最新初三数学竞赛辅导教程【精】

合集下载

初中数学竞赛辅导讲义及习题解答 含答案 共30讲 改好278页

初中数学竞赛辅导讲义及习题解答  含答案  共30讲  改好278页

初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手第一讲 走进追问求根公式形如()的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足的整数n 有 个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设、是二次方程的两个根,那么的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出、的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如,。

【例3】 解关于的方程。

思路点拨:因不知晓原方程的类型,故需分及两种情况讨论。

《初三数学竞赛辅导》课件

《初三数学竞赛辅导》课件
《初三数学竞赛辅导 》ppt课件
REPORTING
• 竞赛简介 • 数学知识梳理 • 竞赛题型解析 • 解题技巧与策略 • 模拟试题与答案 • 学生心得体会
目录
PART 01
竞赛简介
REPORTING
竞赛背景
数学竞赛起源于中世纪欧洲的数学研究团体,旨在推动数学研究和教育的发展。
随着时间的推移,数学竞赛逐渐演变为一项国际性的学科竞赛,吸引了来自世界各 地的优秀学生参与。
解答题题型特点
解答题难度较大,通常涉及多个知识点和解题技巧的综合运 用,需要学生具备较强的分析问题和解决问题的能力。
解题技巧
解答题要求学生先仔细审题,明确题目要求和考察的知识点 。然后,根据题目条件和所学知识,逐步推导并解答问题。 注意解题步骤的完整性和规范性,以便于检查和纠正错误。
PART 04
解题技巧与策略
REPORTING
解题思路分析
总结:解题思路是解决问题的关键,需要分析题目给出的条件和要求,找出合适 的解题方向。
在解题过程中,首先需要仔细阅读题目,理解题意,然后根据数学知识进行分析 和推理,逐步推导出正确的答案。对于一些复杂的题目,可能需要采用多种方法 进行尝试和调整,最终找到最合适的解题方法。
答案:见PPT第10页
模拟试题三
01
总结词:难度较低
02
详细描述:本题主要考查了实数的混合运算和代数式的化简。
要求考生熟练掌握实数的四则运算和代数式的变形技巧。
答案:见PPT第15页
03
PART 06
学生心得体会
REPORTING
学生A的经验分享
经验总结
困难克服
学生A认为在数学竞赛辅导课程中, 最重要的是理解和掌握基本概念,然 后通过大量的练习来巩固这些概念。

初中数学及格赛辅导(初三)

初中数学及格赛辅导(初三)

