取代环己烷的构象
大学有机化学总结

大学有机化学总结————————————————————————————————作者:————————————————————————————————日期:有机化学复习总结一、试剂的分类与试剂的酸碱性1、自由(游离)基引发剂在自由基反应中能够产生自由基的试剂叫自由基引发剂(free radical initiator),产生自由基的过程叫链引发。
如:Cl2、Br2是自由基引发剂,此外,过氧化氢、过氧化苯甲酰、偶氮二异丁氰、过硫酸铵等也是常用的自由基引发剂。
少量的自由基引发剂就可引发反应,使反应进行下去。
2、亲电试剂简单地说,对电子具有亲合力的试剂就叫亲电试剂(electrophilic reagent)。
亲电试剂一般都是带正电荷的试剂或具有空的p轨道或d轨道,能够接受电子对的中性分子,如:H+、Cl+、Br+、RCH2+、CH3CO+、NO2+、+SO3H、SO3、BF3、AlCl3等,都是亲电试剂。
在反应过程中,能够接受电子对试剂,就是路易斯酸(Lewis acid),因此,路易斯酸就是亲电试剂或亲电试剂的催化剂。
3、亲核试剂对电子没有亲合力,但对带正电荷或部分正电荷的碳原子具有亲合力的试剂叫亲核试剂(nucleophilic reagent)。
亲核试剂一般是带负电荷的试剂或是带有未共用电子对的中性分子,如:OH-、HS-、CN-、NH2-、RCH2-、RO-、RS-、PhO-、RCOO-、X-、H2O、ROH、ROR、NH3、RNH2等,都是亲核试剂。
在反应过程中,能够给出电子对试剂,就是路易斯碱(Lewis base),因此,路易斯碱也是亲核试剂。
4、试剂的分类标准在离子型反应中,亲电试剂和亲核试剂是一对对立的矛盾。
如:CH3ONa+ CH3Br→CH3O CH3 + NaBr的反应中,Na+和+CH3是亲电试剂,而CH3O-和Br-是亲核试剂。
这个反应究竟是亲反应还是亲核反应呢?一般规定,是以在反应是最先与碳原子形成共价键的试剂为判断标准。
二取代环己烷和稠环烃的构象

CH3
a键(直立键)
小 结: (1)环己烷多元取代物最稳定构象 是e-取代基最多的构象。
(2)环上有不同取代基时,大取代 基在e键的构象较稳定。
问题: 画出下列各二元取代环己烷最稳定的构 象:
(1)顺-1-氯-2-溴环己烷
(2)反-1-氯-4-碘环己烷
(3)顺-1,3-二羟基环己烷
(4)顺-1-甲基-4-叔丁基环己烷
CH2
2
CH2
10 11
12
3
6
8
3
54
10 CH2 12
1
HC
9 CH2
13 CH2
4 CH2 5 CH2
6
H2C
HC 9
CH2 CH CH
CH2 CH CH2
8
7
6
CH2
4
CH2
CH2
5
H2C
CH
CH2
8
7
三环[3.2.1.02,4]辛烷
三环[5.4.0.02,9]十 一烷
三环[5.5.1.0 3,11]十三烷
H
HH
H
H
H
H
H
环丁烷的构象
H
H
H
H
H
HH
H
H
H
H
H
HH
H
H
H H
H
H
H
H
H H
H
H H
H
信封式 能垒 2.5KJ/mol 环戊烷构象
半椅式
第四节 环己烷的构象
在环己烷分子中,C原子是SP3杂 化。六个C不在同一平面,C-C键夹 角保持109º28',因此环很稳定。其 有二种极限构象。
大学《有机化学》期末考试题与总结

《有机化学》(上)复习总结一.有机化合物的命名1. 能够用系统命名法命名各种类型化合物:包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH >-SO3H >-COOR >-COX >-CN >-CHO >>C =O >-OH(醇)>-OH(酚)>-SH >-NH2>-OR >C =C >-C≡C ->(-R >-X >-NO2),并能够判断出Z/E 构型和R/S 构型。
2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer 投影式)。
