人教版七年级数学上百分闯关第四章检测题
人教七年级数学上册试卷第四章测试卷

第四章测试卷时间:90分钟满分:100分一、选择题(每小题3分,共36分)1.下列几何体中,从正面看和上面看都为矩形的是( B )2.经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( A )A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短D.两点确定一条射线3.下面的等式成立的是( C )A.26°12'42″=26.124 2°B.26°50'=26.5°C.78°30'÷4=19°37'30″D.15°14'38″×4.5=67.5°5'51″4.如图是由相同小正方体组成的立体图形,它的左视图为( A )5.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是( D )6.在直线l 上顺次取A ,B,C 三点,使得AB=5 cm,BC=3 cm,如果O 是线段AC 的中点,那么线段OB 的长度是( B )A.0.5 cmB.1 cmC.1.5 cmD.2 cm7.如果点C 在线段AB 上,那么下列各表达式中:①AC =BC;②AC =AB;③AC+BC =AB;④AB =2AC,能表示点C 是线段AB 的中点的有( B )A.1个B.2个C.3个D.4个8.如果一个角的补角是140°,那么这个角的度数是( B )A.20°B.40°C.70°D.130°9.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于( A )10.如图,OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是( D )11.如图所示,B,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN =a,BC=b,则线段AD的长是( B )A.2(a-b)B.2a-bC.a+bD.a-b12.钟表在8:25时,时针与分针的夹角度数是( B )A.101.5B.102.5C.120D.125二、填空题(每小题3分,共18分)13.如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 1 或2 或6 (填序号).14.如图,点A ,B,C 在直线l 上,则图中共有 3 条线段,有 6 条射线.15.如图,B 处在 A 处的南偏西40°方向,C 处在A 处的南偏东12°方向,C 处在B 处得北偏东80°方向,则∠ACB 的度数为 88° .16.如图,直线AB 与CD 相交于点O,∠AOD =50°,则∠BOC= 50° .17.往返于A ,B 两地的客车,中途停靠四个站,共有 15 种不同的票价,要准备 30 种车票.18.钟表上11时40分钟时,时针与分针的夹角为 110 度.三、解答题(共46分)19.(7分)下面的几何体是用 7 个大小相同的小正方体搭成的,请你在右边的方格中画出该几何体的三种视图.20.(7分)已知,B,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm,求CM 和AD的长.AD =5 =AM -AB =5 =6 cm,所以解:设AB=2,CD =3 =MD =123x=6,解得D -CD =5x-3x=2),AD =10).21.(8分)计算:(1)90°-78°19'40″; (2)34°25'20″×3+35°42';解:(1)90°-78°19'40″=89°59'60″-78°19'40″=11°40'20″; (2)34°25'20″×3+35°42'=102°75'60″+35°42'=103°16'+35°42'=138°58';(3)132°26'42″-41.325°×3; (4)95°37'21″-60°52'40″.解:(3)132°26'42″-41.325°×3=132°26'42″-123.975°=132°26'42″-123°58'30″=8°28'12″;(4)95°37'21″-60°52'40″=95°36'81″-60°52'40″=94°96'81″-60°52'40″=34°44'41″.22.(8分)如图,∠AOC 与∠BOC 互余,OD 平分∠BOC,∠EOC=2∠AOE.(1)若∠AOD =75°,求∠AOE 的度数;(2)若∠DOE=54°,求∠EOC 的度数.解:设∠AOE =x,∵∠EOC =2∠AOE,∴∠EOC =2x,∴∠AOC = ∠AOE +∠COE =3x,∵∠AOC与∠BOC互余,∴∠BOC =90°-3x,∵OD平分∠BOC,∴∠COD=12∠BOC=45°-32x.(1)若∠AOD =75°,则∠AOD =∠AOC+∠COD =75°,即3x+45°-32x=75°,解得x=20°,即∠AOE 的度数为20°;(2)若∠DOE=54°,则∠DOE=∠EOC+∠COD =54°,即2x+45°-32x=54°,解得x=18°,2x=36°,即∠EOC 的度数是36°.23.(8分)射线OA 表示的方向是北偏东15°,射线OB 表示的方向是北偏西40°.(1)若∠AOC=∠AOB,则射线OC 表示的方向是北偏东70° ;(2)若射线OD 是射线OB 的反向延长线,则射线OD 表示的方向是南偏东40° ;(3)∠BOD 可以看作是由OB 绕点O 逆时针方向旋转至OD 形成的角,作∠BOD 的平分线OE;(4)在(1),(2),(3)的条件下,求∠COE 的度数.解:(3)如图所示,OE 为∠BOD 的平分线;(4)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.∴∠COD =180°-110°=70°.又∵射线OD 是OB 的反向延长线,∴∠BOD =180°,∵射线OE 平分∠BOD ,∴∠DOE=90°,∴∠COE=∠DOE+∠COD =90°+70°=160°.24.(8分)如图,B 是线段AD 上一动点,沿A →D →A 的路线以2 cm/s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm,设点B 的运动时间为t s(0≤t ≤10).(1)当t=2时,求线段AB 和线段CD 的长度; (2)用含t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 的中点为E,则EC 的长是否变化? 若不变,求出EC 的长;若发生变化,请说明理由.解:(1)∵B 是线段AD 上一动点,沿A →D →A 以2 cm/s 的速度往返运动,∴ 当t=2时,AB =2×2=4(cm);∵AD =10cm,AB=4cm,∴BD=10-4=6(cm),∵C 是线段BD 的中点,∴CD=12BD =12×6=3 (cm);(2)∵B 是线段AD 上一动点,沿A →D →A 以 2 cm/s 的速度往返运动,∴当0≤t ≤5时,AB =2t;当5<t ≤10时,AB=10-(2t-10)=20-2t;(3)不变.∵AB 中点为E,C 是线段BD 的中点,∴EC=12(AB+BD)= 12AD =12×10=5 (cm).。
最新人教版七年级数学上册第四章测试题及答案

人教版七年级数学上册第四章测试题及答案第4章《图形认识初步》班级___________ 姓名___________ 成绩_______一、选择题(每小题3分,共30分) 1.下列空间图形中是圆柱的为( )2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②3.将如图2所示的直角三角形ABC 绕直角边AC 旋转一周,所得的几何体从正面看是图3中( )4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )B AC D 第2题图A.B.C.D.BAC 图2 ABCD图 35.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程,其中可用事实 “两点之间,线段最短”来解释的现象有( ) A.①② B.①③ C.②④ D.③④ 6.已知∠α=35°19′,则∠α的余角等于( )A .144°41′B .144°81′C . 54°41′D . 54°81′7.线段12AB cm =,点C 在AB 上,且13AC BC =,M 为BC 的中点,则AM 的长为( )A.4.5cmB. 6.5cmC. 7.5cmD. 8cm8.如图,下列说法中错误的是( )A.OA 方向是北偏东30º B.OB 方向是北偏西15º C.OC 方向是南偏西25º D.OD 方向是东南方向二、填空题(每小题2分,共20分)1.长方体由 个面, 条棱, 个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.如图,在射线CD 上取三点D 、E 、F ,则图中共有射线_________条。