第一讲分式方程(组)的解法分母中含有未知数的方程叫分式方程.解分式方程的基本思想是转化为整式方程求解,转化的基本方法是去分母、换元,但也要灵活运用,注意方程的特点进行有效的变形.变形时可能会扩大(或缩小)未知数的取值范围,故必须验根.例1解方程解令y=x2+2x-8,那么原方程为去分母得y(y-15x)+(y+9x)(y-15x)+y(y+9x)=0,y2-4xy-45x2=0,(y+5x)(y-9x)=0,所以y=9x或y=-5x.由y=9x得x2+2x-8=9x,即x2-7x-8=0,所以x1=-1,x2=8;由y=-5x,得x2+2x-8=-5x,即x2+7x-8=0,所以x3=-8,x4=1.经检验,它们都是原方程的根.例2 解方程y2-18y+72=0,所以y1=6或y2=12.x2-2x+6=0.此方程无实数根.x2-8x+12=0,所以x1=2或x2=6.经检验,x1=2,x2=6是原方程的实数根.例3解方程分析与解我们注意到:各分式的分子的次数不低于分母的次数,故可考虑先用多项式除法化简分式.原方程可变为整理得去分母、整理得x+9=0,x=-9.经检验知,x=-9是原方程的根.例4解方程分析与解方程中各项的分子与分母之差都是1,根据这一特点把每个分式化为整式和真分式之和,这样原方程即可化简.原方程化为即所以((x+6)(x+7)=(x+2)(x+3).例5 解方程分析与解注意到方程左边每个分式的分母中两个一次因式的差均为常数1,故可考虑把一个分式拆成两个分式之差的形式,用拆项相消进行化简.原方程变形为整理得去分母得x2+9x-22=0,解得x1=2,x2=-11.经检验知,x1=2,x2=-11是原方程的根.例6解方程次项与常数项符号相反,故可考虑用合比定理化简.原方程变形为所以x=0或2x2-3x-2=2x2+5x-3.例7解方程分析与解形式与上例相似.本题中分子与分母只是一次项的符号相反,故可考虑用合分比定理化简.原方程变形为当x≠0时,解得x=±1.经检验,x=±1是原方程的根,且x=0也是原方程的根.说明使用合分比定理化简时,可能发生增根和失根的现象,需细致检验.例8解方程解将原方程变形为例9解关于x的方程将x1=a-2b或x2=b-2a代入分母b+x,得a-b或2(b-a),所以,当a≠b时,x1=a-2b及x2=b-2a都是原方程的根.当a=b时,原方程无解.例10如果方程只有一个实数根,求a的值及对应的原方程的根.分析与解将原方程变形,转化为整式方程后得2x2-2x+(a+4)=0.①原方程只有一个实数根,因此,方程①的根的情况只能是:(1)方程①有两个相等的实数根,即△=4-4·2(a+4)=0.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为0或2.(i)当x=0时,代入①式得a+4=0,即a=-4.这时方程①的另一个根是x=1(因为2x2-2x=0,x(x-1)=0,x1=0或x2=1.而x1=0是增根).它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×4-2×2+(a+4)=0,即a=-8.这时方程①的另一个根是x=-1(因为2x2-2x-4=0.(x-2)(x+1)=0,所以x1=2(增根),x2=-1).它不使分母为零,确是原方程的唯一根.因此,若原分式方程只有一个实数根时,所求的a的值分别是练习一1.填空:(3)如果关于x的方程有增根x=1,则k=____.2.解方程3.解方程4.解方程5.解方程6.解方程7.m是什么数值时,方程有根?第二讲无理方程的解法未知数含在根号下的方程叫作无理方程(或根式方程),这是数学竞赛中经常出现的一些特殊形式的方程中的一种.解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.常用的方法有:乘方法、配方法、因式分解法、设辅助元素法、利用比例性质法等.本讲将通过例题来说明这些方法的运用.例1 解方程解移项得两边平方后整理得再两边平方后整理得x2+3x-28=0,所以x1=4,x2=-7.经检验知,x2=-7为增根,所以原方程的根为x=4.说明用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.例2 解方程方公式将方程的左端配方.将原方程变形为所以两边平方得3x2+x=9-6x+x2,两边平方得:3x2+x=x2+6x+9,例3 解方程即所以移项得例4 解方程解三个未知量、一个方程,要有确定的解,则方程的结构必然是极其特殊的.将原方程变形为配方得利用非负数的性质得所以x=1,y=2,z=3.经检验,x=1,y=2,z=3是原方程的根.例5 解方程所以将①两边平方、并利用②得x2y2+2xy-8=0,(xy+4)(xy-2)=0.xy=2.③例6 解方程解观察到题中两个根号的平方差是13,即②÷①便得由①,③得例7 解方程分析与解注意到(2x2-1)-(x2-3x-2)=(2x2+2x+3)-(x2-x+2).设则u2-v2=w2-t2,①u+v=w+t.②因为u+v=w+t=0无解,所以①÷②得u-v=w-t.③②+③得u=w,即解得x=-2.经检验,x=-2是原方程的根.例8 解方程整理得y3-1=(1-y)2,即(y-1)(y2+2)=0.解得y=1,即x=-1.经检验知,x=-1是原方程的根.整理得y3-2y2+3y=0.解得y=0,从而x=-1.例9 解方程边的分式的分子与分母只有一些项的符号不同,则可用合分比定理化简方程.根据合分比定理得两边平方得再用合分比定理得化简得x2=4a2.解得x=±2a.经检验,x=±2a是原方程的根.练习二1.填空:2.解方程3.解方程4.解方程5.解方程6.解关于x的方程第三讲简易高次方程的解法在整式方程中,如果未知数的最高次数超过2,那么这种方程称为高次方程.一元三次方程和一元四次方程有一般解法,但比较复杂,且超过了初中的知识范围,五次或五次以上的代数方程没有一般的公式解法,这由挪威青年数学家阿贝尔于1824年作出了证明,这些内容我们不讨论.本讲主要讨论用因式分解、换元等方法将某些高次方程化为低次方程来解答.例1 解方程x3-2x2-4x+8=0.解原方程可变形为x2(x-2)-4(x-2)=0,(x-2)(x2-4)=0,(x-2)2(x+2)=0.所以x1=x2=2,x3=-2.说明当ad=bc≠0时,形如ax3+bx2+cx+d=0的方程可这样=0可化为bkx3+bx2+dkx+d=0,即(kx+1)(bx2+d)=0.方程ax4+bx3+cx+d=0也可以用类似方法处理.例2 解方程(x-2)(x+1)(x+4)(x+7)=19.解把方程左边第一个因式与第四个因式相乘,第二个因式与第三个因式相乘,得(x2+5x-14)(x2+5x+4)=19.设则(y-9)(y+9)=19,即y2-81=19.说明在解此题时,仔细观察方程中系数之间的特殊关系,则可用换元法解之.例3 解方程(6x+7)2(3x+4)(x+1)=6.解我们注意到2(3x+4)=6x+8=(6x+7)+1,6(x+1)=6x+6=(6x+7)-1,所以利用换元法.设y=6x+7,原方程的结构就十分明显了.令y=6x+7,①由(6x+7)2(3x+4)(x+1)=6得(6x+7)2(6x+8)(6x+6)=6×12,即y2(y+1)(y-1)=72,y4-y2-72=0,(y2+8)(y2-9)=0.因为y2+8>0,所以只有y2-9=0,y=±3.代入①式,解得原方程的根为例4 解方程12x4-56x3+89x2-56x+12=0.解观察方程的系数,可以发现系数有以下特点:x4的系数与常数项相同,x3的系数与x的系数相同,像这样的方程我们称为倒数方程.由例5 解方程解方程的左边是平方和的形式,添项后可配成完全平方的形式.所以经检验,x1=-1,x2=2是原方程的根.例6 解方程(x+3)4+(x+1)4=82.分析与解由于左边括号内的两个二项式只相差一个常数,所以设于是原方程变为(y+1)4+(y-1)4=82,整理得y4+6y2-40=0.解这个方程,得y=±2,即x+2=±2.解得原方程的根为x1=0,x2=-4.说明本题通过换元,设y=x+2后,消去了未知数的奇次项,使方程变为易于求解的双二次方程.一般地,形如(x+a)4+(x+b)4=c例7 解方程x4-10x3-2(a-11)x2+2(5a+6)x+2a+a2=0,其中a是常数,且a≥-6.解这是关于x的四次方程,且系数中含有字母a,直接对x求解比较困难(当然想办法因式分解是可行的,但不易看出),我们把方程写成关于a的二次方程形式,即a2-2(x2-5x-1)a+(x4-10x3+22x2+12x)=0,△=4(x2-5x-1)2-4(x4-10x3+22x2+12x)=4(x2-2x+1).所以所以a=x2-4x-2或a=x2-6x.从而再解两个关于x的一元二次方程,得练习三1.填空:(1)方程(x+1)(x+2)(x+3)(x+4)=24的根为_______.(2)方程x3-3x+2=0的根为_____.(3)方程x4+2x3-18x2-10x+25=0的根为_______.(4)方程(x2+3x-4)2+(2x2-7x+6)2=(3x2-4x+2)2的根为______.2.解方程(4x+1)(3x+1)(2x+1)(x+1)=3x4.3.解方程x5+2x4-5x3+5x2-2x-1=0.4.解方程5.解方程(x+2)4+(x-4)4=272.6.解关于x的方程x3+(a-2)x2-(4a+1)x-a2+a+2=0.第四讲有关方程组的问题在教科书上,我们已经知道了二元一次方程组、三元一次方程组以及简单的二元二次方程组的解法.利用这些知识,可以研究一次函数的图像、二次函数的图像以及与此有关的问题.本讲再介绍一些解方程组的方法与技巧.1.二元二次方程组解二元二次方程组的基本途径是“消元”和“降次”.由一个二次和一个一次方程组成的二元二次方程组的一般解法是代入法,由两个二次方程组成的二次方程组在中学阶段只研究它的几种特殊解法.如果两个方程的二次项的对应系数成比例,可用加减消元法消去二次项.例1 解方程组解②×2-①×3得4x+9y-6=0.方程组中含有某一未知数的对应项的系数的比相等,可用加减消元法消去这个未知数.例2 解方程组解②×(-2)+①得3y2+3y-6=0,所以y1=1,y2=-2.解方程组与得原方程组的解方程组中至少有一个方程可以分解为一次方程的方程组,可用因式分解法解.例3 解方程组解由②得(2x+y)(x-2y)=0,所以2x+y=0或x-2y=0.因此,原方程组可化为两个方程组与解这两个方程组得原方程组的解为如果两个方程都没有一次项,可用加减消元法消去常数项,再用因式分解法求解.例4 解方程组解由①-②×2得x2-2xy-3y2=0,即(x+y)(x-3y)=0,所以x+y=0或x-3y=0.分别解下列两个方程组得原方程组的解为2.二元对称方程组方程中的未知数x,y互换后方程保持不变的二元方程叫作二元对称方程.例如x2-5xy+y2-3x-3y=7,等都是二元对称方程.由二元对称方程组成的方程组叫作二元对称方程组.例如等都是二元对称方程组.