立体结构的表示方法:1)透视式(伞形式):CCOOHOH3 2)锯架式:CH 3OHHHOH C 2H 53)纽曼投影式:4)费歇尔投影式:COOHCH 3OH H5)构象(conformation)(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。
(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。
(3) 环己烷构象:最稳定构象是椅式构象。
一取代环己烷最稳定构象是e 取代的椅 式构象。
多取代环己烷最稳定构象是e 取代最多或大基团处于e 键上的椅式构象。
立体结构的标记方法:1. Z/E 标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z 构型,在相反侧,为E 构型。
CH 3CC HC 2H 5CH 3CC H2H 5Cl(Z)-3-氯-2-戊烯(E)-3-氯-2-戊烯2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。
CH 3C CHCH 3HCH 3CH HCH 3顺-2-丁烯反-2-丁烯333顺-1,4-二甲基环己烷反-1,4-二甲基环己烷3、 R/S 标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。
环烷烃(环丙烷环丁烷环戊烷环己烷)的构象

环烷烃的构象链状化合物的构象是由基团绕C—Cσ键旋转产生的;而环状化合物的构象至少涉及到两个C—Cσ键和其键角的转动和变化,有时还涉及到键长和键角的变化,比较复杂,常称环的翻转。
一、环丙烷的构象环丙烷是三个碳的环,只能是平面构象,即它的构型。
尽管只有一种构象,但这个环极不稳定,主要因为:1、所有C-H键都是重叠构象,扭转张力大。
2、C原子是不等性杂化或弯曲键,有“角张力”存在。
二、环丁烷的构象环丁烷有两种极限构象:动画演示:平面式构象:象环丙烷一样,不稳定,存在扭转张力和“角张力”。
蝶式构象:能缓解扭转张力和角张力,呈蝶式构象。
通过平面式构象,由一种蝶式翻转成为另一种蝶式构象,处于动态平衡。
蝶式是优势构象。
也有扭转能力和角张力存在。
三、环戊烷的构象环戊烷的构象主要是信封式和半椅式构象。
两者处于平衡。
因为平面构象能量较大,一般认为环戊烷采取这种构象可能性很少。
E相对=19kJ/mol 信封式半椅式四、环己烷的构象环己烷的构象经过近百年的努力才建立起来。
Baeyer 1885年提出张力学说,认为环状化合物是平面构型Sachse 1889年质疑张力学说只适合小环,提出环已烷有船式、椅式两种构象。
Hassel 1930年利用偶极矩测定法和电子衍射法研究环已烷构象,∠CCC=109.5°,气相、液相中环已烷几乎全是椅式构象。
Barton 1950年发展了构象理论,以甾族化合物为对象提出构象分析,把构象分析明确地引入有机化学中。
Hassel 和Barton获1969年Nobel化学奖1、椅式和船式构象环已烷保持碳原子的109.5°键角,提出了椅式和船式构象.1)椅式构象:C1、C2、C4、C5在一个平面上,C6和C3分别在平面的下面和平面的上面,很象椅脚和椅背,故称“椅式”。
2)船式构象:C1、C2、C4、C5在一个平面上,C3和C6在平面上面。
形状象只船,C3和C6相当船头和船尾,故称“船式”。
取代环己烷的构象

取代基的电子效应
总结词
详细描述
给电子取代基可以降低环己烷的能垒,使 其更稳定。
给电子取代基如羟基、氨基等具有较高的 电负性,能够诱导环己烷环产生极化,降 低其能垒,使其构象更稳定。
总结词
详细描述
吸电子取代基则会增加环己烷的能垒,使 其不稳定。
吸电子取代基如卤素、硝基等具有较低的 电负性,能够使环己烷环产生去极化,增 加其能垒,使其构象不稳定。
总结词
取代基的电子效应是指取代基的电子性质对环己烷构象的 影响。
详细描述
取代基的电子效应可以通过诱导和共轭两种方式影响环己 烷的构象。诱导效应取决于取代基的电负性,而共轭效应 则与取代基能否与其他不饱和体系形成共轭有关。
