数学培优竞赛新方法(九年级)-配方法
初中数学方法篇一:配方法

初中数学方法篇一:配方法数学方法篇一:配方法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.【范例讲析】1.配方法在确定二次根式中字母的取值范围的应用在求二次根式中的字母的取值范围时,经常可以借助配方法,通过平方项是非负数的性质而求解。
例1、二次根式322+-a a 中字母 a 的取值范围是_________________________. 点评:经过配方,观察被开方数,然后利用被开方数必须大于等于零求得所需要的解。
2.配方法在化简二次根式中的应用在二次根式的化简中,也经常使用配方法。
例2、化简526-的结果是___________________.点评:题型b a 2+一般可以转化为y x y x +=+2)((其中?==+b xy ay x )来化简。
3.配方法在证明代数式的值为正数、负数等方面的应用在证明代数式的值为正数或负数,配方法也是一种重要的方法。
例3、不管x 取什么实数,322-+-x x 的值一定是个负数,请说明理由。
点评:证明一个二次三项式恒小于0的方法是通过配方将二次三项式化成“2a -+负数”的形式来证明。
4.配方法在解某些二元二次方程中的应用解二元二次方程,在课程标准中不属于考试内容,但有些问题,还是可以利用我们所学的方法得以解决。
例4、解方程052422=+-++y x y x 。
点评:把方程052422=+-++y x y x 转化为方程组=-=+010 2y x 问题,把生疏问题转化为熟悉问题,体现了数学的转化思想,正是我们学习数学的真正目的。
5.配方法在求最大值、最小值中的应用在代数式求最值中,利用配方法求最值是一种重要的方法。
可以使我们求出所要求的最值。
例5、若x 为任意实数,则742++x x 的最小值为_______________________.点评:配方法是求一元二次方程根的一种方法,也是推导求根公式的工具,同时也是求二次三项式最值的一种常用方法。
初中数学竞赛指导-第二讲-配方法

第二讲 配方法一、 方法与技巧1、配方法:把代数式通过直接变形或分拆重组、添补重组、组合重组等手段,得到完全平方式,再利用完全平方式是非负数这一性质达到增加问题条件的目的,从而求解出问题的结果,这重解题方法称之为配方法。
2、配方法的作用:配方法的作用在于改变代数式的原有结构形式,是代数变形的重要方式之一。
配方法的实质在于挖掘题设的隐含条件来创建非负数性质。
3、配方法的用途:①解一元二次方程;②二次函数;③因式分解;④二次根式化简求值;⑤有关最大或最小值。
4、常用的配方法:①直接配方;②分拆、填补、重组配方。
二、题型题型一 用配方法求值1、已知251,251+=-=b a ,则722++b a 的值为( )A 、6B 、5C 、4D 、32、已知21,19,20+=+=+=y c y b y a ,则代数式ac bc ab c b a ---++222的值是( )A 、4B 、3C 、2D 、13、已知实数a 、b 、c 满足,142,238,176222=+-=+-=+a c c b b a 则c b a ++的值为( )A 、-8B 、-7C 、-6D 、-54、已知21,212222-=-+=-c b b a ,则222222444a c c b b a c b a ---++的值为( )A 、5B 、6C 、7D 、85、已知实数a 、b 、x 、y 满足5,3=-=+bx ay by ax ,则代数式()()2222y x b a ++的值为( )A 、33B 、34C 、35D 、-35 题型二 用配方法解方程1、若062322322323=-+++++-b ab a ba b ab a ,则a= . 2、关于x 的方程()0112=+--x k kx 有有理根,则整数k 的值为 。
题型三 用配方法求最值1、已知1214522+---+=y x xy y x z ,则z 的最小值为 。
数学培优竞赛新方法(九年级)-第3讲-充满活力的韦达定理