人教版七年级数学上册第四章达标检测卷附答案

人教版七年级数学上册第四章达标检测卷一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.如图所示的正六棱柱的主视图是()3.下列说法中,正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点4.与30°的角互为余角的角的度数是()A.30°B.60°C.70°D.90°5.如图,点A在点B的()A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30°6.已知线段AB=15 cm,点C是直线AB上一点,BC=5 cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10 cm B.5 cm C.10 cm或5 cm D.7.5 cm 7.已知∠1=28°24′,∠2=28.24°,∠3=28.4°,则下列说法中,正确的是() A.∠1=∠2<∠3 B.∠1=∠3>∠2C.∠1<∠2=∠3 D.∠1=∠2>∠38.钟表在8:25时,时针与分针夹角的度数是()A.101.5°B.102.5°C.120°D.125°9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是()A.大B.伟C.国D.的10.如图,C,D在线段BE上,下列说法:①直线CD上以B,C,D,E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC =40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是__________________.12.一个角的余角比这个角的补角的一半小40°,则这个角为________.13.三条直线两两相交,最少有________个交点,最多有________个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了______________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了____________(从点、线、面的角度作答).15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12′的方向上,则∠AOB 的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有________种不同的票价,需准备________种车票.19.小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.20.用棱长是1 cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把露在外面的面涂上颜色,那么涂颜色的面的面积之和是________cm2.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)32°45′48″+21°25′14″;(2)11°23′36″×3.22.点A,B,C,D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.23.如图,已知线段AB=4.8 cm,点M为AB的中点,点P在MB上,N为PB的中点,且NB=0.8 cm,求AP的长.24.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是____________;(2)若射线OE平分∠COD,求∠AOE的度数.25.如图是某工件从正面、左面、上面看到的图形,判断该工件的形状,并求此工件的体积.(结果保留π)26.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图②,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图③,当∠AOB=α,∠BOC=β(0°<α+β<180°)时,猜想∠MON与α,β的数量关系,并说明理由.答案一、1.C2.B3.A4.B5.C6.D7.B8.B9.D10.B点拨:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED 共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;根据图形,由∠BAE=100°,∠CAD=40°,可以求出∠BAC+∠CAE+∠BAE+∠BAD +∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;当点F 在线段CD上时,点F到点B,C,D,E的距离之和最小,为FB+FE +FD+FC=2+3+3+3=11,当点F和点E重合时,点F到点B,C,D,E的距离之和最大,为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.二、11.两点确定一条直线12.80°13.1;314.点动成线;线动成面15.416.155°17.100°12′18.21;4219.45°20.30三、21.解:(1)32°45′48″+21°25′14″=53°70′62″=54°11′2″.(2)11°23′36″×3=33°69′108″=34°10′48″.22.解:如图.23.解:方法一因为N为PB的中点,所以PB=2NB.又知NB=0.8 cm,所以PB=2×0.8=1.6(cm).所以AP=AB-PB=4.8-1.6=3.2(cm).方法二因为N是PB的中点,所以PB=2NB.而NB=0.8 cm,所以PB=2×0.8=1.6(cm).因为M为AB的中点,所以AM=MB=12AB.而AB=4.8 cm,所以AM=BM=2.4 cm.又因为MP=MB-PB=2.4-1.6=0.8(cm),所以AP=AM+MP=2.4+0.8=3.2(cm).点拨:(1)把一条线段分成两条相等线段的点,叫做这条线段的中点.(2)线段中点的表达形式有三种,若点C是线段AB的中点,则①AC=BC;②AB=2AC=2BC;③AC=BC=12AB.熟悉它的表达形式对以后学习几何的推理论证有帮助.24.解:(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.又因为OE平分∠COD,所以∠COE=35°.又因为∠AOC=55°,所以∠AOE=55°+35°=90°.25.解:由题意得该工件的形状为圆锥,圆锥的底面直径为6 cm,高为4 cm,所以圆锥的体积为13π×(6÷2)2×4=12π(cm3).故此工件的体积为12π cm3.26.解:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC)=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=12(α+β)-12β=12α.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012 B .1.339×1011 C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( ) A .0B .-1C .-2D .210.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是() A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数二、填空题(每题3分,共15分)11.将代数式4a2b+3ab2-2b3+a3按a的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m2,则用科学记数法表示FAST的反射面总面积约为____________m2.(精确到万位)13.若|x+2|+(y-3)4=0,则x y=________.14.如果规定符号“*”的意义是a*b=aba+b,则[2*(-3)]*(-1)的值为________.15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
