 化学分析chemical composition 化学成分analytical techniques 分析技术scanning tunneling microscope 扫描隧道显微镜spatial resolution 空间分辨率de Brogile wavelength 德布罗意波长mean free path of electrons (电子)平均自由程quantum dot 量子点band gap 带隙continuous density of states 连续态密度discrete energy level 离散能级absorption 吸收infrared 红外ultraviolet 紫外visible 可见quantum confinement (effect) 量子限域效应quantum well 量子势阱optoelectronic device 光电子器件energy spectrum 能谱electron mean free path 电子平均自由程spin relaxation length 自旋弛豫长度Unit 21biomaterial 生物材料implant materials 植入材料biocompatibility 生物相容性in vivo 在活体内in vitro 在活体外organ transplant 器管移植calcium phosphate 磷酸钙hydroxyapatite 羟基磷灰石research and development 研发 R&D Preparation & Characterizationprocessing techniques 加工技术casting 铸造rolling 轧制,压延welding 焊接ion implantation 离子注入thin—film deposition 薄膜沉积crystal growth 晶体生长sintering 烧结glassblowing 玻璃吹制analytical techniques 分析技术characterization techniques 表征技术electron microscopy 电子显微术X—ray diffraction X射线衍射calorimetry 量热法Rutherford backscattering 卢瑟福背散射neutron diffraction 中子衍射nuclear microscopy 核子微探针。
考虑非均匀结构效应的金属材料剪切带

一、提名项目:考虑非均匀结构效应的金属材料剪切带二、提名意见:该项目以颗粒增强金属基复合材料和非晶合金为模型系统,突破经典的热塑剪切带理论框架,发展了位错机制依赖的应变梯度本构,揭示了蕴含的非均匀结构通过应变梯度效应对热塑剪切带形成具有强烈驱动作用;建立了包含多过程耦合与时空多尺度的剪切带新理论,澄清了非晶合金剪切带形成机制长期广泛的国际争议,得到了剪切带失稳判据、协同演化、特征厚度以及诱致断裂机理等一系列原创性成果。
该项目8篇代表性论文共被《Nature Materials》《Physical Review Letters〉、《Progress in Materials Science等SCI重要刊物他人引用393次,引用者包括国内外科学院或工程院院士、权威杂志主编、领域知名学者等。
项目研究成果系统揭示了材料内禀非均匀结构效应如何影响甚至颠覆热塑剪切带的传统认知,显著推动了剪切带理论的发展,在国际上产生了重要的学术影响。
提名该项目为国家自然科学二等奖。
三、项目简介剪切带是一类广泛存在的塑性变形局部化失稳现象。
本征上,具有特征厚度的剪切带是一种远离平衡态的动态耗散结构,其涌现与演化是材料内部多种速率依赖耗散过程高度非线性耦合控制的时空多尺度问题。
传统金属材料剪切带经百余年研究,逐渐形成了以热软化为主控机制的热塑剪切带理论,并获得了广泛的应用。
随着人们对高性能材料的不懈追求,众多内蕴微纳尺度非均匀结构的新型金属材料不断发展,其中代表性的有微米尺度颗粒增强的金属基复合材料和纳米尺度结构非均匀的非晶合金。
由于不考虑材料结构效应,经典热塑剪切带理论在描述这些新型金属材料的剪切带行为时,遇到了前所未有的挑战。
为此,该项目团队以颗粒增强金属基复合材料和非晶合金为模型材料,研究了材料内禀的非均匀结构效应如何影响甚至颠覆热塑剪切带的传统认知,显著推动了剪切带理论的发展,形成了具有鲜明特色的系统性的原创研究成果。
热喷涂铁基非晶合金材料的研究进展

热喷涂铁基非晶合金材料的研究进展马晓琳;周勇;刘玉栋【摘要】非晶合金是极具发展潜力的金属材料,铁基非晶合金性能优异,成本较低,易获得推广使用.介绍了铁基非晶合金的形成能力及其性能,综述热喷涂制备铁基非晶涂层及其应用,展望了热喷涂制备铁基非晶涂层未来的发展趋势.【期刊名称】《热处理技术与装备》【年(卷),期】2015(036)004【总页数】5页(P22-26)【关键词】热喷涂;铁基非晶态合金;涂层【作者】马晓琳;周勇;刘玉栋【作者单位】西安石油大学材料科学与工程学院,陕西西安710065;西安石油大学材料科学与工程学院,陕西西安710065;西安石油大学材料科学与工程学院,陕西西安710065【正文语种】中文【中图分类】TG139+.8由于在快速凝固时原子不足以有序的排列结晶,获得的晶态合金是长程无序结构,没有晶态合金中存在晶粒、晶界的固体合金被称为金属玻璃,也称为非晶合金。
非晶合金是冶金材料科学的一场革命。
非晶合金具备很多其独有的特性,如高强度、高硬度,优良的耐蚀性、耐磨性,较高的电阻率、较好的储氢性能以及机电耦合性等[1-3]。
其中,铁基非晶合金不但具有一般非晶合金所具备的特征,而且铁元素含量丰富,制备过程中需要真空度等特点,从而使材料成本和制备成本较低,易获得推广使用[4]。
由于冷却速度和非晶形成能力的制约,制备的铁基块体非晶合金厚度或直径也只有数毫米,这极大地限制了其在实际工程中的应用。
热喷涂技术不但能够迅速升温使材料熔化,还具备快冷凝固的特性,这有利于涂层中形成非晶相。
运用现代先进的热喷涂技术制备的铁基非晶合金涂层,既可以发挥热喷涂技术的优势,又可以实现材料表面改性处理,使材料表面具备某种特殊功效,从而满足材料在多种工程应用中的使用要求。
1 铁基非晶合金的形成能力在非晶合金的初期研究中,其成分中大多含有贵金属元素(如Pd、Pt等),这极大地限制了其在工程中的应用。
近些年来,非晶合金得以迅猛发展,关于非贵金属元素如 Mg、Zr、Cu、Ti、Fe 基非晶合金的研究也日渐增多,成为非晶合金研究的主流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Bulk metallic glass matrix compositesH. Choi-Yim and W. L. JohnsonCitation: Applied Physics Letters 71, 3808 (1997); doi: 10.1063/1.120512View online: /10.1063/1.120512View Table of Contents: /content/aip/journal/apl/71/26?ver=pdfcovPublished by the AIP PublishingArticles you may be interested inSurface properties of Zr 50 Cu 40 Al 10 bulk metallic glassAppl. Phys. Lett. 90, 183105 (2007); 10.1063/1.2732168Formation of ZrTiCuNiBe bulk metallic glass by shock-wave quenchingAppl. Phys. Lett. 87, 051904 (2005); 10.1063/1.2005367Differential scanning calorimetry, x-ray diffraction and 19 F nuclear magnetic resonance investigations of the crystallization of InF 3 -based glassesJ. Chem. Phys. 109, 2432 (1998); 10.1063/1.476812The effect of silicon on the glass forming