A.不大于 1
B.大于 1
C.小于 1
D.不小于 1
(2011 年《数学周报杯》全国初中数学竞赛题)
7.若 ab 1 ,且有 5a 2 2001a 9 0及9b2 2001b 5 0,则 a 的值为( ) b
9
A.
5
5
B.
9
C. 2001 5
D . 2001 9
(全国初中数学联赛题)
1
九年级数学培优竞赛辅导讲座
[充满活力的韦达定理] 学历训练
1.已知方程 x 2 px q 0 的两根均为正整数,且 p q 28 ,那么这个方程两根为
.
(“祖冲之杯”邀请赛)
2.已知整数 p,q 满足 p q 2010, 且关于 x 的一元二次方程 67x 2 px q 0 的两个根均为正整数,
值范围是( )
A. 0 m 1
B. m 3 4
(全国初中数学联赛题)
C. 3 m 1 D. 3 m 1
4
4
思路点拨 设方程的根分别为 1、 x1, x2 ,由三角形三边关系定理、韦达定理建立 m 的不等式组。
例 3.设 x1 、 x2 是方程 2x 2 4mx 2m 2 3m 2 0 的两个实数根,当 m 为何值时, x12 x2 2 有最小值?
九年级数学培优竞赛辅导讲座
第 3 讲 充满活力的韦达定理
知识纵横
一元二次方程的根与系数的关系,通常也称 为韦达定理,这是因为该定理是由 16 世纪法国最杰出 的数学家韦达发现的.
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在: 运用韦达定理,求方程中参数的值; 运用韦达定理,求代数式的值; 利用韦达定理并结合根的判别式,讨论根的符号特征 ; 利用韦达定理逆定理,构造一元二次方程辅助解题等. 韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路. 韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解 这类问题常用到对称分析、构造等数学思想方法.
(完整版)数学培优竞赛新方法(九年级)-第24讲三角形的四心.doc

6,BC
5,EF
3,则BE= .
A
I
D
E
B
C
(第10题)
(第11
题)
11.如图,ABC中,AB 7,BC 8,CA
9,
ABC的内切圆圆心
I作DE // BC,
分别与AB、AC相较于D、E,则DE=
.
(全国初中数学竞赛试题)
12.若锐角
ABC的三边比是a : b : c,它的外心O到三边的距离分别为
2倍
(2)三角形的垂心、重心、外心在一条直线上,且垂心到重心的距离是外心到重心的距离的2倍。
5
学习训练
基础夯实
1.如图,□ABCD中,E是AB的中点,AB10,AC9,DE12,则□ABCD的面积
为。
2.如图,D是
ABC的内心,E是
ABD的内心,F是
BDE的内心.若
BFE的度数为
整数,则
BFE的最小度数为
思路点拨由IA1IB1IC12r(r为ABC的内切圆半径) ,得I同时是A1B1C1外接圆
的圆心。
【例3】已知ACECDE90O,点B在CE上,CACBCD,经A、C、D三点的
圆交AB于F(如图).求证:F为CDE的内心.
思路点拨连CF、DF,即需证F为CDE角平分线的交点, 充分利用与圆有关的角,将
第24讲三角形的四心
几何是数学中的这样一部分,其中视觉思维占主导地位,
几何直觉是增强数学理解力的有效途径,而且他可以使人增加
勇气,提高修养。
------阿蒂亚
知识纵横
重心、外心、内心、垂心统称为三角形的“四心”,由于三角形的四心处在特殊的位置上,
配方法 初中九年级数学教学课件PPT 人教版