人教版七年级数学上册 第四章 综合素质测评卷及答案

人教版七年级数学上册第四章综合素质测评卷及答案(时间:120分钟满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.下列是四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从甲地到乙地架设电线,总是尽可能沿着线段架设;④把弯曲的公路改直,就能缩短路程,其中可用“两点之间,线段最短”来解释的现象有( D )A.①②B.①③C.②④D.③④2.如图,已知线段AB=10 cm,点N在线段AB上,NB=2 cm,点M是AB的中点,则线段MN的长为( C )A.5 cm B.4 cm C.3 cm D.2 cm3.如图,将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是(C)4.如图,在8:30时,时钟上的时针和分针之间的夹角为(B) A.85°B.75°C.70°D.60°第4题图第5题图5.如图,下列表述不正确的是(C)A.AB+BC=AC B.∠C=∠αC.∠B+∠ABD=180°D.∠1+∠2=∠ADC6.手鼓是鼓中的一大类别,是一种打击乐器,如图所示是我国某少数民族手鼓,从上面看得到的图形是( A )7.如图,可以用字母表示出来的不同线段和射线分别有(C)A.3条线段,3条射线B.6条线段,6条射线C.6条线段,3条射线D.3条线段,1条射线8.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积是( B )A.1 B.6 C.12 D.15第8题图第9题图9.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD =3∠DOE,∠COE=α,则∠BOE的度数为(A)A.360°-4αB.180°-4αC.αD.2α-60°10.在平面上有任意四个点,那么这四个点可以确定的直线有(D)A.1条B.4条C.6条D.1条或4条或6条二、填空题(本大题共8小题,每小题3分,共24分)11.一个角的余角是54°38′,则这个角是35°22′.12.如图所示是由三个棱长均为1 cm的小立方体搭成的几何体,从正面看得到的图形的面积是3cm2.13.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE 的平分线,则∠MBN的度数是45°.14.如果∠1=4°18′,∠2=3°79′,∠3=4.4°,则∠1,∠2,∠3的大小顺序是__∠3>∠2>∠1__.(由大到小)15.南偏东15°与北偏东25°的两条射线组成的小于平角的角等于__140°__.16.如图,点B,C在线段AD上,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长为__2a-b__.(用含a,b的式子表示)17.往返于甲、乙两地的客车,中途停留了3个车站(来回票价一样),且任意两站间的票价都不同,共有10 种不同的票价,需准备20 种车票.18.已知A,B,C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为-6或0或4或10 .三、解答题(本大题共7小题,共66分)19.(8分)计算:(1)48°39′+67°31′-21°17′;解:原式=115°70′-21°17′=94°53′.(2)23°53′×3-107°43′÷5.解:原式=69°159′-21°32′36″=71°38′60″-21°32′36″=50°6′24″.20.(8分)已知∠1与∠2互为补角,∠2的度数的一半比∠1大45°,求∠1与∠2的度数.解:设∠1为x°,因为∠1与∠2互为补角,所以∠2=180°-∠1.所以∠2=180°-x°,又因为∠2的度数的一半比∠1大45°,所以12(180-x)-x =45, 可解得x =30.所以∠1=30°,∠2=150°.21.(8分)如图所示,有一只蚂蚁想从A 点沿正方体的表面爬到B 点,走哪一条路最近?请你试着画出这条最短的路线,并说明理由.解:如图①所示的折线AEB 最近,因为展开以后,线段AEB 的长度即是A ,B 两点之间的距离,如图②所示.22.(10分)画图并计算:已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =12AB ,再反向延长AC 至点D ,使得AD =AC .(1)准确地画出图形,并标出相应的字母;(2)线段DC 的中点是那个点?线段AB 的长是线段DC 长的几分之几?(3)求出线段BD 的长度.解:(1)如图:(2)线段DC 的中点是点A ,AB =13CD. (3)因为BC =12AB =12×2=1 cm ,所以AC =AB +BC =2+1=3 cm .又因为AD =AC =3 cm ,所以BD =DA +AB =3+2=5 cm .23.(10分)如图①,点O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.将图①中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图②,经过t 秒后,OM 恰好平分∠BOC .(1)求t 的值;(2)此时ON 是否平分∠AOC ?请说明理由.解:(1)因为∠AON +∠BOM =90°,∠COM =∠MOB ,因为∠AOC =30°,所以∠BOC =2∠COM =150°,所以∠COM =75°,所以∠CON =15°,所以∠AON =∠AOC -∠CON =30°-15°=15°,则:t =15°÷ 3°=5秒;(2)是,理由如下:因为∠CON =15°,∠AON =15°,所以ON 平分∠AOC.24.(10分)如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点.(1)若线段AB =a ,CE =b ,|a -15|+(b -4.5)2=0,求a ,b ;(2)在(1)的条件下,求线段DE 的长;(3)若AB =15,AD =2BE ,求线段CE 的长.解:(1)因为|a -15|+(b -4.5)2=0,所以|a -15|=0,(b -4.5)2=0,所以a =15,b =4.5.(2)因为点C 为线段AB 的中点,AB =15,CE =4.5,所以AC =12AB =7.5,所以AE =AC +CE =12.因为点D 为线段AE 的中点,所以DE =12AE =6. (3)设BE =x ,则AD =2BE =2x.因为点D 为线段AE 的中点,所以DE =AD =2x.因为AB =15,所以AD +DE +BE =15,即2x +2x +x =15,解得x =3,即BE =3.因为AB =15,点C 为AB 的中点,所以BC =12AB =7.5,所以CE =BC -BE =7.5-3=4.5.25.(12分)如图①,点O为直线AB上一点,射线OC⊥AB于O 点,将一直角三角板的60°角的顶点放在点O处,斜边OE在射线OB 上,直角顶点D在直线AB的下方.(1)将图①中的三角板绕点O逆时针旋转至图②,使一边OE在∠BOC的内部,且恰好平分∠BOC,问:直线OD是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线OD恰好平分∠AOC,则t 的值为________;(直接写出结果)(3)将图①中的三角板绕点O顺时针旋转至图③,使OD在∠AOC 的内部,请探究:∠AOE与∠DOC之间的数量关系,并说明理由.解:(1)直线OD不平分∠AOC,理由:因为OE平分∠BOC,所以∠BOE=45°,∠BOD=∠DOE-∠BOE=60°-45°=15°,延长DO至点M,所以∠AOM=90°-75°=15°,则∠COM=180°-90°-15°=75°,即∠AOM≠∠COM.(2)3或39.(3)∠DOC-∠AOE=30°,理由:因为∠DOC+∠AOD=∠AOC =90°①,∠AOE+∠AOD=∠DOE=60°②,①-②得∠DOC-∠AOE=30°.。
人教版七年级数学上册第四章测试卷