ability of the Cu 47 Ti 34 Zr 11 Ni 8 bulk metallic glass forming alloy during processing of compositesJ. Appl. Phys. 83, 7993 (1998); 10.1063/1.367981The kinetic glass transition of the Zr 46.75 Ti 8.25 Cu 7.5 Ni 10 Be 27.5 bulk metallic glass former-supercooled liquids on a long time scaleAppl. Phys. Lett. 72, 2695 (1998); 10.1063/1.121102Bulk metallic glass matrix compositesH.Choi-Yim a)and W.L.JohnsonW.M.Keck Laboratory of Engineering Materials,Mail Code138-78,California Institute of Technology,Pasadena,California91125͑Received22September1997;accepted for publication28October1997͒Composites with a bulk metallic glass matrix were synthesized and characterized.This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state.In this letter,experimental methods for processing metallic glass composites are introduced.Three different bulk metallic glass forming alloys were used as the matrix materials.Both ceramics and metals were introduced as reinforcement into the metallic glass.The metallic glass matrix remained amorphous after adding up to a30vol%fraction of particles or short wires.X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase.Optical micrographs reveal uniformly distributed particles in the matrix.The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods.©1997American Institute of Physics.͓S0003-6951͑97͒02852-0͔Recently there has been considerable scientific and in-dustrial interest in a variety of metal matrix composites as a way to improve mechanical properties compared to unrein-forced alloys.1–3Those materials are made by reinforcing alloys with long or shortfibers,whiskers,or particles.Con-tinuously reinforced composites provide maximum strength and stiffness in one direction but are anisotropic.4Discon-tinuously reinforced metal matrix composites have been demonstrated to offer essentially isotropic properties with substantial improvements in strength and stiffness relative to those available with unreinforced materials.5,6Particulate composites have the further advantages of being machinable and workable using many conventional processing tech-niques.Many metals and ceramics have been considered as possible matrix materials.The most studied metal matrix for application at temperatures below450°C is aluminum.7Ti-tanium has been extensively studied from the perspective of higher-temperature applications.8In this work,bulk metallic glasses were used as matrices reinforced with refractory ce-ramics,ductile metal particles,or short wires.This was made possible by the use of recently reported multicomponent al-loys that exhibit an extremely high glass forming ability, e.g.,La–Al–Ni,9Zr–Al–Cu–Ni,10and Zr–Ti–Cu–Ni–Be.11 In the work described here,Zr–Ti–Cu–Ni͑Ref.12͒and Zr–Ti͑Nb͒–Al–Cu–Ni͑Ref.13͒alloys,which show ex-traordinary glass forming ability,were used as the matrix. These bulk metallic glasses have promising properties such as high yield strength and a high elastic strain limit com-bined with relatively high fracture toughness,fatigue,and corrosion resistance.14–17However,they have little ductility in tension.This lack of tensile ductility could be an impor-tant drawback in many applications.Thus,one of the moti-vations for adding second phase particles to the metallic glass was to hinder propagation of shear bands and encour-age the formation of multiple shear bands.In this letter,we will focus on the processing of particulate reinforced com-posites with a metallic glass matrix.More particularly,we focus on one set of results obtained for WC particulate ad-ditions to a bulk metallic glass forming matrix.Other