总结词
取代基的空间效应是指取代基的空间大小和形状对环己烷 构象的影响。
详细描述
空间效应主要表现在取代基的大小和形状是否与环己烷环 匹配,以及取代基之间的相互位置关系。如果取代基太大 或形状不匹配,可能会引起环己烷构象的变化。
总结词
扭船型构象是一种不稳定的构象,其中取代基难以稳定地占据扭船型位置,导致 分子结构不稳定。
详细描述
在扭船型构象中,环己烷的六个碳原子大致呈扭曲的船的形状排列,其中两个碳 原子位于扭曲船的底部,形成扭船型位置。由于这种构象中取代基难以稳定地占 据扭船型位置,因此扭船型构象是一种不稳定的构象。
02
非极性取代基的位置也会影响其构象稳定性。例如,当非极 性取代基处于直立键位置时,它们与环己烷的碳原子之间的 相互作用更弱,导致更低的构象稳定性。
体积较大的取代基
体积较大的取代基可以与环己烷的碳原子形成更强烈的空间排斥相互作用,这通常会导致较低的构象稳定性。这种相互作用 可以通过计算取代基和环己烷之间的空间排斥力来预测。
《取代环己烷的构象》课件

未来研究的方向和展望
深入研究取代基对环己烷构象的影响:未来研究 可以进一步探讨不同取代基对环己烷构象的影响 ,以及取代基与环己烷构象之间的相互作用机制 。
发展新的理论和方法:随着计算化学的不断发展 ,未来可以发展更精确的理论和方法来研究取代 环己烷的构象,提高预测的准确性和可靠性。
探索取代环己烷在生物体内的构象变化:环己烷 在生物体内可能存在构象变化,未来研究可以关 注取代环己烷在生物体内的代谢过程和构象变化 ,为药物设计和生物活性分子的研究提供帮助。
核磁共振波谱法是通过分析原子核的磁性和化学环境来推断分子的构象。在取代环己烷中,可以通过分析氢核磁共振(1H NMR)和碳核磁共振(13C NMR)数据,确定取代基的取向和构象。
核磁共振波谱法具有较高的灵敏度和分辨率,可以提供较为准确的信息。但是,对于一些复杂的分子,可能需要结合其他谱 学方法进行分析。
02
取代环己烷的构象类型
椅型构象
总结词
最常见的构象类型
详细描述
椅型构象是取代环己烷中最常见的构象类 型,其中取代基在环平面的上方或下方, 整个分子呈现出椅子的形状。
空间位阻
稳定性
在椅型构象中,取代基之间的空间位阻较 小,有利于取代基之间的相互作用。
椅型构象相对稳定,因为其具有较低的能 量状态。
船型构象
05
取代环己烷的构象在化 学工业中的应用
作为溶剂和反应介质
取代环己烷的构象具有稳定的化学性 质和良好的溶解性能,使其成为一种 理想的溶剂和反应介质。在化学工业 中,取代环己烷可以用于溶解和提取 各种有机化合物,促进化学反应的进 行。
VS
取代环己烷的构象具有较低的蒸气压 和较高的沸点,使其在高温和低压力 条件下仍能保持较高的溶解能力,有 利于提高化学反应的效率和产率。
脂环烃 答案

第五章脂环烃一.目的要求了解环烷烃通式、分类、命名和异构、环烷烃的物理性质。
理解环的结构和稳定性,掌握环烷烃的化学性质。
二.本章内容小结1. 脂环烃的定义由碳原子连接成环,性质与脂肪烃相似的烃类化合物总成为脂环烃。
按照成环特点,一般可将脂环烃分为单环脂环烃和多环脂环烃。
2. 脂环烃的命名单环脂环烃命名与脂肪烃类似,只是在相应的脂肪烃前加一“环”字。
如:环戊烷,甲基环丁烷桥环化合物的命名一般采用固定格式:双环[某烃(a≥b≥c)。
先找桥头碳(两环共用的碳原子),从桥头碳开始编号。
沿大环编到另一个桥头碳,再从该桥头碳沿着次大环继续编号。
分子中含有双键或取代基时,用阿拉伯数字表示其位次。
如:7, 7-二甲基二环[2, 2, 1]庚烷螺环化合物命名的固定格式为:螺[]某烃(a≤b)。
命名时先找螺原子,编号从与螺原子相连的碳开始,沿小环编到大环。
如:螺[]壬烷3.环烷烃的结构与稳定性环烷烃的成环碳原子均为sp3型杂化。
除环丙烷的成环碳原子在同一个平面上以外,其它环烷烃成环碳原子均不在同一个平面上。
在环丙烷分子中由于成环碳原子间成键时sp3型杂化轨道不能沿键轴方向重叠,而是以弯曲方向部分重叠成键,导致环丙烷张力较大,分子能量较高,很不稳定,容易发生开环反应。