第四章测试卷(时间:90分钟满分:120分)一、选择题(每题3分,共30分)1,如图是一个正方体,则它的表面展开图可以是()2,下列图形中,∠1与∠2互为补角的是()3,下列说法中,不正确的是()A.若点C在线段BA的延长线上,则BA=AC-BCB.若C在线段AB上,则AB=AC+BCC.若AC+BC>AB,则点C一定在线段BA外D.若A,B,C三点不在同一条直线上,则AB<AC+BC4,如图所示,关于线段、射线和直线的条数,下列说法正确的是()A.五条线段,三条射线 B.一条直线,三条线段C.三条线段,两条射线,一条直线D.三条线段,三条射线5,如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.垂线段最短B.线段有两个端点C.两点确定一条直线D.两点之间线段最短6,分别从一个几何体的正面、左面、上面观察得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球D.棱柱7,如果线段AB=10 cm,MA+MB=15 cm,那么下面说法中正确的是()A.M点在线段AB上B.M点在直线AB上C.M点在直线AB外D.M点可能在直线AB上,也可能在直线AB外8,用度、分、秒表示91.34o为()A.91 o20'24"B.91o34'C.91o 20'4"D.91o93'4"9,如图,平面内有公共端点的射线OA,OB,OC,OD,OE.OF,从射线OA开始按逆时针依次在射线上写出数字1,2,3,4,5,6,7,.,则数字"2016"在()A.射线OF上B.射线OB上C.射线OD上D.射线OE上10,已知在线段上依次添加1个点,2个点,3个点,..原线段上所成线段的总条数如下表:若在原线段上添加n个点,则原线段上所有线段总条数为()A.n+2B.1+2+3+...+n+ n+1С.n+1 D.n(n+1)2二、填空题(每题4分,共32分)11,在一张桌子上放着几叠碗,如图是小明分别从上面、前面、右面观察所得到的图形,那么桌子上一共放着只碗.12,已知∠AOB=30o,又自∠AOB的顶点O引射线0C,若∠AOC:∠AOB=4:3,那么∠BOC=13,已知线段AB=6cm,在直线AB上画线段AC=2 cm,则BC的长是cm.14,已知∠α与∠β互余,且∠α=40o,则∠β为15,如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于16,如图,已知点A,O,C在同一直线上,OE平分∠AOB.OF平分∠BOC,则∠EOF=17,观察下列各正方形图案,每条边上有n个圆点,每个图案中圆点的总数是S.按此规律推断出S与n的关系式为18,如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,∠AOF=∠BOF=90o.则(1)∠AOC的补角是(2)是∠AOC的余角;(3)∠COF的补角是三、解答题(共58分)19,(8分)知识是用来为人类服务的,我们应该把它们用于有意义的地方,下面就两个情景请你作出评判.情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.情景二:A,B是河流!两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由.你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?20,(8分)下面是小马解的一道题:在同一平面上,若∠BOA-70",∠BOC=159,求∠AOC的度数.解:根据题意可画出图形∠AOC=∠BOA-∠BOC=70o-15o=55o.若你是老师,会判小马满分吗?若会,说明理由,若不会,请将小马的错误指出,并给出1你认为正确的解法.21,(10分)下面是由同一型号的黑白两种颜色的等边三角形瓷砖按一定规律铺设的图形.仔细观察图形可知:图1中有1块黑色的瓷砖,可表示为1- 1+1)×1;2;图2中有3块黑色的瓷砖,可表示为1+2-(1+2)×22图3中有6块照色的瓷砖,可表示为1+2-3=(1+3)×3实践与探索:2(1)请在图4中的虚线框内画出第4个图形;(2)第10个图形有多少块黑色的瓷砖?第n个图形呢?22,(10分)如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=18cm,求DE的长;(2)若CE=5 cm,求DB的长.23,(10分)把一副三角板的直角顶点O重叠在一起,(1)如图1,当OB平分∠COD时,则∠AOD和∠BOC的和是多少度?(2)如图2,当OB不平分∠COD时,则∠AOD和∠BOC的和是多少度?(3)当∠BOC的余角的4倍等于∠AOD时,则∠BOC是多少度?24,(12分)(1)如图,已知点C在线段AB上,AC=6cm,且BC=4 cm,M,N分别是AC,BC的中点,求线段MN的长度(2)在(1)题中,如果AC=a cm,BC=bcm,其他条件不变,你能猜出MN的长度吗?请你用一句简洁的话表述你发现的规律;(3)对于(1)题,如果我们这样叙述它:“已知线段AC=6 cm,BC=4 cm,点C在直线AB上,M,N分别是AC,BC的中点,求MN的长度."结果会有变化吗?如果有,求出结果.。
人教版七年级数学上册第四章测试题附答案

人教版七年级数学上册第四章测试题附答案(考试时间:120分钟 满分:120分)分数:一、选择题(本大题共6小题,每小题3分,共18分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.若∠A =23°,则∠A 的余角的大小是( B ) A .57° B .67° C .77° D .157°2.手鼓是鼓中的一大类别,是一种打击乐器,如图所示是我国某少数民族手鼓,从上面看得到的图形是( A )3.如图,已知点C 为AB 上一点,BC =12 cm ,AC =32CB ,D ,E 分别为AC ,AB 的中点,则DE 的长为( D )A .3 cmB .4 cmC .5 cmD .6 cm第3题图 第4题图4.如图,O 为直线AB 上一点,∠AOC =α,∠BOC =β,则β的余角可表示为( C ) A.12(α+β) B.12α C.12(α-β)D.12β 5.★如图,∠AOB =∠COD ,若∠AOD =110°,∠BOC =70°,则以下结论中正确的有( C )①∠AOC =∠BOD =90°;②∠AOB =20°;③∠AOB =∠AOD -∠AOC ;④∠AOB =211∠BOD .A .1个B .2个C .3个D .4个6.已知∠AOB =30°,又自∠AOB 的顶点O 引射线OC ,若∠AOC ∶∠AOB =4∶3,那么∠BOC =( D ) A .10°B .40°C .70°D .10°或70°二、填空题(本大题共6小题,每小题3分,共18分)7.下雨时汽车的雨刷把玻璃上的雨水刷干净,这属于数学中 线动成面 的应用. 8.∠1还可以用 ∠BCE 表示,若∠1=62.16°,那么62.16°= 62 ° 9 ′ 36 ″.第8题图 第9题图9.(吉州区期末)如图所示,在矩形纸片ABCD 中,点M 为AD 边的中点,将纸片沿BM ,CM 折叠,使点A 落在A 1处,点D 落在D 1处.若∠1=30°,则∠BMC 的度数为 105° .10.如图,钟表8时30分时,时针与分针所成的锐角的度数为 75° .第10题图 第11题图11.(吉安期末)用小立方块搭成的几何体从正面和上面看到的图形如图,这个几何体中小立方块的个数最多有 10 个.12.★已知线段AB =8,在直线AB 上取一点P ,恰好使APPB =3,点Q 为线段PB 的中点,则AQ 的长为 7或10 .选择、填空题答题卡一、选择题(每小题3分,共18分)题号123456 得分 答案 B A D C CD二、填空题(每小题3分,共18分)得分:______ 7. 线动成面 8. ∠BCE 62 9 36 9. 105° 10. 75° 11. 10 12. 7或1013.(1)下列图形中,哪些是立体图形,哪些是平面图形?解:立体图形有②③⑥; 平面图形有①④⑤.(2)如图,C ,D 是河流AB 两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P 的位置,并说明你的理由.解:连接CD 交AB 于点P ,则点P 即为所求. 理由:两点之间,线段最短.14.如图,∠AOB 是平角,过点O 作射线OE ,OC ,OD. (1)∠BOE 能表示成哪两个角的和?你有几种不同的表示方法? (2)∠AOE 能表示成哪两个角的差?你有几种不同的表示方法?解:(1)∠BOE =∠BOD +∠DOE ,∠BOE =∠BOC +∠COE ,共2种. (2)∠AOE =∠AOC -∠EOC , ∠AOE =∠AOD -∠DOE , ∠AOE =∠AOB -∠BOE , 共3种. 15.计算:(1)18°20′32″+30°15′32″; 解:原式=48°35′64″ =48°36′4″.(2)32°16′×5-15°20′÷6.