我们把叫作基本对称方程组.基本对称方程组通常用代入法或韦达定理求解.例5 解方程组解方程组中的x,y分别是新方程m2-5m+4=0的两个解.解关于m的一元二次方程得m1=1,m2=4,所以原方程组的解是这个方程组亦可用代入法求解(略).由于一般的二元对称式总可以用基本对称式x+y和xy表示,因此在解二元对称方程组时,一定可以用x+y和xy作为新的未知数,通过换元转化为基本对称方程组.例6 解方程组解原方程组可变形为①×2+②得令u=x+y,则即而方程组无实数解.综上所述,方程组的解为例7 解方程组分析本题是一个对称方程组的形式,观察知它可转化为基本对称方程组的形式.解由①得xy=16.④由②,④可得基本对称方程组于是可得方程组的解为例8 解方程组分析本题属于二元轮换对称方程组类型,通常可以把两个方程相减,因为这样总能得到一个方程x-y=0,从而使方程降次化简.解①-②,再因式分解得(x-y)(x+y-10)=0,所以x-y-0或x+x-10=0.解下列两个方程组得原方程组的四组解为例9 解方程组解法1 用换元法.设4x+5=A,4y+5=B,则有即③-④并平方得整理得所以因此A-B=0或分别解下列两个方程组与经检验,A=B=9适合方程③,④,由此得原方程组的解是解法2 ①-②得即所以x-1与y-1同号或同为零.由方程①得所以x-1与y-1不能同正,也不能同负.从而x-1=0,y-1=0.由此解得经检验,x=1,y=1是方程组的解.练习四1.填空:(1)方程组的解有_____组.(2)若x,y是方程组(3)已知3a+b+2c=3,且a+3b+2c=1,则2a+c=_____.(4)已知实数x,y,z满足方程组则xyz=________.2.解方程组:3.设a,b,c,x,y,z都是实数.若4.已知一元二次方程a(x+1)(x+2)+b(x+2)(x+3)+c(x+3)(x+1)=0有两根0,1,求a∶b∶c.5.(1)解方程组第五讲函数的基本概念与性质函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究.1.求函数值和函数表达式对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题.例1 已知f(x-1)=19x2+55x-44,求f(x).解法1 令y=x-1,则x=y+1,代入原式有f(y)=19(y+1)2+55(y+1)-44=19y2+93y+30,所以f(x)=19x2+93x+30.解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30.可.例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5).解由题设f(-x)=-ax5+bx3-x+5=-(ax5-bx3+x+5)+10=-f(x)+10,所以f(-5)=-f(5)+10=3.例4 函数f(x)的定义域是全体实数,并且对任意实数x,y,有f(x+y)=f(xy).若f(19)=99,求f(1999).解设f(0)=k,令y=0代入已知条件得f(x)=f(x+0)=f(x·0)=f(0)=k,即对任意实数x,恒有f(x)=k.所以f(x)=f(19)=99,所以f(1999)=99.2.建立函数关系式例5 直线l1过点A(0,2),B(2,0),直线l2:y=mx+b过点C(1,0),且把△AOB分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S,求S 关于m的函数解析式,并画出图像.解因为l2过点C(1,0),所以m+b=0,即b=-m.设l2与y轴交于点D,则点D的坐标为(0,-m),且0<-m≤2(这是因为点D在线段OA上,且不能与O点重合),即-2≤m<0.故S的函数解析式为例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边x,试写出梯形面积S关于x的函数关系式.解设矩形ABCD的长BC大于宽AB的2倍.由于周长为12,故长与宽满足4<BC<6,0<AB<2.由题意,有如下两种情形:CE1=x,BE1=BC-x,AB=CD=2(BC-x),所以(2AB+x)+AB=6,所以3.含绝对值的函数一次函数的图像是一条直线,含有绝对值符号的函数所对应的图像是由若干条线段和射线所组成的折线;二次函数的图像是抛物线,而y=|ax2+bx+c|的图像是将y=ax2+bx+c在x 轴下方的图像按x轴为对称轴翻到x轴的上方.对于一些其他的含绝对值符号的函数和方程的图像,需要按区间分段讨论.例7 作函数y=|3-x|+|x-1|的图像.解当x<1时,y=(3-x)+(1-x)=-2x+4;当1≤x<3时,y=(3-x)+(x-1)=2;当x≥3时,y=(x-3)+(x-1)=2x-4.所以它的图像如图3-3所示.例8 作函数y=|x2-5x+6|的图像.解当x≤2或x≥3时,x2-5x+6≥0,于是y=x2-5x+6;当2<x<3时,x2-5x+6<0,于是y=-(x2-5x+6).所以于是,得图像如图3-4所示.例9 点(x,y)满足方程|x-1|+|y+2|=2,求它的图像所围成区域的面积.解当x≥1,y≥-2时,x-1+y+2=2,即y=-x+1.当x≥1,x<-2时,x-1-(y+2)=2,即y=x-5.当x<1,y≥-2时,-x+1+y+2=2,即y=x-1.当x<1,y<-2时,-x+1-(y+2)=2,即y=-x-3.于是,所得图像如图3-5所示.由此可知,|x-1|+|y+2|=2的图像是一个对角线长为4,边长为例10 m是什么实数时,方程x2-4|x|+5=m有四个互不相等的实数根?解法1 将原方程变形为x2-4|x|+4=m-1.令y=x2-4|x|+4=m-1,则它的图像如图3-6,而y=m-1是一条与x轴平行的直线.原方程有四个互不相等的实根,即直线应与曲线有四个不同的交点.由图像可知,当0<m-1<4,即1<m<5时,直线与曲线有四个不同的交点,所以,当1<m<5时,方程x2-4|x|+5=m有四个互不相等的实数根.说明本题是一个方程问题,我们利用图形来研究,这是一种非常重要的思想方法——数形结合法.当然,本题不用图像也是可以解的,下面给出解法,请读者比较一下.解法2 原方程变形为(|x|-2)2=m-1,练习五1.填空:(1)已知f(x-1)=19x2+55x-44,则f(x)=_______.(2)对所有实数x,f(x2+1)=x4+5x2+3,那么对所有实数x,f(x2-1)=_______.(3)设x与y2成反比例,y与z2成正比例.当x=24时,y=2;当y=18时,z=3,则z=1时,x=_______.(4)已知y=2x2+mx+5的值恒为正,且m为实数,则m的范围是_______.函数,且当x=2,x=3时,y的值都为19,则y的解析式为y=_______.(6)如果y+m与x+n成正比例,且当x=1时,y=2;当x=-1时,y=1,则y与x间的函数关系式是y=_______.2.在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=-x+6的图像上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.3.平面直角坐标上有点P(-1,-2)和点Q(4,2),取点R(1,m),试问当m为何值时,PR+RQ有最小值.试求k的取值范围.5.设y=|x+2|+|x-4|-|2x-6|,且2≤x≤8,试求y的最大值与最小值之和.6.作y=2|x-3|,y=x-a的图像,问a取什么值时,它们可以围出一个平面区域,并求其面积.7.m是什么实数时,方程|x2-4x+3|=m有三个互不相等的实数解.第七讲函数的最大值与最小值我们常常遇到求最大值和最小值的问题,在许多情况下可以归结为求函数的最大值与最小值.这类问题涉及的知识面广,综合性强,解法灵活,因而对于培养学生的数学能力具有重要作用.本讲从四个方面来讨论如何求解函数的最大值与最小值问题.1.一次函数的最大值与最小值一次函数y=kx+b在其定义域(全体实数)内是没有最大值和最小值的,但是,如果对自变量x的取值范围有所限制时,一次函数就可能有最大值和最小值了.例1 设a是大于零的常数,且a≠1,求y的最大值与最小值.大值a.例2 已知x,y,z是非负实数,且满足条件x+y+z=30,3x+y-z=50.求u=5x+4y+2z的最大值和最小值.分析题设条件给出两个方程,三个未知数x,y,z,当然,x,y,z的具体数值是不能求出的.但是,我们固定其中一个,不妨固定x,那么y,z都可以用x来表示,于是u便是x的函数了.解从已知条件可解得y=40-2x,z=x-10.所以u=5x+4y+2z=5x+4(40-2x)+2(x-10)=-x+140.又y,z均为非负实数,所以解得10≤x≤20.由于函数u=-x+140是随着x的增加而减小的,所以当x=10时,u有最大值130;当x=20时,u有最小值120.2.二次函数的最大值与最小值例3 已知x1,x2是方程x2-(k-2)x+(k2+3k+5)=0解由于二次方程有实根,所以△=[-(k-2)]2-4(k2+3k+5)≥0,3k2+16k+16≤0,例4 已知函数有最大值-3,求实数a的值.解因为的范围内分三种情况讨论.-a2+4a-1=-3例5 已知边长为4的正方形截去一个角后成为五边形ABCDE(如图3-12),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.解设矩形PNDM的边DN=x,NP=y,于是矩形PNDM的面积S=xy,2≤X≤4.易知CN=4-x,EM=4-y,且有二次函数S=f(x)的图像开口向下,对称轴为x=5,故当x≤5时,函数值是随x的增加而增加,所以,对满足2≤x≤4的S来说,当x=4时有最大值例6 设p>0,x=p时,二次函数f(x)有最大值5,二次函数g(x)的最小值为-2,且g(p)=25,f(x)+g(x)=x2+16x+13.求g(x)的解析式和p的值.解由题设知f(p)=5,g(p)=25,f(p)+g(p)=p2+16p+13,所以p2+16p+13=30,p=1(p=-17舍去).由于f(x)在x=1时有最大值5,故设f(x)=a(x-1)2+5,a<0,所以g(x)=x2+16x+13-f(x)=(1-a)x2+2(a+8)x+8-a.由于g(x)的最小值是-2,于是解得a=-2,从而g(x)=3x2+12x+10.3.分式函数的最大值与最小值法是去分母后,化为关于x的二次方程,然后用判别式△≥0,得出y的取值范围,进而定出y的最大值和最小值.解去分母、整理得(2y-1)x2+2(y+1)x+(y+3)=0.△≥0,即△=[2(y+1)]2-4(2y-1)(y+3)≥0,解得-4≤y≤1.时,取最小值-4,当x=-2时,y取最大值1.说明本题求最值的方法叫作判别法,这也是一种常用的方法.但在用判别法求最值时,应特别注意这个最值能否取到,即是否有与最值相应的x值.解将原函数去分母,并整理得yx2-ax+(y-b)=0.