所以在环烷烃中三元环最不稳定,四元环比三元环稍稳定一点,五元环较稳定,六元环及六元以上的环都较稳定。
注意桥头碳原子不稳定。
4. 环己烷以及取代环己烷的稳定构象环己烷在空间上可以形成多种构象,其中椅式和船式构象为两种极限构象,前者比后者更加稳定。
一般说来,取代环己烷的取代基处于椅式构象的平伏键时较为稳定。
因此多取代环己烷的最稳定的构象为平伏键取代基最多的构象。
如果环上有不同取代基,较大的取代基在平伏键上的构象最稳定。
5. 环烷烃的化学性质环丙烷和环丁烷的化学性质和烯烃相似,能开环进行加成反应。
并且与氢卤酸加成符合马氏规则。
但小环环烷烃对氧化剂稳定,不与高锰酸钾或臭氧作用。
环烷烃(环丙烷、环丁烷、环戊烷、环己烷)的构象

环烷烃的构象链状化合物的构象是由基团绕C—Cσ键旋转产生的;而环状化合物的构象至少涉及到两个C—Cσ键和其键角的转动和变化,有时还涉及到键长和键角的变化,比较复杂,常称环的翻转。
一、环丙烷的构象环丙烷是三个碳的环,只能是平面构象,即它的构型。
尽管只有一种构象,但这个环极不稳定,主要因为:1、所有C-H键都是重叠构象,扭转张力大。
2、C原子是不等性杂化或弯曲键,有“角张力”存在。
二、环丁烷的构象环丁烷有两种极限构象:动画演示:平面式构象:象环丙烷一样,不稳定,存在扭转张力和“角张力”。
蝶式构象:能缓解扭转张力和角张力,呈蝶式构象。
通过平面式构象,由一种蝶式翻转成为另一种蝶式构象,处于动态平衡。
蝶式是优势构象。
也有扭转能力和角张力存在。
三、环戊烷的构象环戊烷的构象主要是信封式和半椅式构象。
两者处于平衡。
因为平面构象能量较大,一般认为环戊烷采取这种构象可能性很少。
E相对=19kJ/mol 信封式半椅式四、环己烷的构象环己烷的构象经过近百年的努力才建立起来。
Baeyer 1885年提出张力学说,认为环状化合物是平面构型Sachse 1889年质疑张力学说只适合小环,提出环已烷有船式、椅式两种构象。
Hassel 1930年利用偶极矩测定法和电子衍射法研究环已烷构象,∠CCC=109.5°,气相、液相中环已烷几乎全是椅式构象。
Barton 1950年发展了构象理论,以甾族化合物为对象提出构象分析,把构象分析明确地引入有机化学中。
Hassel 和Barton获1969年Nobel化学奖1、椅式和船式构象环已烷保持碳原子的109.5°键角,提出了椅式和船式构象.1)椅式构象:C1、C2、C4、C5在一个平面上,C6和C3分别在平面的下面和平面的上面,很象椅脚和椅背,故称“椅式”。
2)船式构象:C1、C2、C4、C5在一个平面上,C3和C6在平面上面。
形状象只船,C3和C6相当船头和船尾,故称“船式”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C1-C2
H H 4
5
H
H2 2 H 4 C 3 H2 C 1 H 5C H2
H H
C4-C5 为全 重叠式构象
H
C1-C2, C2-C3 为交叉式
4 1
CH3 H H3C
4
1
4
CH3
1
1, 4-cis 4-
a, ee能量相等
e, aa-
trans-1, 4-二甲基环己烷 H H H3C
4 1
CH3 H
1 4
CH3 H
4
H3C H H
1
CH3
CH3
1, 4-trans 4-
a, aa有1. 3-竖键作用 3-
e, ee优势构象
不同基团二取代环己烷
H
4
H H H H
C H
H H
3
H HH
5
H H
4
H H H H
5
H
6
H
H
H
H
优势构象 室温:100% 室温:100%
1. 3-竖键作用非常大 3-
2. 二取代环己烷的构象分析
cis-1, 2-二甲基环己烷 CH3
2 1
CH3
2
H CH3 H
1
CH3 CH3
12Leabharlann CH31, 2-cis 2-
e, aa-
C(CH3)3 2 1 H H CH3
大基团总是 占据 e键
1, 2-cis 2-