解:原式=160°80′-2°33′20″ =158°46′40″.16.已知∠1与∠2互为补角,∠2的度数的一半比∠1大45°,求∠1与∠2的度数. 解:设∠1为x°,因为∠1与∠2互为补角,所以∠2=180°-∠1. 所以∠2=180°-x°.又因为∠2的度数的一半比∠1大45°, 所以12(180-x)-x =45,解得x =30. 所以∠1=30°,∠2=150°.17.如图所示,有一只蚂蚁想从A 点沿正方体的表面爬到B 点,走哪一条路最近?请你试着画出这条最短的路线,并说明理由.解:如图①所示的折线AEB 最近,理由:因为展开以后,线段AEB 的长度即是A ,B 两点之间的距离,如图②所示. 四、(本大题共3小题,每小题8分,共24分)18.如图所示,AB 为一条直线,OC 是∠AOD 的平分线,OE 在∠BOD 内,∠DOE ∶∠BOD =2∶5,∠COE =80°,求∠EOB 的度数.解:设∠DOE =2x ,∵∠DOE ∶∠BOD =2∶5, ∴∠BOE =3x ,又∵OC 是∠AOD 的平分线,∠COE =80°, ∴∠AOC =∠COD =80°-2x , 2×(80°-2x)+5x =180°, 解得x =20°,∴∠BOE =3x =3×20°=60°.19.(1)已知:如图所示,点C 在线段AB 上,线段AC =6,BC =2,点M 和N 分别是AC 和BC 的中点,求线段MN 的长度;(2)根据(1)的计算过程和结果,设AB =a ,M ,N 分别是AC ,BC 的中点.你能猜出MN 的长度吗?请用一句简洁的话表达你发现的规律.解:(1)∵AC =6,∴MC =12AC =3.∵BC =2,∴CN =12BC =1,∴MN =3+1=4.(2)MN =12a.把一条线段分成两部分,一部分的一半和另一部分的一半的和为这条线段的一半.20.如图,已知轮船A 在灯塔P 的北偏东30°的方向上,轮船B 在灯塔P 的南偏东70°的方向上.(1)求从灯塔P 看两轮船的视角(即∠APB)的度数?(2)轮船C 在∠APB 的平分线上,则轮船C 在灯塔P 的什么方位?解:(1)由题意可知∠APN =30°,∠BPS =70°, 所以∠APB =180°-∠APN -∠BPS =80°.(2)∵PC 平分∠APB , 且∠APB =80°, ∵∠APC = 12∠APB =40°∴∠NPC =∠APN +∠APC =70°. ∴轮船C 在灯塔P 的北偏东70°的方向上. 五、(本大题共2小题,每小题9分,共18分)21.(宁都县期末)已知:如图所示,OD 平分∠BOC ,OE 平分∠AOC.若∠BOC =70°,∠AOC =50°.(1)求∠AOB 及其补角的度数;(2)求∠DOC 和∠AOE 的度数,并判断∠DOE 与∠AOB 是否互补,并说明理由.解:(1)∠AOB =∠BOC +∠AOC =70°+50°=120°, 其补角为180°-∠AOB =180°-120°=60°. (2)∠DOE 与∠AOB 互补,理由: ∵∠DOC =12∠BOC =12×70°=35°,∠AOE =∠COE =12∠AOC =12×50°=25°.∴∠DOE =∠DOC +∠COE =35°+25°=60°.∴∠DOE +∠AOB =60°+70°+50°=180°,∴∠DOE 与∠AOB 互补.22.如图,点C 为线段AB 的中点,点E 为线段AB 上的点,点D 为线段AE 的中点. (1)若线段AB =a ,CE =b ,|a -15|+(b -4.5)2=0,求a ,b 的值; (2)在(1)的条件下,求线段DE 的长;(3)若AB =15,AD =2BE ,求线段CE 的长.解:(1)因为|a -15|+(b -4.5)2=0, 所以|a -15|=0,(b -4.5)2=0, 所以a =15,b =4.5.(2)因为点C 为线段AB 的中点,AB =15, CE =4.5,所以AC =12AB =7.5,所以AE =AC +CE =12.因为点D 为线段AE 的中点, 所以DE =12AE =6.(3)设BE =x ,则AD =2BE =2x. 因为点D 为线段AE 的中点, 所以DE =AD =2x.因为AB =15,所以AD +DE +BE =15, 即2x +2x +x =15,解得x =3,即BE =3. 因为AB =15,点C 为AB 的中点, 所以BC =12AB =7.5,所以CE =BC -BE =7.5-3=4.5. 六、(本大题共12分)23.(宜春市期末)已知点O 是直线AB 上的一点,∠MON =90°,OP 平分∠AON. (1)如图①,若∠BON =70°,求∠MOP 的度数; (2)在图①中,若∠BON =x°,直接写出∠MOP 的度数(用含x 的式子表示);(3)将图①中的∠MON 绕顶点O 逆时针旋转至图②的位置,其他条件不变,那么(2)中所求的结论是否还成立?请说明理由.解:(1)如图,因为∠MON =90°,∠BON =70°, 所以∠AON =110°,∠AOM =20°. 因为OP 平分∠AON ,所以∠AOP =∠NOP =110°×12=55°,所以∠MOP =∠AOP -∠AOM =55°-20°=35°. (2)当∠BON =x°,∠MOP =12x°.(3)成立.理由: 设∠BON =x°,则∠AON =(180-x)°, 因为OP 平分∠AON , 所以∠AOP =∠NOP =12∠AON=(90-12x)°.因为∠MON =90°,所以∠MOP =∠MON -∠NOP =90°-⎝⎛⎭⎫90°-12x° =12x°, 所以∠MOP =12∠NOB.。
人教版七年级上册数学第四章测试题(含答案)

人教版七年级上册数学第四章测试题(含答案)(考试时间:120分钟满分:120分)分数:____________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列图形中,∠1和∠2互为余角的是(D)A BC D2.如图,某同学的家在A处,书店在B处,星期日他到书店去买书,想尽快赶到书店,则他选择最近的一条路线是(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B3.如图,下列图形中,是四棱柱的侧面展开图的为(A)A B C D4.如图所示,将左边的图形折成一个立方体后为右边的四个立方体中的(B)A BC D5.下列判断中错误的有(D)①延长射线OA;②直线比射线长,射线比线段长;③如果线段P A=PB,那么点P是线段AB的中点;④连接两点间的线段,叫做两点间的距离.A.0个B.2个C.3个D.4个6.如图,下列说法中不正确的是(D)A.OC的方向是南偏东30°B.OA的方向是北偏东45°C.OB的方向是西偏北30°D.∠AOB的度数是75°7.以长方形3 cm长的边所在直线为轴旋转一周形成圆柱体甲,以长方形2 cm长的边所在直线为轴旋转一周形成圆柱体乙,记两个圆柱的体积为V甲,V乙,侧面积为S甲,S乙,则下列式子中正确的是(A)A.V甲<V乙,S甲=S乙B.V甲>V乙,S甲>S乙C.V甲=V乙,S甲=S乙D.V甲>V乙,S甲<S乙8.★点P,Q在线段AB中点的同一侧,点P将AB分为2∶3的两段,点Q将AB分为3∶4的两段,若PQ=2 cm,则AB的长为(C)A.80 cm B.75 cm C.70 cm D.60 cm9.★如图,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论中正确的有①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=2 11∠BOD.(C)A.1个B.2个C.3个D.4个10.射线OA上有B,C两点,若OB=8,BC=2,线段OB,BC的中点分别为D,E,则线段DE的长为(D)A.5 B.3 C.1 D.5或3第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.一个角的补角是36°35′,这个角是143°25′.12.C ,D 是直线AB 上两点,D 是AC 的中点,且BC =13AC ,DC =3 cm ,则AB = 4或8 cm.13.如图,O 为直线AB 上一点,已知∠1=40°,OD 平分∠BOC ,则∠AOD = 110° .第13题图 第14题图14.如图,点A ,O ,B 在同一条直线上,射线OD 平分∠BOC ,射线OE 在∠AOC 的内部,且∠DOE =90°,写出图中所有互为余角的角: ∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4 .15.如图,一个正三棱柱的底面边长为3 cm ,侧棱长为5 cm ,则此三棱柱共有 3 个侧面,侧面展开图的面积为 45 cm 2.16.