results are briefly summarized and will be described in more detail in a future publication.In this work,we used three different compositions of bulk metallic glasses developed by Lin and Johnson12,13as matrix materials.The nominal compositions of the three al-loys are Cu47Ti34Zr11Ni8͑vitreous alloy101or V101͒, Zr52.5Ti5Al10Cu17.9Ni14.6͑V105͒,and Zr57Nb5Al10Cu15.4Ni12.6͑V106͒.Ingots of alloys were prepared by arc melting a mix-ture of the elements having purity of99.7%or better.A mixture of the pre-alloyed metallic glass forming elements and second phase material was combined by induction melt-ing the glass forming alloy together with the solid second phase material on a water-cooled copper boat under a Ti-gettered argon atmosphere.Ceramics such as SiC,WC,or TiC,and the metals W or Ta were used as second phase materials.Volume fractions of particles ranged from5%–30%and the sizes of the particles varied between20and80m.Short͑aspect ratioϭ3͒tungsten wires with diameters of 100m were also used in volume fractions of10%.The composite ingots were then remelted at temperatures ranging from850to1100°C under vacuum in a quartz tube using an induction heating coil and then injected through a nozzle into a copper mold using high purity argon at1atm pressure.The copper mold has internal rod shaped cavities3cm in length and3mm in diameter and strip shaped cavities3cm in length,6mm in width,and2mm in thickness.Cross sec-tions of cast strips and rods were examined by x-ray diffrac-tion.The glass transition temperature of the amorphous ma-trix and the crystallization behavior of composites were determined using differential scanning calorimetry͑DSC͒͑Perkin-Elmer DSC7͒.The x-ray diffraction pattern in Fig.1was taken on a cross sectioned specimen containing15vol%WC in a V106 matrix and shows diffraction peaks from WC particles super-imposed on the broad diffuse scattering maxima from the amorphous phase.No other phases are detected within the sensitivity limits of x-ray diffraction.This implies that the presence of WC during processing did not adversely affecta͒Electronic mail:hchoi@the glass forming ability of the matrix.An optical micro-graph,depicted in Fig.2,shows uniformly distributed WC particles in the metallic glass matrix.In this case,the volume fraction of WC particles was 10%.Figure 3shows DSC scans of the pure amorphous alloy V106and a series of WC reinforced composites for V106using a heating rate of 10K/m.The mean size of the WC particles was 50m.The scans exhibit an endothermic heat event characteristic of the glass transition followed by two distinguishably characteristic exothermic events.The exo-thermic events indicate the successive stepwise transforma-tion from a metastable glassy state to a mixture of two or more equilibrium crystalline phases following heating.The glass transition temperature,T g ,is defined here as the onset of the endothermic DSC event.The crystallization tempera-ture,T x ,is defined as the onset temperature of the first exo-thermic event.Based on the DSC scans,it is observed that the addition of particulate WC into the V106produces no discernible change in either T g or T x and,within the sensi-tivity of the technique,this holds regardless of the WC vol-ume fraction.The results discussed above apply to WC reinforced V106.In addition to WC,metallic glasses composites were made with SiC,TiC,W,and Ta reinforcements.Table I gives an overview of the various combinations of metallic glasses and reinforcements which have been processed and characterized.