因x是实数,故△=(-a)2-4·y·(y-b)≥0,由题设知,y的最大值为4,最小值为-1,所以(y+1)(y-4)≤0,即y2-3y-4≤0.②由①,②得所以a=±4,b=3.4.其他函数的最大值与最小值处理一般函数的最大值与最小值,我们常常用不等式来估计上界或下界,进而构造例子来说明能取到这个上界或下界.解先估计y的下界.又当x=1时,y=1,所以,y的最小值为1.说明在求最小(大)值,估计了下(上)界后,一定要举例说明这个界是能取到的,才能说这就是最小(大)值,否则就不一定对了.例如,本题我们也可以这样估计:但无论x取什么值时,y取不到-3,即-3不能作为y的最小值.例10 设x,y是实数,求u=x2+xy+y2-x-2y的最小值.分析先将u看作是x的二次函数(把y看作常数),进行配方后,再把余下的关于y的代数式写成y的二次函数,再配方后,便可估计出下界来.又当x=0,y=1时,u=-1,所以,u的最小值为-1.例11 求函数的最大值,并求此时的x值,其中[a]表示不超过a的最大整数.练习七1.填空:(1)函数y=x2+2x-3(0≤x≤3)的最小值是_____,最大值是_______.(3)已知函数y=x2+2ax+1(-1≤x≤2)的最大值是4,则a=_____.是_______.(5)设函数y=-x2-2kx-3k2-4k-5的最大值是M,为使M最大,k=_____.2.设f(x)=kx+1是x的函数,以m(k)表示函数f(x)=kx+1在-1≤x≤3条件下的最大值,求函数m(k)的解析式和其最小值.3.x,y,z是非负实数,且满足x+3y+2z=3,3x+3y+z=4.求u=3x-2y+4z的最大值与最小值.4.已知x2+2y2=1,求2x+5y2的最大值和最小值.交点间的距离的平方最小,求m的值.6.已知二次函数y=x2+2(a+3)x+2a+4的图像与x轴的两个交点的横坐标分别为α,β,当实数a变动时,求(α-1)2+(β-1)2的最小值.第八讲根与系数的关系及应用如果一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,那么反过来,如果x1,x2满足x1+x2=p,x1x2=q,则x1,x2是一元二次方程x2-px+q=0的两个根.一元二次方程的韦达定理,揭示了根与系数的一种必然联系.利用这个关系,我们可以解决诸如已知一根求另一根、求根的代数式的值、构造方程、证明等式和不等式等问题,它是中学数学中的一个有用的工具.1.已知一个根,求另一个根利用韦达定理,我们可以通过方程的一个根,求出另一个根.例1 方程(1998x)2-1997·1999x-1=0的大根为a,方程x2+1998x-1999=0的小根为b,求a-b的值.解先求出a,b.由观察知,1是方程(1998x)2-1997·1999x-1=0的根,于是由韦达又从观察知,1也是方程x2+1998x-1999=0的根,此方程的另一根为-1999,从而b=-1999.所以a-b=1-(-1999)=2000.例2 设a是给定的非零实数,解方程解由观察易知,x1=a是方程的根.又原方程等价于2.求根的代数式的值在求根的代数式的值的问题中,要灵活运用乘法公式和代数式的恒等变形技巧.例3 已知二次方程x2-3x+1=0的两根为α,β,求:(3)α3+β3;(4)α3-β3.解由韦达定理知α+β=3,αβ=1.(3)α3+β3=(α+β)(α2-αβ+β2)=(α+β)[(α+β)2-3αβ]=3(9-3)=18;(4)α3-β3=(α-β)(α2+αβ+β2)=(α-β)[(α+β)2-αβ]例4 设方程4x2-2x-3=0的两个根是α和β,求4α2+2β的值.解因为α是方程4x2-2x-3=0的根,所以4α2-2α-3=0,即4α2=2α+3.4α2+2β=2α+3+2β=2(α+β)+3=4.例5 已知α,β分别是方程x2+x-1=0的两个根,求2α5+5β3的值.解由于α,β分别是方程x2+x-1=0的根,所以α2+α-1=0,β2+β-1=0,即α2=1-α,β2=1-β.α5=(α2)2·α=(1-α)2α=(α2-2α+1)α=(1-α-2α+1)α=-3α2+2α=-3(1-α)+2α=5α-3,β3=β2·β=(1-β)β=β-β 2=β-(1-β)=2β-1.所以2α5+5β3=2(5α-3)+5(2β-1)=10(α+β)-11=-21.说明此解法的关键在于利用α,β是方程的根,从而可以把它们的幂指数降次,最后都降到一次,这种方法很重要.例6 设一元二次方程ax2+bx+c=0的两个实根的和为s1,平方和为s2,立方和为s3,求as3+bs2+cs1的值.解设x1,x2是方程的两个实根,于是所以as3+bs2+cs1=0.说明本题最“自然”的解法是分别用a,b,c来表示s1,s2,s3,然后再求as3+bs2+cs1的值.当然这样做运算量很大,且容易出错.下面我们再介绍一种更为“本质”的解法.另解因为x1,x2是方程的两个实根,所以同理将上面两式相加便得as3+bs2+cs1=0.3.与两根之比有关的问题例7 如果方程ax2+bx+c=0(a≠0)的根之比等于常数k,则系数a,b,c必满足:kb2=(k+1)2ac.证设方程的两根为x1,x2,且x1=kx2,由韦达定理由此两式消去x2得即kb2=(k+1)2ac.例8 已知x1,x2是一元二次方程4x2-(3m-5)x-6m2=0解首先,△=(3m-5)2+96m2>0,方程有两个实数根.由韦达定理知从上面两式中消去k,便得即m2-6m+5=0,所以m1=1,m2=5.4.求作新的二次方程例9 已知方程2x2-9x+8=0,求作一个二次方程,使它的一个根为原方程两根和的倒数,另一根为原方程两根差的平方.解设x1,x2为方程2x2-9x+8=0的两根,则设所求方程为x2+px+q=0,它的两根为x'1,x'2,据题意有故所以,求作的方程是36x2-161x+34=0.例10 设x2-px+q=0的两实数根为α,β.(1)求以α3,β3为两根的一元二次方程;(2)若以α3,β3为根的一元二次方程仍是x2-px+q=0,求所有这样的一元二次方程.解(1)由韦达定理知α+β=p,αβ=q,所以α3+β3=(α+β)[(α+β)2-3αβ]=p(p2-3q),α3·β3=(αβ)3=q3.所以,以α3,β3为两根的一元二次方程为x2-p(p2-3q)x+q3=0.(2)由(1)及题设知由②得q=0,±1.若q=0,代入①,得p=0,±1;若q=-1,代入①,以,符合要求的方程为x2=0,x2-x=0,x2+x=0,x2-1=0.5.证明等式和不等式利用韦达定理可以证明一些等式和不等式,这常常还要用判别式来配合.例11 已知实数x,y,z满足x=6-y,z2=xy-9,求证:x=y.证因为x+y=6,xy=z2+9,所以x,y是二次方程t2-6t+(z2+9)=0的两个实根,于是这方程的判别式△=36-4(z2+9)=-4z2≥0,即z2≤0.因z为实数,显然应有z2≥0.要此两式同时成立,只有z=0,从而△=0,故上述关于t的二次方程有等根,即x=y.例12 若a,b,c都是实数,且a+b+c=0,abc=1,证由a+b+c=0及abc=1可知,a,b,c中有一个正数、两个负数,不妨设a是正数,由题意得于是根据韦达定理知,b,c是方程的两个根.又b,c是实数,因此上述方程的判别式因为a>0,所以a3-4≥0,a3≥4,例13 知x1,x2是方程4ax2-4ax+a+4=0的两个实根.解(1)显然a≠0,由△=16a2-16a(a+4)≥0,得a<0.由韦达定理知所以所以a=9,这与a<0矛盾.故不存在a,使(2)利用韦达定理所以(a+4)|16,即a+4=±1,±2,±4,±8,±16.结合a<0,得a=-2,-3,-5,-6,-8,-12,-20.练习八1.选择:(1)若x0是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2-4ac与平方式M=(2ax0+b)2的关系是[ ](A)△>M (B)△=M(C)△=<M (D)不确定(2)方程x2+px+1997=0恰有两个正整数根x1,x2,则[ ](A)-4(B)8 (C)6 (D)0为[ ](A)3(B)-11 (C)3或-11(D)112.填空:(1)如果方程x2+px+q=0的一根为另一根的2倍,那么,p,q满足的关系式是______.(2)已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了某一项系数的符号,1993+5a2+9a4=_______.(4)已知a是方程x2-5x+1=0的一个根,那么a4+a-4的末位数是______.另一根为直角边a,则此直角三角形的第三边b=______.3.已知α,β是方程x2-x-1=0的两个实数根,求α4+3β的值.4.作一个二次方程,使它的两个根α,β是正数,并且满足关系式5.如果关于x的方程x2+ax+b=0的两个实数根之比为4∶5,方程的判别式的值为3,求a,b的值.第九讲判别式及其应用一元二次方程的根的判别式(△)是重要的基础知识,它不仅能用于直接判定根的情况,而且在二次三项式、二次不等式、二次函数等方面有着重要的应用,是初中数学中的一个重要内容,在高中数学中也有许多应用.熟练掌握它的各种用法,可提高解题能力和知识的综合应用能力.1.判定方程根的情况例1 已知方程x2-2x-m=0没有实数根,其中m是实数.试判定方程x2+2mx+m(m+1)=0有无实数根.解因为方程x2-2x-m=0无实数根,所以△1=(-2)2-4×(-m)=4+4m<0,即m<-1.因为△2=(2m)2-4m(m+1)=-4m>0,所以方程x2+2mx+m(m+1)=0有两个不相等的实根.例2 已知常数a为实数,讨论关于x的方程(a-2)x2+(-2a+1)x+a=0的实数根的个数情况.实根.当a≠2时,原方程为一元二次方程,其判别式△=(-2a+1)2-4(a-2)a=4a+1,说明对于一个二次项系数含参数的方程,要按照二次项系数为零或不为零来讨论根的情况,前者为一次方程,后者为二次方程,不能一上来就用判别式.2.确定方程中系数的值或范围例3 关于x的一元二次方程有实根,其中a是实数,求a99+x99的值.解因为方程有实根,所以即-a2-2a-1≥0.因为-(a+1)2≥0,所以a+1=0,a=-1.当a=-1时,原方程为x2-2x+1=0,x=1,所以a99+x99=(-1)99+199=0.例4 若方程x2+2(1+a)x+3a2+4ab+4b2+2=0有实根,求a,b的值.解因为方程有实根,所以它的判别式△=4(1+a)2-4(3a2+4ab+4b2+2)≥0,化简后得2a2+4ab+4b2-2a+1≤0,所以(a+2b)2+(a-1)2≤0,说明在本题中,只有一个不等式而要求两个值,通常是通过配方把这个不等式变形为“若干个非负数之和小于等于零”,从而可以得到一个方程组,进而求出要求的值.例5 △ABC的一边长为5,另两边长恰是方程2x2-12x+m=0的两个根,求m的取值范围.解设△ABC的三边分别为a,b,c,且a=5,由。