★有两根木条,一根长60 cm ,另一根长100 cm ,将它们的一端重合,放在同一条直线上,则两根木条的中点间的距离是 80cm 或20cm .17.★如图①所示的纸片是∠AOB 的一部分,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = 120 °.18.★如图,下列几何体是由棱长均为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有 (8n -4) 个.选择、填空题答题卡一、选择题(每小题3分,共30分) 题号12345678 9 10 得分 答案 D B A B D D A CCD二、填空题(每小题3分,共24分)得分:________11. 143°25′ 12. 4或8 13. 110°14. ∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4 15. 3 45 16. 80cm 或20cm 17. 120 18. (8n -4)三、解答题(共66分)19.(8分)计算:(1)48°39′+67°31′-21°17′;解:原式=116°10′-21°17′=94°53′.(2)23°53′×3-107°43′÷5.解:原式=71°39′-21°32′36″=50°6′24″.20.(9分)如图,已知A,B,O三点.根据下列要求画图:(1)连接线段AB;(2)画射线OA、射线OB;(3)在线段AB上取一点C,在射线OA上取一点D(点C,D不与点A重合),画直线CD,使直线CD与射线OB交于点E.题图答图解:如图.21.(8分)如图,已知∠AOE是平角,∠DOE=20°,OB平分∠AOC,且∠COD∶∠BOC =2∶3,求∠BOC的度数.解:设∠COD=2x°,则∠BOC=3x°.∵OB平分∠AOC,∴∠AOB=3x°.∴2x+3x+3x+20=180.解得x=20.∴∠BOC=3×20°=60°.22.(10分)李老师到市场买菜,发现如果把10千克的菜放到托盘秤上,指标盘上的指针转了180度.第二天李老师就给同学们出了两个问题.(1)如果把0.6千克的菜放到托盘秤上,指针转过多少度角?(2)如果指针转了7°12′,这些菜有多少千克?解:(1)由题意得(180÷10) ×0.6=10.8(度).即指针转过10.8度角.(2)(10÷180)×7°12′=0.4(千克).故这些菜有0.4千克.23.(10分)画图并计算:如图,已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =12AB ,再反向延长AC 至点D ,使得AD =AC .(1)准确地画出图形,并标出相应的字母;(2)线段DC 的中点是哪个点?线段AB 的长是线段DC 长的几分之几? (3)求出线段BD 的长度.解:(1)画图如图所示..(2)线段DC 的中点是点A ,线段AB 的长是线段DC 长的13.(3)∵BC =12AB =12×2=1(cm).∴AC =AB +BC =2+1=3(cm).∵AD =AC =3 cm ,∴BD =DA +AB =3+2=5(cm).24.(9分)已知m ,n 满足算式(m -6)2+||n -2=0.(1)求m ,n 的值;(2)已知线段AB =m ,在直线AB 上取一点P ,恰好使AP =nPB ,点Q 为PB 的中点,求线段AQ 的长.解:(1)m =6,n =2.(2)线段AB =6,AP =2PB ,①当点P 在线段AB 上时,如图①, ∵P A +PB =AB ,而AB =6,AP =2PB , ∴2PB +PB =6, ∴PB =2,AP =4.∵点Q 是BP 的中点,∴PQ =12PB =1,∴AQ =AP +PQ =4+1=5;②当点P 在线段AB 的延长线上时,如图②, ∵P A =PB +AB ,AB =6,AP =2PB , ∴6+PB =2PB ,PB =6, ∵点Q 为BP 的中点, ∴BQ =12PB =3,∴AQ =AB +BQ =6+3=9, ∴线段AQ 的长为5或9.25.(12分)如图①,点O 为直线AB 上一点,将直角三角板OMN 的直角顶点放在点O 处,射线OC 平分∠MOB .① ②(1)若∠AOM =30°,求∠CON 的度数;(2)若∠AOM =α,直接写出∠CON 的度数(用含α的代数式表示);(3)将图①中的直角三角板OMN 绕顶点O 顺时针旋转至图②的位置,一边OM 在射线OB 的上方,另一边ON 在直线AB 的下方.①探究∠AOM 和∠CON 的度数之间的关系,写出你的结论,并说明理由; ②当∠AOC =3∠BON 时,求∠AOM 的度数. 解:(1)∵∠AOM =30°,∴∠BOM =180°-∠AOM =150°. ∵∠MON =90°,OC 平分∠BOM , ∴∠CON =∠MON -12∠BOM =15°.(2)∵∠AOM =α,∴∠BOM =180°-∠AOM =180°-α. ∵∠MON =90°,OC 平分∠BOM , ∴∠CON =∠MON -12∠BOM =12α.故∠CON =12α.(3)设∠AOM =β,则∠BOM =180°-β, ①∠AOM =2∠CON ,理由:∵OC 平分∠BOM ,∴∠MOC =12∠BOM =12(180°-β)=90°-12β.∵∠MON =90°,∴∠CON =∠MON -∠MOC =12β,∴∠AOM =2∠CON ;②由①知∠BON =∠MON -∠BOM =β-90°, ∠AOC =∠AOM +∠MOC =90°+12β,∵∠AOC =3∠BON ,∴90°+12β=3(β-90°),解得β=144°,∴∠AOM =144°.。
人教版七年级数学上册第四章测试题含答案

人教版数学七年级上册第四章测试卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于()A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是()A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB=BC,则点B为AC的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm的线段AB的中点为M,点C是线段MB的一个三等分点,则线段AC的长为()A.3cmB.6cmC.9cmD.12cm第4题图第5题图5.如图,∠AOB为平角,且∠AOC=27∠BOC,则∠BOC的度数是()A.140°B.135°C.120°D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是()7.若一个角的补角的余角是28°,则这个角的度数为()A.62°B.72°C.118°D.128°8.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°9.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm或22cmD.4cm或44cm10.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F 到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB,CD交于点O,我们知道∠1=∠2,那么其理由是.第13题图14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD=.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备 种车票.16.如图①所示的∠AOB 纸片,OC 平分∠AOB ,如图②,把∠AOB沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = °.第16题图第18题图 17.已知A 、B 、C 三点都在数轴上,点A 在数轴上对应的数为2,且AB =5,BC =3,则点C 在数轴上对应的数为 .18.用棱长是1cm 的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm 2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点. (1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起. (1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD =AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a 的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.