‘‘A’’stands for an amorphous matrix after processing;‘‘X’’stands for a fully or partially crystallized matrix after processing.The diameter of short wires is 100m and the aspect ratio is 3.All specimens are 3mm diam-eter rods.From Table I we can conclude that many metallic glass/reinforcement mixtures used in this work are very stable with respect to nucleation and growth of second phases under the processing conditions used here.This success in making composites with an amorphous matrix was unexpected.According to early studies of crystal nucleation,such second phase crystalline solid additions to the glass forming melts should tend to act as catalytic sites for heterogeneous crystal nucleation and growth.18The ab-sence of heterogeneous nucleation of crystalline phases in the metallic glass induced by interfacial contact with there-FIG.1.X-ray diffraction pattern of the 15%WC reinforced V106matrix.The solid line is the diffraction pattern from the composite and the dotted line is the diffraction pattern from WCparticles.FIG.2.An optical micrograph showing uniformly distributed WC particles in the V106matrix.The size of particles is about 50m.The volume fraction of WC is10%.FIG.3.DSC thermogram ͑heating rate of 10K/m ͒of V106and WC rein-forced V106.T g is the onset of the glass transition temperature and T x is the onset temperature of the crystallization event.TABLE I.Lists of combinations among three different compositions of bulk metallic glasses and particles.V101is Cu 47Ti 34Zr 11Ni 8.V105is Zr 52.5Ti 5Al 10Cu 17.9Ni 14.6.V106is Zr 57Nb 5Al 10Cu 15.4Ni 12.6.Reinforcement/matrix V101V105V106SiC 10%,80m A A A SiC 20%,80m A A A SiC 30%,80m A X X SiC 10%,37m A X A SiC 20%,37m A X X SiC 10%,1m X ••••••TiC 10%,20m A X A WC 5%,50m X A A WC 10%,50m X X A WC 15%,50m X X A W 5%,30m A A A W 10%,30m X X A W 15%,30m X X A W 5%,12m ••••••A Ta 5%,30m ••••••A Ta 10%,30m ••••••A W short wire 10%AAAinforcement is related to crystallization kinetics in theseglass forming melts.It has been shown,for example,thatcrystallization in these glasses is sluggish as evidenced bycritical cooling rates of the order of10–100K/s.9–13There are several reasons that the present bulk metallicglasses were chosen as a composite matrix.The bulk metal-lic glass forming alloys have a relatively low melting tem-perature.Therefore,chemical interactions between the rein-forcement particles and the glass are relatively slow.Thismakes for easy control of interfacial reactions.Also,the lowglass transition temperature decreases differential thermalstresses which arise between the reinforcement and the ma-trix during freezing and cooling.The synthesis methods usedin this work are effective and simple.Particles were intro-duced directly into the metallic glass during induction melt-ing.This method has the advantage of mixing the particlesand glass forming liquid through rf stirring of the melt.Wet-ting of particles by the molten metal is observed to occurspontaneously.We found from this study that although V105is the best glass former among the three alloys reported on inthis letter͑as assessed by earlier studies of critical coolingrates12,13͒,V106is the most processable matrix phase for fabricating composites containing a completely glassy ma-trix.The reduced glass transition temperature(t g),the ratioof the glass transition temperature,and the liquidus tempera-ture of the crystalline alloy have often been cited as criticalparameters determining the glass forming ability of metallicalloys.High values of t g are associated with good glassforming ability.According to Refs.12and13,we know thatthe t g of V105is0.638while the t g of V106is0.620.The