九年级竞赛辅导《数学竞赛常用解题方法》

九年级竞赛辅导《数学竞赛常用解题方法》

【点评】本例我们可采用“换元法”. “换元法”最根本的作用 之一就是使复杂的问题简单化,排除那些不必要的形式上的干扰, 从纷纭混乱的结构中,简洁明快的提示出总是的本质特征,从而 找到解决问题的捷径.
一、换元法
一、换元法
分析:本题从方程组的形式上看比较复杂,但通过比较不难发 现,两个方程有着相似之处,于是考虑可采用换元法,从而使 问题简化.
二、特殊化法
二、特殊化法
特殊位置
二、特殊化法
三、整体处理法
例.九个袋子分别装有9,12,14,16,18,21,24, 25,28只球,甲限走若干袋,乙也取走若干袋,最后 只剩下一袋,已知甲取走的球的总数是乙的两倍,则 剩下的那一袋有球( ). A.14个 B.16个 C.25个 D.28个 【点评】本题如果试图分别求出甲和乙取走的是那几 袋,然后确定其总球关系,显然不现实,但要是我们 整体考虑球的总数,问题就会变得简单多了.
造性地联想.
((
五、数字化法
例:将平面上n个点P1,P2,P3,…,Pn顺次排列在同一 条直线 l上,每个点均被染上红色或蓝色.如果相邻点间 的线段PiPi+1的两端为不同的颜色,则称PiPi+1为“好线 段”.已知P1和Pn为异色,求证:“好线段”的条数一定 是奇数.
【点评】初看本题似乎无从下手,究其原因,是题目中根本就没 有可以让我们动手操作的数或量.因此我们只有另辟蹊径,把原 本与数字似乎毫不相干的颜色赋以了具体的数值,从而使原有问 题变成了一个纯数学运算问题.将原实际问题中的某些事物赋以 具体的数量,并运用数学运算的结果来回答实际问题,这就是 “数字化法”.需要指出的是,数字化的赋值不是任意的,所赋 的数值要根据实际问题中事物的具体性质而定.本题中“+1,- 1”赋值法,是常用的一种数字化赋值的方法.

初中数学竞赛辅导资料(总24页)

初中数学竞赛辅导资料(总24页)

初中数学竞赛辅导资料-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。

一元方程的解也叫做根。

例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。

2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。

(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。

综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解②无解③有无数多解④是正数解例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。

问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分 典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。

2023年初中数学竞赛精品标准教程及练习平行和垂直

2023年初中数学竞赛精品标准教程及练习平行和垂直

初中数学竞赛精品标准教程及练习(38)平行和垂直一、内容提纲一.证明两直线互相平行常用的定理运用角 同位角相等或内错角相等或同旁内角互补,两直线平行。

运用第三线 都平行或都垂直于第三线的两直线平行。

运用比例式 △ABC 中,假如ECAE DB AD 那么DE ∥BC其他 三角形中位线平行于第三边 梯形中位线平行于两底 平行四边形对边平行二.证明两直线互相垂直常用的定理1. 按垂直定义 即证明两直线相交所成的四个角中,有一个是直角。

直角是180的一半,常见的180有:平角,邻补角,平行线的同旁内角,三角形内角和。

在三角形中证明直角假如一个角等于其他两个角的和,那么这个角是直角。

若一边平方等于其他两边的平方和,则这边所对的角是直角。

若一边中线等于这边的一半,则这边所对的角是直角。

等腰三角形顶角平分线(或底边中线)是底边上的高。

和直角三角形全等或相似的三角形也是直角三角形。

菱形对角线互相垂直二、例题例1.从三角形的一个顶点向其他的两个角的平分线引垂线,两个垂足的连线平行于这个角的对边。

A B CD E已知:△ABC 中,BD ,CE 是角平分线,AM ⊥BD ,AN ⊥CE求证:MN ∥BC 证明:分别延长AM ,AN 交BC 于F ,G则∠AMB =∠BMF =Rt ∠ ∵∠1=∠2,BM =BM∴△AMB ≌△FMB∴AM =MF 同理可证AN =NG ∴MN 是△AFG 的中位线, ∴MN ∥FG ,即MN ∥BC例2.已知:AD 是Rt △ABC 斜边上的高,角平分线BE 交AD 于F ,EG ⊥BC 交BC 于G A求证:FG ∥AC ,AG ⊥BE证明的要点: E∵BE 是角平分线, F∴点E 到∠ABC 的两边距离相等,即EA =EG B D G C∵∠AFE ,∠AEF 分别是∠EBC ,∠ABE 的余角, ∴∠AFE =∠AEF得AF =AE =EG ,且EG ∥AF ,故AFGE 是菱形例3.已知:如图AD 是等腰直角△ABC 斜边上高BM ,BN 三等分∠ABC ,CM 延长线交AB 于E 求证:EN ∥BM21ABCD E NM 1BA DN MEF证明要点: 根椐轴对称图形的性质 CM ,CN 也三等分∠ACB 点N 是△ACE 的内心,∴EN 是∠AEC 的平分线 ∴∠1=∠ABM =30例4.已知:A ,B ,C 三点在同一直线上,△ABD 和△BCE 都是等边三角形, AE 交BD 于M ,CD 交BE 于N求证:MN ∥AC证明:在等边△ABD 和△BCE 中AB =BD ,BC =CE ,∠ABD =∠BCE =60∴BM ∥CE ∴BC AB ME AM =,CE BD NC BN =, ∴CEBNME AM =` ∴MN ∥AC 例5.已知:正方形ABCD 中,P 是AC 上的任意点,过点P 作PE ⊥AB 作PF ⊥BC求证:PD ⊥EF分析:要证明PD ⊥EF ,可证∠PMF =90先证∠1+∠2=90∵∠2+∠3=90而∠1=∠4 只要证∠3=∠4 可用边角边证△BEF ≌△GPD (证明略) 例6.已知:⊙O 和⊙Q 相交于A ,B ,⊙Q 通过点O ,C 是⊙O 优弧AB 上的一点,CB 延长线交⊙Q 于D , 求证:DO ⊥AC证明:连结AB ,作⊙O 直径AE ,DO 延长线交 AC 于F ∵∠C =∠E ,∠D =∠EABC∴∠CFD =∠ABE =Rt ∠, ∴DO ⊥AC 三、练习381. 四边形ABCD 中,∠A =∠B ,AD =BC ,则AB ∥CD2. 正方形ABCD 中,E 在边BC 上,F 在边AB 的延长线上,且AE =BF则AE ⊥CF3. 已知:平行四边形ABCD 的AB =2BC ,E ,F 分别在BC 和CB 的延长线上且CE =BF=BC 求证:AE ⊥DF4. 分别以△ABC 的边AB 和BC 为一边,向形外作两个正方形ABEF 和BCGH ,求证 AH=CE ,AH ⊥CE5. 已知:D ,E ,F 是△ABC 边BC ,CA ,AB 的中点,H ,G 在形外,且 HE ⊥AC ,HE =21AC ,GD ⊥BC ,GD =21BC 求证:△FDG ≌△HEF FG ⊥FH6. 已知:在平行四边形ABCD 中,∠A 和∠B 的平分线交于E , ∠C 和∠D 的平分线相交于F 求证:EF ∥BC7. 三角形三条高(或它们的延长线)必相交于一点 这点叫做三角形的垂心,如图△ABC中,两条高AD 和BE 交于H ,那么H 是△ABC 的垂心 D 是△_____的垂心E 是△___的垂心 C 是△______的垂心8. 已知:O 为等腰直角三角形ABC 底边BC 的中点,在BC 的延长线上任取一点P ,过P作AB 的垂线PD ,D 为垂足,过P 作AC 的垂线PE ,E 为垂足。