参考答案与解析1.A 2.A 3.B 4.D 5.A 6.B 7.C 8.B 9.C10.B 解析:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;由∠BAE=100°,∠CAD=40°,根据图形可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;当F在线段CD上时最小,则点F到点B,C,D,E的距离之和为FB+FE+FD+FC=2+3+3+3=11,当F和E重合时最大,则点F到点B、C、D、E的距离之和为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.11.两点之间,线段最短12.①②③⑥13.同角的补角相等14.1 15.10 20 16.12017.-6或0或4或10 18.3019.解:图略.(10分)20.解:(1)∵C是线段BD的中点,BC=3,∴CD=BC=3.又∵AB+BC+CD=AD,AD=8,∴AB=8-3-3=2.(5分)(2)∵AD+AB=AC+CD+AB,BC=CD,∴AD+AB=AC+BC+AB=AC+AC=2AC.(10分)21.解:(1)由题意知∠ACD=∠ECB=90°,∴∠ACB=∠ACD+∠DCB=∠ACD+∠ECB-∠ECD=90°+90°-35°=145°.(3分)(2)由(1)知∠ACB=180°-∠ECD,∴∠ECD=180°-∠ACB=40°.(6分)(3)∠ACB+∠DCE=180°.(7分)理由如下:∵∠ACB=∠ACD+∠DCB=90°+90°-∠DCE,∴∠ACB+∠DCE=180°.(10分) 22.解:(1)设BC=x cm,则AC=3x cm.又∵AC=AB+BC=(20+x)cm,∴20+x=3x,解得x=10.即BC=10cm.(4分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20cm +20cm +10cm =50cm.(8分) (3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20cm +10cm =30cm.(12分)23.解:(1)图略.(4分)(2)∠BAC =90°-80°+90°-20°=80°.(8分)(3)约2.3cm ,即实际距离约23海里.(12分)24.解:(1)由已知得∠BOC =180°-∠AOC =150°,又∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分) (2)∠DOE =12a .(6分) 解析:由(1)知∠DOE =∠COD -12∠BOC =90°,∴∠DOE =90°-12(180°-∠AOC )=12∠AOC =12α. (3)①∠AOC =2∠DOE .(7分)理由如下:∵∠COD 是直角,OE 平分∠BOC ,∴∠COE =∠BOE =90°-∠DOE ,∴∠AOC =180°-∠BOC =180°-2∠COE =180°-2(90°-∠DOE ),∴∠AOC =2∠DOE .(9分)②4∠DOE -5∠AOF =180°.(10分)理由如下:设∠DOE =x ,∠AOF =y ,∴∠AOC -4∠AOF =2∠DOE -4∠AOF =2x -4y ,2∠BOE +∠AOF =2(90°-x )+y =180°-2x +y ,∴2x -4y =180°-2x +y ,即4x -5y =180°,∴4∠DOE -5∠AOF =180°.(12分)人教版数学七年级上册 第四章测试卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB =BC ,则点B 为AC 的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm的线段AB的中点为M,点C是线段MB的一个三等分点,则线段AC的长为()A.3cmB.6cmC.9cmD.12cm第4题图第5题图5.如图,∠AOB为平角,且∠AOC=27∠BOC,则∠BOC的度数是()A.140°B.135°C.120°D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是()7.若一个角的补角的余角是28°,则这个角的度数为()A.62°B.72°C.118°D.128°8.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°9.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm或22cmD.4cm或44cm10.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F 到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为 (请填写你认为正确物体的序号).13.如图,直线AB ,CD 交于点O ,我们知道∠1=∠2,那么其理由是 .第13题图14.已知BD =4,延长BD 到A ,使BA =6,点C 是线段AB 的中点,则CD = .15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样), 且任意两站间的票价都不同,共有 种不同的票价,需准备 种车票.16.如图①所示的∠AOB 纸片,OC 平分∠AOB ,如图②,把∠AOB 沿OC 对折成∠COB (OA 与OB 重合),从O 点引一条射线OE ,使∠BOE =12∠EOC ,再沿OE 把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB = °. 第16题图第18题图 17.已知A 、B 、C 三点都在数轴上,点A 在数轴上对应的数为2,且AB =5,BC =3,则点C 在数轴上对应的数为 .18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD =AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.数学学习——了解每道题中蕴含的规律对于很多中学生来讲,数学似乎都是他们的“硬伤”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章检测题
时间:120分钟满分:120分
一、选择题(每小题3分,共30分)
1.如左图所示的几何体,从正面看所得的平面图形是( A )
2.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB=BC,则点B是线段AC的中点.其中正确的有( B )
A.1个B.2个C.3个D.4个
3.下列图形中,不是正方体的表面展开图的是( C )
4.(2014·滨州)如图,OB是∠AOC的平分线,OD是∠COE的平分线,如果∠AOB =40°,∠COE=60°,则∠BOD的度数为( D )
A.50°B.60°
C.65°D.70°
5.一轮船向北偏东60°方向航行,因有紧急任务,按顺时针调头90°去执行任务,那么这时轮船的航行方向是( A )
A.南偏东30°B.南偏东60°C.北偏西30°D.北偏西60°
6.4点10分,时针与分针所夹的小于平角的角为( B )
A.55°B.65°C.70°D.以上结论都不对
7.已知线段AB=5 cm,在直线AB上画线段BC=2 cm,则AC的长是( C )
A.3 cm B.7 cm C.3 cm或7 cm D.无法确定
8.如果∠1与∠2互余,∠1与∠3互补,且∠2与∠3的和为一个周角的1
3,那么这三
个角分别是( A )
A .75°,15°,105°
B .60°,30°,120°
C .50°,30°,130°
D .70°,20°,110°
9.平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m +n 等于( B ) A .12 B .16 C .20 D .以上都不对
10.如图,把一个正方形三次对折后沿虚线剪下,则展开后所得到的图形是( C )
二、填空题(每小题3分,共24分)
11.校园大道两旁种植树木,确定了两棵树的位置就能确定一排树的位置,利用我们学过的数学知识说明,这是因为____两点确定一条直线__.