maximum volume fraction of particles which couldbe introduced into the glassy alloys by the present castingmethods was30%.A high speed of injecting molten alloysinto the mold is necessary to achieve a high enough coolingrate to avoid crystallization of the matrix during casting.Adding a higher volume fraction of solid particles to theliquid alloy increases the viscosity of the mixture and lowersthe injection speed achievable during casting,thus limitingthe volume fraction of particles that can be added to the glassmatrix.Table I also shows processability versus particlesizes.A given volume fraction of small particles has moreinterfacial area between the particles and glass forming alloythan the same volume fraction of larger particles.This en-hances chemical reaction between the particles and the glassmatrix.Dissolution or reaction of an excessive amount of thereinforcement phase with the metallic glass matrix changesthe composition of the metallic glass in a manner whichremoves the composition from the optimum glass forming range.Interfacial reactions and dissolution of reinforcement into the melt are ultimately believed responsible for degra-dation of the glass forming ability of the matrix.These fac-tors are discussed in more detail in a separate publication.According to the present study,it has been proven that adding second phase crystalline materials into bulk metallic glass forming melt does not significantly degrade the bulk glass forming ability of the matrix alloy.The recent devel-opment of extremely stable bulk metallic glasses has made it possible to fabricate such composites.A variety of reinforce-ment materials has been added to the metallic glass matrix without inducing crystallization.The casting method used to synthesize the composites described in this letter has been proven simple and e of induction melting and the accompanying rf stirring has been found to be an effi-cient means of producing a uniform dispersion of reinforce-ment particles in the metallic glass matrix.Utilization of a relatively low maximum processing temperature prevents ex-cessive reaction between the particles and the glass matrix, thus allowing one to retain the excellent glass forming ability of the matrix.The authors would like to thank U.Ko¨ster,R.Busch,R.B.Dandliker,and R.D.Conner for valuable discussions. This work was jointly supported by the U.S.Army Research Office and the U.S.Air Force Office of Scientific Research under ARO Grant No.DAAH04-95-1-0233.1I.A.Ibrahim,F.A.Mohamed,and vernia,J.Mater.Sci.26,1137͑1991͒.2T.Christman,A.Needleman,and S.Suresh,Acta Metall.37,3029͑1989͒. 3M.F.Ashby,F.J.Blunt,and M.Bannister,Acta Metall.37,1847͑1989͒. 4A.K.Dhingra,J.Met.38,17͑1986͒.5A.P.Divecha,S.G.Fishman,and S.D.Karmarkar,J.Met.33,12͑1981͒. 6R.J.Arsenault,Mater.Sci.Eng.64,171͑1984͒.7J.C.Viala and J.Bouix,Mater.Chem.Phys.11,101͑1984͒.8A.G.Metcalfe,in Metallic Matrix Composites,edited by K.C.Kreider ͑Academic,New York,1974͒p.269.9A.Inoue,T.Zhang,and T.Masumoto,Mater.Trans.JIM31,425͑1990͒. 10T.Zhang,A.Inoue,and T.Masumoto,Mater.Trans.JIM32,1005͑1991͒. 11A.Peker and W.L.Johnson,Appl.Phys.Lett.63,2342͑1993͒.12X.H.Lin and W.L.Johnson,J.Appl.Phys.78,6514͑1995͒.13X.H.Lin,Ph.D.thesis,X.H.Lin,and W.L.Johnson,Mater.Trans.JIM 38,473͑1997͒.14H.A.Bruck,T.Christman,A.J.Rosakis,and W.L.Johnson,Scr.Metall. Mater.30,429͑1994͒.15H.A.Bruck,A.J.Rosakis,and W.L.Johnson,J.Mater.Res.11,503͑1996͒.16C.G.Gilbert,R.O.Ritchie,and W.L.Johnson,Appl.Phys.Lett.71,476͑1997͒.17D.Conner,A.J.Rosakis,and W.L.Johnson,Scr.Metall.Mater.͑in press͒.18D.Turnbull,Contemp.Phys.10,473͑1969͒.。