初三(上)数学竞赛辅导

初三(上)数学竞赛辅导

九年级数学竞赛辅导材料(上)45、一元二次方程的根46、完全平方数和完全平方式47、配方法48、非负数49、对称式50、基本对称式51、待定系数法52、换元法53、条件等式的证明54、整数解55、未知数比方程个数多的方程组解法56、列表法57、逆推法58、观察法59、“或者”与“并且”60、解三角形初中数学竞赛辅导资料(45)一元二次方程的根一、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.(1990年泉州市初二数学双基赛题)证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.(1989年全国初中数学联赛题)解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值. (1986年泉州市初二数学双基赛题)解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1). (1983年福建省初中数学竞赛题)证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k abcd b a d c ==++. ∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k . 由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.)把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习451. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11 =___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________. (1986年全国初中数学联赛题)6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.(1987年泉州市初二数学双基赛题)7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定 (1989年全国初中数学联赛题)8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?(1987年全国初中数学联赛题)9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-1 (1990年泉州市初二数学双基赛题)10. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是:___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围. (1997年泉州市初二数学双基赛题)13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________. (1990年泉州市初二数学双基赛题)17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m 的取值范围是( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1(1995年全国初中数学联赛题)18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解(1990年全国初中数学联赛题)返回目录 参考答案练习451. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1, m>1)15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C初中数学竞赛辅导资料为(46)完全平方数和完全平方式一、内容提要一定义1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数.例如0,1,0.36,254,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方.2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式.如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式.在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式.二. 整数集合里,完全平方数的性质和判定1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数.2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除..若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数.例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数.又如:444能被3整除,但不能被9整除,所以444不是完全平方数.三. 完全平方式的性质和判定在实数范围内如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0;如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式.在有理数范围内当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式.四. 完全平方式和完全平方数的关系1. 完全平方式(ax+b )2 中当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数;当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数.2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数.例如: n 2+9, 当n=4时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.五. 完全平方数与一元二次方程的有理数根的关系1. 在整系数方程ax 2+bx+c=0(a ≠0)中① 若b 2-4ac 是完全平方数,则方程有有理数根;② 若方程有有理数根,则b 2-4ac 是完全平方数.2. 在整系数方程x 2+px+q=0中① 若p 2-4q 是整数的平方,则方程有两个整数根;② 若方程有两个整数根,则p 2-4q 是整数的平方.二、例题例1. 求证:五个连续整数的平方和不是完全平方数.证明:设五个连续整数为m -2, m -1, m, m+1, m+2. 其平方和为S.那么S =(m -2)2+(m -1)2+m 2+(m+1)2+(m+2)2=5(m 2+2).∵m 2的个位数只能是0,1,4,5,6,9∴m 2+2的个位数只能是2,3,6,7,8,1∴m 2+2不能被5整除.而5(m 2+2)能被5整除,即S 能被5整除,但不能被25整除.∴五个连续整数的平方和不是完全平方数.例2 m 取什么实数时,(m -1)x 2+2mx+3m -2 是完全平方式?解:根据在实数范围内完全平方式的判定,得当且仅当⎩⎨⎧>-010m △=时,(m -1)x 2+2mx+3m -2 是完全平方式 △=0,即(2m )2-4(m -1)(3m -2)=0.解这个方程, 得 m 1=0.5, m 2=2.解不等式 m -1>0 , 得m>1.即⎩⎨⎧>==125.0m m m 或 它们的公共解是 m=2.答:当m=2时,(m -1)x 2+2mx+3m -2 是完全平方式.例3. 已知: (x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式.求证: a=b=c.证明:把已知代数式整理成关于x 的二次三项式,得原式=3x 2+2(a+b+c)x+ab+ac+bc∵它是完全平方式,∴△=0.即 4(a+b+c)2-12(ab+ac+bc)=0.∴ 2a 2+2b 2+2c 2-2ab -2bc -2ca=0,(a -b)2+(b -c)2+(c -a)2=0.要使等式成立,必须且只需:⎪⎩⎪⎨⎧=-=-=-000a c c b b a解这个方程组,得a=b=c.例4. 已知方程x 2-5x+k=0有两个整数解,求k 的非负整数解.解:根据整系数简化的一元二次方程有两个整数根时,△是完全平方数.可设△= m 2 (m 为整数),即(-5)2-4k=m 2 (m 为整数),解得,k=4252m -. ∵ k 是非负整数,∴ ⎪⎩⎪⎨⎧-≥-的倍数是42502522m m 由25-m 2≥0, 得 5≤m , 即-5≤m ≤5;由25-m 2是4的倍数,得 m=±1, ±3, ±5.以 m 的公共解±1, ±3, ±5,分别代入k=4252m -. 求得k= 6, 4, 0.答:当k=6, 4, 0时,方程x 2-5x+k=0有两个整数解例5. 求证:当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根.证明: (用反证法)设方程有有理数根,那么△是整数的平方.∵△=(8k )2-16(k 2+1)=16(3k 2-1).设3k 2-1=m 2 (m 是整数).由3k 2-m 2=1,可知k 和m 是一奇一偶,下面按奇偶性讨论3k 2=m 2+1能否成立.当k 为偶数,m 为奇数时,左边k 2是4的倍数,3k 2也是4的倍数;右边m 2除以4余1,m 2+1除以4余2.∴等式不能成立.; 当k 为奇数,m 为偶数时,左边k 2除以4余1,3k 2除以4余3右边m 2是4的倍数,m 2+1除以4余1∴等式也不能成立.综上所述,不论k, m 取何整数,3k 2=m 2+1都不能成立.∴3k 2-1不是整数的平方, 16(3k 2-1)也不是整数的平方.∴当k 为整数时,方程4x 2+8kx+(k 2+1)=0没有有理数根三、练习461. 如果m 是整数,那么m 2+1的个位数只能是____.2. 如果n 是奇数,那么n 2-1除以4余数是__,n 2+2除以8余数是___,3n 2除以4的余数是__.3. 如果k 不是3的倍数,那么k 2-1 除以3余数是_____.4. 一个整数其中三个数字是1,其余的都是0,问这个数是平方数吗?为什么?5. 一串连续正整数的平方12,22,32,………,1234567892的和的个位数是__.(1990年全国初中数学联赛题)6. m 取什么值时,代数式x 2-2m(x -4)-15是完全平方式?7. m 取什么正整数时,方程x 2-7x+m=0的两个根都是整数?8. a, b, c 满足什么条件时,代数式(c -b)x 2+2(b -a)x+a -b 是一个完全平方式?9. 判断下列计算的结果,是不是一个完全平方数:① 四个连续整数的积; ②两个奇数的平方和.10. 一个四位数加上38或减去138都是平方数,试求这个四位数.11. 已知四位数aabb 是平方数,试求a, b.12. 已知:n 是自然数且n>1. 求证:2n -1不是完全平方数.13. 已知:整系数的多项式4x 4+ax 3+13x 2+bx+1 是完全平方数,求整数a 和b 的值.14. 已知:a, b 是自然数且互质,试求方程x 2-abx+21(a+b)=0的自然数解.(1990年泉州市初二数学双基赛题)15.恰有35个连续自然数的算术平方根的整数部分相同,那么这个整数是( )(A) 17 (B) 18 (C) 35 (D) 36(1990年全国初中数学联赛题)练习461. 1,2,5,6,7,02. 0,3,33. 04. 不是平方数,因为能被3整除而不能被9整除5. 5。