12.如图,点O 是直线l 上一点,∠AOB =100°,则∠1+∠2=____80__度. 13.一个角的余角是36°35′,这个角是____53°25′__.
,第12题图) ,第14题图)
,第15题图) ,第18题图)
14.如图,AB 是一条直线,已知∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠5=____60°__.
点拨:设∠1=x °,则∠2=2x °,∠3=3x °,∠4=4x °,因为∠1+∠2+∠3=180°,所以x +2x +3x =180,解得x =30,所以∠4=4x °=120°,所以∠5=180°-∠4=60°
15.如图,将一副三角板按如图所示的位置摆放,若O ,C 两点分别放置在直线AB 上,则∠AOE =____165°__度.
点拨:因为∠DOC =45°,∠DOE =30°,所以∠COE =∠DOC -∠DOE =45°-30°=15°,所以∠AOE =180°-∠COE =165°
16.一个角的补角比它的余角的3倍少30°,则这个角的余角是____60°__. 点拨:设这个角为x °,则180-x =3(90-x )-30,解得x =30,即这个角为30°,所以这个角的余角是60°
17.已知A ,B ,C 三点在同一条直线上,点M ,N 分别为线段AB ,BC 的中点,且AB =60,BC =40,则线段MN 的长为____10或50__.
18.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为____20°__. 三、解答题(共66分)
19.(6分)如图,分别从正面、左面、上面观察这个图形,请画出你所看到的平面图形.
解:图略
20.(10分)画图并计算:已知线段AB =2 cm ,延长线段AB 至点C ,使得BC =1
2AB ,
再反向延长AC 至点D ,使得AD =AC .
(1)准确地画出图形,并标出相应的字母;
(2)线段DC 的中点是哪个点?线段AB 的长是线段DC 长的几分之几? (3)求出线段BD 的长度.
解:(1)如图
(2)线段DC 的中点是点A ,AB =1
3
CD (3)因为BC
=12AB =1
2×2=1 cm ,所以AC =AB +BC =2+1=3 cm.又因为AD =AC =3 cm ,所以BD =DA +AB =3+2=5(cm )
21.(8分)应用我们学过的数学知识,解决下列问题:
(1)如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?
解:因为两点之间,线段最短
(2)小明在河流l的西岸A处放牛,现要牵牛到河流l边喝水,然后回到河流l的东岸B 处的家中,那么小明应将牛牵到什么地方喝水才能使行走的路程最短?请在图中画出行走的路线,确定牛喝水的地点P的位置,并说明理由.
解:连接AB交l于点P(图略),理由是:两点之间,线段最短
22.(10分)王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°.如图,第二天王老师就给同学们出了两个问题:
(1)如果把0.6千克的菜放在秤上,指针转过多少角度?
(2)如果指针转了7°12′,这些菜有多少千克?
解:(1)由题意,得(180°÷10)×0.6=10.8°(2)由题意,得(10÷180°)×7°12′=(10÷180°)×7.2°=0.4(千克)
23.(10分)如图,已知A ,B ,C 三点在同一直线上,AB =24 cm ,BC =3
8AB ,点E 是
AC 的中点,点D 是AB 的中点,求DE 的长.
解:因为AB =24,所以BC =38AB =3
8×24=9,所以AC =AB +BC =24+9=33,因
为E 是AC 的中点,所以AE =12AC =12×33=16.5,因为D 是AB 的中点,所以AD =1
2AB
=1
2
×24=12,所以DE =AE -AD =16.5-12=4.5(cm )
24.(12分)如图所示,将两块三角板的直角顶点重合. (1)写出以点C 为顶点的相等的角; (2)若∠ACB =150°,求∠DCE 的度数; (3)写出∠ACB 与∠DCE 之间所具有的数量关系.
解:(1)∠ACD =∠ECB =90°,又因为同角的余角相等,所以∠ACE =∠BCD (2)因为∠ACB =150°,∠BCE =90°,所以∠ACE =150°-90°=60°.所以∠DCE =90°-∠ACE =90°-60°=30° (3)因为∠ACB +∠DCE =∠BCE +∠ACE +∠DCE ,∠BCE =90°,∠ACD =∠ACE +∠DCE =90°,所以∠ACB +∠DCE =180°
25.(10分)如图①,已知∠AOB =80°,OC 是∠AOB 内的一条射线,OD ,OE 分别平分∠BOC 和∠COA .
(1)求∠DOE 的度数;
(2)当射线OC 绕点O 旋转到OB 的左侧时如图②(或旋转到OA 的右侧时如图③),OD ,OE 仍是∠BOC 和∠COA 的平分线,此时∠DOE 的大小是否和(1)中的答案相同?若相同,请选取一种情况写出你的求解过程;若不相同,请说明理由.
解:(1)∠DOE =40° (2)∠DOE 的大小与(1)中答案相同,仍为40°.选图②说明:∠DOE =∠COE -∠COD =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =1
2×80°=
40°。