1, 3-竖键作用较大 竖键作用较大
C CH3 CH3
H3C H H
H H3C 1
H C(CH3)3 2
2 CH3 1
优势构象
cis-1, 4-二叔丁基环己烷的构象 cis- 4H (H3C)3C
H C(CH3)3
(H3C)3C H H C(CH3)3
能量相等
a, ee-
trans-1, 2-二甲基环己烷 2 CH3 1
H H H
CH3
2 2 CH3 1 1
H H CH3 H
CH3
CH3
1, 2-trans 2-
a, aa有1. 3-竖键作用 3-
e, ee优势构象
cis-1, 3-二甲基环己烷 CH3
3 1
有较大的1. 3有较大的1. 3-竖键作用
H
4 H 5 3
H H
2
CH3
3 1 6
H
5
4
H H
H
H
H
H
H
CH3与C3为对位交叉 CH3与C3为对位交叉 优势构象,室温时占95% 优势构象,室温时占95%
CH3与C3为邻位交叉 CH3与C3为邻位交叉
叔丁基环己烷的构象
H HH H H3C H3C H3C C
1 2
C C
1
H H C
2
H
6
H
3
复习:环己烷的构象 复习:
H H H H H H H H H H H HH H H H H H H H H H H
H
椅式
H H H H H H H H H H H H H H
船式
H H H 扭船式
H H H
半椅式
H H H H H H H
H
H H H
H H H H
H H H H
H
椅式
a键和e键
H H H H H H H H H H H
Newman投影式 投影式
H
H H
HH
船式
H H
H H
1. 单取代环己烷的构象分析 甲基环己烷的构象
H
2
1,3-竖键作用 , 竖键作用
H H C H H
2 6
H
6
H
3
H
4
H H
5
C5-C4
H H
C1-C2
H3C
1
1
3
H H H
C1-C2
5
H
H H
4
H H H
H
C5-C4
H H
H H3 C H
2 1 6
第二章
烷烃和环烷烃( 烷烃和环烷烃(4)
主要内容 一取代环己烷的构象 二取代环己烷的构象( 二取代环己烷的构象(1, 2-;1, 3-; 1, 4-; cis, trans) ; ) cis和trans十氢萘的优势构象 cis和trans十氢萘的优势构象 多环化合物的优势构象
一.取代环己烷的构象分析
反式十氢萘的构象
H
H
6 5 8 9 1 2 10 4 3
H H H H
C2-C3
H
8 10 1 9 5 4
H
2
6 7
H
3
7
H H
H
C7-C6 C9-C10
H
全为交叉式构象
H
顺式十氢萘的构象
H
6 7
5 9
10 1
4 2
3
4
H
9
3
2
H
10 1 5 8 7
H
8
H
1. 3-竖键作用 36
H
C7-C6 C9-C10
C2-C3
H
H
5
H
10 9 4 1
H
2
H
3
H H
H
H H
6 7
8
H
H
4. 天然产物甾体骨架
R' C R H A H B H H
R" R' R D C A H B H H D R" H
天然甾体化合物骨架
全反式连接
5. 环戊烷的构象
H 4 HH H
C4-C5
H
3 5 H 1
H
2
H H H
“信封”状分 信封” 子
CH3
H
H
1
CH3
3
H3C
1 3
CH3
CH3 H
a, aa-
e, ee优势构象
1, 3-cis 3-
trans-1, 3-二甲基环己烷 H CH3
3 1
CH3
3
CH3 CH3 H
1
H3C
1
3
a, ee-
能量相等
e, aa-
CH3
1, 3-trans 3-
cis-1, 4-二甲基环己烷 CH3 H3C H3C H
(H3C)3C
H
H C(CH3)3
扭船型构象 有较大的1, 竖键作用 有较大的 3-竖键作用
3. 顺或反十氢萘的构象
5 6 7 8 10 4 3 2 1 6 7 8 5 10 4 3 2 1 8 9 10 7 6 5 4 3 2
9
9
1
萘环命名体系
H
桥环系统命名体系
H
H
trans 较稳定
H
cis
H