2023年初中数学竞赛精品标准教程及练习整数解

2023年初中数学竞赛精品标准教程及练习整数解

初中数学竞赛精品标准教程及练习(54)整数解一、内容提纲1. 求方程或不等式的整数解,就是求适合等式或不等式的未知数的整数值,涉及判断无整数解.求整数解常用的性质、法则:①.数的运.算性质:整数+整数=整数, 整数-整数=整数,整数×整数=整数, 整数的自然数次幂=整数,整数÷(这个整数的约数)=整数.②.整系数的方程 ax 2+bx+c=0(a ≠0)只有当b 2-4ac 是完全平方数时,才有整数根. 有时用韦达定理x 1+x 2与x 1x 1 都是整数,来拟定整数解,但必须检查(由于它们只是整数解必要条件).③.运用二元一次方程求整数解(见第10讲).④.用列举法.3. 鉴定方程或不等式没有整数解,常用反证法.即设有整数解之后,把整数按某一模m 分类,逐个推出矛盾.二、例题例1.求下列方程的正整数解:① xy+x+y=5; ② x 2+y 2=1991.解:①先写成关于x 的方程,(y+1)x=5-y.x=16116115++-=++--=+-y y y y y .当y+1取6的约数±1,±2,±3,±6时,x 的值是整数.∵-1+16+y >0, 且x>0, y>0, ∴ 1<y+1<6 . ∴ y=1或y=2.∴原方程有正整数解⎩⎨⎧==12y x ; 或⎩⎨⎧==21y x .又解:把左边写成积的形式:x(y+1)+y+1=5+1, (y+1)(x+1)=6.∵6=1×6=2×3, 而正整数y+1>1, x+1>1.∴⎩⎨⎧=+=+3121y x 或⎩⎨⎧=+=+2131y x解得 ⎩⎨⎧==21y x ;或⎩⎨⎧==12y x .②要等式成立,x, y 必须是一奇一偶,设x=2a, y=2b -1 (a,b 都是正整数).左边x 2+y 2=(2a )2+(2b -1)2=4(a 2+a+b 2-b)+1.∴a, b 不管取什么整数值,左边的数都是除以4余1,而右边1991是除以4余3.∴等式永远不能成立.∴原方程没有正整数解.例2. 一个正整数加上38或129都是完全平方数,求这个正整数. 若把正整数改为整数呢?解:设这个正整数为x ,根据题意,得⎪⎩⎪⎨⎧=+=+)2(129)1(3822b x a x (a,b 都是正整数).(2)-(1):b 2-a 2=91 .(b+a)(b -a)=91,∵91=1×91=7×13 且b+a>b -a.∴⎩⎨⎧=-=+191a b a b 或⎩⎨⎧=-=+713a b a b解得,⎩⎨⎧==4645b a ; 或⎩⎨⎧==103b a .由方程(1)知 a>38, 由方程(2)知 b>129.∴只有⎩⎨⎧==4645b a 适合. ∴ x=a 2-38=1987. 答(略).假如改为整数 ,则两组的解都适合. 另一个解是:x=a 2-38=9-38=-29.例3. 一个自然数与3的和是5的倍数,与3的差是6的倍数,则这个自然数的最小值是多少?解法一:用列举法与3的和是5的倍数的自然数有:2,7,12,17,22,27,…与3的差是6的倍数的自然数有:3,9, 15,22,27,…∴符合条件的 最小自然数是27.解法二:设所求自然数为x,那么⎩⎨⎧=-=+bx a x 6353 (a,b 都是自然数).∴ x= 5a -3=6b+3,∴ a=511566+++=+b b b , ∵ a, b 都是自然数,∴ b+1是5的倍数, 其最小值是b=4.∴x=6b+3=27.例4. m 取什么整数值时,方程 mx 2+(m 2-2)x -(m+2)=0有整数解?解:设方程两个整数根为x 1, x 2. 那么它们的和、积都是整数.根据韦达定理:⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+m m m m x x m m m m x x 222221221 ∵x 1和 x 2都是整数,∴m 是2的约数, 即m=±1,±2.∵这只是整数解的必要条件,而不是充足条件,故要代入检查.当m=1时,原方程为x 2-x -3=0, 没有整数解;当m=-1 时,原方程为-x 2-x -1=0, 没有实数根;当m=2 或m=-2 时,方程有整数解.答:当m=2或 m=-2时,方程 mx 2+(m 2-2)x -(m+2)=0有整数解.例5. 已知:n 是正整数,且9n 2+5n+26的值是两个相邻正整数的积.求:n 的值.解:设9n 2+5n+26=m(m+1), m 为正整数.m 2+m -(9n 2+5n)=26. ( 把左边化为积的形式,先配方再分解因式)(m+21)2-(3n+65)2=26+362541-, (m+21+3n+65)( m+21-3n -65)=2595, 去分母并整理得:(3m+9n+4)(3m -9n -1)=230.∵230=1×230=2×115=5×46=10×23,且3m+9n >3m -9n..∴⎩⎨⎧=--=++1193230493n m n m ; 或 ⎩⎨⎧=--=++2193115493n m n m ;或⎩⎨⎧=--=++51946493n m n m ; 或 ⎩⎨⎧=--=++1019323493n m n m . 解方程组,正整数的值只有 n=2或 n=6.例6. 已知:方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60.求:m 的整数值.解:要使一元二次方程有整数解,必须△为完全平方数.△=[-2(m+1)]2-4m 2=8m+4=4(2m+1).即当2m+1 是完全平方数时,方程有整数解.∵12<m<60,∴25<2m+1<121,完全平方数.2m+1=36, 49, 64, 81, 100.则2m=35, 48, 63, 80, 99.∴ m 的整数值,只有24,40.检查:当m=24 时,有整数解32,18; 当m=40时,有整数解50,32.答:当m=24或 m=40时, 方程x 2-2(m+1)x+m 2=0有两个整数根.三、练习541. 已知x 2-y 2=1991, 则x, y 的正整数解是_______.2. 方程x 2+(y+1)2=5的整数解有_____________.3. 已知x 1, x 2, x 3, ……, x 2023都是正整数,写出下列方程的一组整数解:①x 1+x 2=x 1x 2 的一组解为:___________.②x 1+x 2+x 3=x 1x 2x 3 的一组解为:__________.③x 1+x 2+x 3+x 4=x 1x 2x 3x 4 的一组解为:_______________. ④x 1+x 2+x 3+……+x 2023=x 1x 2x 3……x 2023 的一组解为:__________.4. 已知100≤x(x+1) ≤150,则整数x=_____.5. 已知x 200<2300, 则正整数x=____.6. 假如x,y 都是正整数,且0<x<10,0≤y ≤9,那么 它们的和、差的范围是:0<x+y<___, ___<x -y<___.7. 已知 ⎪⎪⎩⎪⎪⎨⎧=÷=⋅=-=+Dx x Cx x B x x A x x 且A+B+C+D=100,则x=___.8. 已知被除数是100以内的自然数,在○和( )填上适当的数,使如下带余除法的运算成立:○÷()()()⎪⎩⎪⎨⎧===6655449. 已知a+2=b -2=c ×2=d ÷2 且a+b+c+d=1989. 则a=___,b=___,c=___,d=___.10. 若a,b,c,d 是互不相等的整数,且 abcd=4. 则a+b+c+d=_____.11. 求下列方程的整数解: ①2x+2y=xy ; ②2x+10y=1991.12. m 取什么整数值时,下列方程有正整数解?① (x -1)=4-x ; ②m 2x 2-18mx+72=x 2-6x..13. 已知长方形的长和宽都是整数值,且周长与面积的数值相同,求这个长方形的 长和宽.14. 方程(x -a)(x -8)-1=0有两个整数根,求a 的值.15. 已知a,b 是自然数且互质,试问关于x 的方程:x 2-abx+21(a+b)=0 是否有自然数解(两解都是自然数)假如有,把它求出来,假如没有请给予证明.16. 两个自然数的和比积小1000,其中一个是完全平方数,求这两个自然数.练习54参考答案:1.x=994, y=9932.有8个解.3①2,2 ②1,2,3 ③1,1,2,4 ④x 1=x 2=x 3=……= x 1998=1, x 1999=2,x 2023=20234. 10 11,-11,-125. 1,26. 0<x+y<19 , –9<x -y<10 x+y=1,2,3...18, x -y=-8,-7,...0,1, (9)7. 9 8. 60,14,11,9 9. 440,444,221,884 10. 011 ①6个解②12个解 12①0,2,-2,4②-2 13. 6和3;4和414. 8 15. 有自然数1和2(先求出a=1,b=3) 16. 144和8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 因式分解一、常用公式或变形方法(此处只列出教科书以外的常用于竞赛中的内容)1.2.3.4.二、例题讲解例1.已知a、b、c是△ABC ABC 的形状.例2.若三个素数的乘积恰好等于它们和的23倍,求这三个素数.(2015大同杯第四题)例3.已知实数a、b、c.(2003年宇振杯第3题)例4.三、练习题1.已知整数a、b.2..3.已知a、b、c(1(24.2014大同杯第1题)5.设非零实数a,b,c.(2013年全国初中数学联赛第一试第1题)6.已知正数a、b、c值.7.已知:,,,求.(2016全国初中数学联赛第二试B组第2题)1.2 对称式与轮换对称式一、定义1.对称式。

2. 如果一个多项式的各项的次数均等于同一个常数,那么称这个多项式为齐次多项式。

3.4.换式,但轮换式不一定是对称式。

例如对称式也是轮换式;二、例题讲解例1. 已知,a,b,c是△ABC的面积.例2.2014大同杯第4题)例3.设x、y、z xyz的值. 例4.x1、x2、y1、y2满足x12+x22=2,x2y1﹣x1y2=1,x1y1+x2y2=3.求y12+y22的值.三、练习题1. .2. 若数组(x,y,z求xyz的值.3. 已知b≥0,且a+b=c+1,b+c=d+2,c+d=a+3,求a+b+c+d的最大值.4.2015大同杯第7题)5.已知bc﹣a2=5,ca﹣b2=﹣1,ab﹣c2=﹣7,求6a+7b+8c6. 已知实数a、b、c x1、x2、y1、y2满足x12+ax22=b,x2y1﹣x1y2=a,x1y1+ax2y2=c.求y12+ay22的值.(2007新知杯第5题)1.3高斯函数一、定义实数x,用[x]表示不超过x的最大值整数,则y=[x]称为高斯函数.二、例题讲解例1. .(2006新知杯第6题)例2. 对于正整数n2017全国数学联赛第一试第6题)例3. 给定正实数a ,对任意一个正整数n数x 的最大整数。

(1)a 的取值范围;(2) 2012新知杯11题)二、练习题1. .(2016全国数学联赛第一试第1题)2. 如果a为任意实数,用[a]表示不大于a的最大整数,例如[-5] = -5,[-2,3] = -3,,设x、y[x+y].3. .4.2016.(2016大同杯第6题)5.n小于100这样的正整数n有几个?(2000年全国初中数学联赛第一试第4题)6.t已知实数x(2014全国初中数学联赛第5题)7. 的所有解的平方和8..(2008新知杯第五大题)1.4 概率一、基本概念1. 排列(1)排列的定义:从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列。

输入n的值,然后按P按钮,再输入m的值。

2. 组合(1)组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组。

组合与排列的区别是组合是无序的,而排列是有序的。

按钮,再输入m的值。

二、例题讲解例1. 有编号分别为去1,2,3,4,5,6,7的7个大小相同的小球,从中任取3个小球,求取出的3个小球的编号和为奇数的概率.(2015大同杯第2题)例2.从三边长均为整数且周长为24的三角形中任取一个,求它是直角三角形的概率.(2015全国初中数学联赛第一试填空第2题)例3.三对夫妻排成一排照相,求仅有一对夫妻相邻的概率.三、练习题1. 同时投掷两颗骰子,P(a)表示两颗骰子朝上一面的点数之和为a的概率,求P(1)+P(2)+P(3)+P(4)+P(5)的值.(2012新知杯第2题)2..(2011新知杯第3题)3.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,求这3张卡片上所写的数字可以作为三角形的三边长的概率.(2014全国初中联赛第一试第4题)4.从正12边形的顶点中取出4个顶点,求它们两两不相邻的概率.5.某校初三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连)且二班的2位同学没有被排在一起的概率是多少?6. 已知5件产品中有3件合格品,2件次品。

每次任取一个检验,检验后不再放回,求恰好经过3次检验找出2件次品的概率.1.5 单元测试一一、填空题1.从1到9这九个数字中任取两个数,它们的乘积是偶数的概率是_________2.___________3. ________4.若实数a,b,c________5.–3,那么满足方程的x是__________6. 若实数a、b、c、d满足a2+b2+c2+d2=10,则y=(a-b)2+(a-c)2+(a-d)2+(b- c)2+(b-d)2+(c-d)2的最大值是.7.8.二、解答题9. 已知a、b、c≥0,求证:a3+b3+c3≥3abc10. 设a,b,c,d.11.(1(212.试确定一切有理数r,使得关于x.2.1 不定方程一、例题讲解例1. 2010新知杯第2题)例2. 2015大同杯第7题)例3. (2000弘晟杯第8题)二、练习题1.2. 方程xyz=2009的所有整数解有多少组?(2009新知杯第8题)3. .4.(2015全国初中数学联赛填空第4题)5. 13.6. .7.已知正整数a,b,c.(2013全国数学联赛第一试填空第8题)2.2 特殊方程(组)的解法一、例题讲解例1.2013新知杯第10题)例2.例3.值.(2006新知杯第三题)例4.例5.二、练习题1..(2006新知杯第2题)2.3. 解关于x 2014大同杯第9题)4.2012新知杯第10题)5.6.2.3 韦达定理一、例题讲解例1. 过54题)例2. 满足c,da,b a+b+c+d.(2017大同杯第8题)例3.7题)例4. 已知矩形ABCD的相邻两边长为a A’B’C’D’,使它的周长和面积分别是矩形ABCD2005宇振杯第二题)例5. 设实值.(2014全国数学联赛第三题)二、练习题1. 在△ABC中,∠C=90°,∠A、∠B、∠C a、b、c,若关于x的方程10.(2007新知杯第3题)2. 已知关于x并且所有实根的乘积为−2c,d新知杯第6题)4.已知a,b c,d a+b+c+d.(2017大同杯静安区初赛第9题)5.A、B,C.ABC的面积.(2010全国数学联赛第二试第三题)2.4 单元测试二一、填空题1.,且___________________________2.1,那么p=_____________3.=4. 实数x ,yx+y=_____________5. 已知x 、y 是正整数,,坐标都是的点称为整点,设为整数,当直线________个7. 若实数x 、yx+y =__________ 8.____对三、解答题9. 已知a ,b ,c .10.设关于x求满足条件的所有实数k11..12. 已知实数m 、n .3.1 基本不等式一、基本概念与公式1. 基本不等式:当a >0,b >0a =b 时取等号.2. 文字描述:设a >0,b >0,则a ,b 不等式可叙述为两个正数的算术平均数大于或等于它们的几何平均数.3.公式变形(1)实数a 、b ,a 2+b 2≥2ab ,当且仅当a =b 时取等号;(2)实数a 、b 同号时,b a +a b≥2,当且仅当a =b 时取等号;(3)实数a 、b a =b 时取等号;(4)实数a 、b a =b 时取等号. 4.注意点(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”;(2)求最值的条件“一正,二定,三取等”二、例题讲解例1. 若正数x、y、z满足xyz(x+y+z)=4,求(x+y)(y+z)的最小可能值.(2002宇振杯第9题)例2. 已知x,y xy的最大值.(2017大同杯第10题)例3. 是给定的大于 1 满足大值.(2015大同杯第8题)例4. 如图,在Rt△ABC中,∠C=90°,BC=2,AC=x,点F在边AB上,点G、H在边BC上,四边形EFGH是一个边长为y的正方形,且AE=AC.(1)求y关于x的函数关系式(2)当x取何值时,y取得最大值?并求出y的最大值.(2007新知杯第二题)三、练习题1.已知x>0,y>0,且2x+y=1,求1x+1y的最小值.2.设a>b>0,求a2+1ab+1a(a-b)的最小值.3.1.(2013新知杯第9题)4.若正数a,b.(2015全国数学联赛第二试B组第一题)5..3.2 函数的最值一、例题讲解例1.求这个最小值.(2011新知杯第4题)例2. 已知实数x.(2017大同杯第二题)例3.已知实数x,y满足xy-x-y=1.(2015全国数学联赛A组第一试第5题)例4..(2014全国数学联赛第一试第2题)二、练习题1...(2008新知杯第2题)2. 已知实数x,y.(2015全国数学联赛B组第一试第4题)3. 已知实系数一元二次方程ax2+2bx+c=O有两个实根x1、x2,若a>b>c,且a+b+c=0,求d=|x1-x2|的取值范围(2004宇振杯第9题)4. .(2016全国数学联赛第一试第6题)3.3 二次函数一、例题讲解求.(2016大同杯第7题)例2.小值.(2016大同杯第8题)例3.过5.(2006新知杯第4题)例4.某学生为了描点作出函数y=ax2+bx+c(a≠0)的图象,取自变量的7个值:x但由于粗心算错了其中一个y值。

请指出算错的是哪一个值?正确的值是多少?并说明理由.(2003宇振杯第四题)二、练习题1..(2016大同杯第3题)2.B组第一试第3题)3.已知关于正整数n的二次式y=n2+an(a为实常数).若当且仅当n=5时,y有最小值,求实数a的取值范围(2002宇振杯第4题)4. 抛物线顶点A在x轴上交y轴于C,过点A且交抛物线于另一点B,求B点坐标.(2017大同杯徐汇区初赛第6题)3.4 单元测试三一、填空题1. 若a>0,b>0,且a+2b-2=0,则ab的最大值为___________2. x轴的两个交点分别位于点(2,0)的两旁,那么a 的取值范围是3. 设a,b都是实数,函若对任意实数b,方程a的取值范围为_______________4. 当x>0时,则f(x)=2x的最大值为________x2+15. __________6. _________7. 设x__________8. A,B两点,C.已二、解答题9. 直角三角形斜边为c,直角边为a、b10. 设A、B AB的中点,求A、B两点的坐标.11.a、b、c证明:关于x1的根.12. E A,B交于点C,且OB=OC=3OA D.求∠DBC-∠CBE.。

相关文档
最新文档