转化成
3、两边通加一次项系数一半的平方得
4、左边写成完全平方形式、右边合并
。
5、降次 6、解一元一次方程。
(二)一次项系数的符号决定完全平方形式中间的符号。例如:
(三)固一个数平方大于等于“0”即
所以
当
时方程有两个不相等的实数根;
当
时方程有两个相等的实数跟;
当
时方程无实数根、强调x表示一个整式、例如
。
课堂练习(难点巩固)
布置作业
教科书 第17页 第2,3题.
例如:(a+b)2 =a2+2ab+b2 ((a-b)2 =a2-2ab+b2), 反之有a2+2ab+b2=(a+b)2 (a2-2ab+b2=(a-b)2 )
难点教学方法
x2=5、x 5
x 3、2 5 x 3 5
x 3 看作整体实现降次、可列 x3 5 变成解一元一次方程、
从而得到方程的两个根。
难点名称 如何配方二次项系数不为”1”的方程。
难点分析
从知识角度 分析为什么难
知识点本身包含初二学习的完全平方公式 (a+b)2 =a2+2ab+b2((a-b)2 =a2-2ab+b2) 因式分解降次等二次项系数不为“1”、学生 容易出错。
从学生角度 分析为什么难
学生思维较弱、理解困难、逆向思维能力较弱、 不会逆向检查。
x3 5
x2 6x 4 0 例配方得到 x 32 5 的形式
:移常数项得,x2 6x 4
:等号两边同时加
x2
6x
6
2
4
9
上一次系数的一半的平方得, 2
九年级数学上人教版《配方法》课堂笔记

《配方法》课堂笔记
一、什么是配方法
配方法是一种用于求解一元二次方程的数学方法,其基本思想是将一元二次方程转化为一次项系数为0的一元一次方程,从而简化计算过程。
二、配方法的基本步骤
1.将一元二次方程的二次项系数化为1,即移项使方程的右边为0。
2.将方程的左边写成一个完全平方的形式,即左边可写为(某数的平方加上
或减去某数的平方)。
3.配方时,需要将常数项移到方程的右边。
4.最后,通过直接开平方法求解一元二次方程的解。
三、配方法的例子
例如,求解方程x2+6x+9=0。
第一步,将方程的二次项系数化为1,得到x2+6x=−9。
第二步,将方程的左边写成一个完全平方的形式,即(x+3)2=9−9。
第三步,将常数项移到方程的右边,得到(x+3)2=0。
第四步,通过直接开平方法求解,得到x+3=0,即x=−3。
四、配方法的应用范围
配方法可以用于求解一元二次方程的解,也可以用于进行一些其他的数学计算或简化问题。
在数学竞赛中,配方法也是常常用到的技巧之一。
人教版数学九年级上册22.2.2《配方法》教案1

人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。
本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但是,对于配方法的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。
三. 教学目标1.让学生掌握配方法的基本原理和应用。
2.培养学生解决二次方程问题的能力。
3.培养学生的逻辑思维能力和创新思维能力。
四. 教学重难点1.配方法的基本原理的理解和应用。
2.配方法在解决二次方程问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。
同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和教学素材。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。
让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。
呈现(10分钟)讲解配方法的基本原理和步骤。
通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。
同时,引导学生进行思考和讨论,巩固学生的理解。
操练(10分钟)让学生进行配方法的练习。
提供一些配方法的练习题,让学生独立完成。
在学生完成练习的过程中,进行巡视指导和解答学生的疑问。
巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。
引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。
初中数学竞赛奥数培优资料第二辑专题25 配方法

【例 6】 已知自然数 n 使得 n2 19n 91 为完全平方数,求 n 的值.
(“希望杯”邀请赛试题)
解题思路:原式中 n 的系数为奇数,不能直接配方,可想办法化奇为偶,解决问题.
能力训练
1、计算 10+8 3+2 2 =_________.
(“希望杯”邀请赛试题)
2、已知 a2 b2 c2 2(a b c) 3 0 ,则 a3 b3 c3 3abc _________ .
(全国初中数学联赛试题)
解题思路:通过引元,把不满意的总分用相关字母的代数式表示,解题的关键是对这个 代数式进行恰当的配方,进而求出代数式的最小值.
把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到 增加问题条件的目的,这种解题方法叫配方法.
配方法的作用在于改变代数式的原有结构,是变形求解的一种手段;配方法的实质在于 揭示式子的非负性,是挖掘隐含条件的有力工具.
(全国通讯赛试题)
6、若 M 10a2 b2 7a 6, N a2 b2 5a 1 ,则 M-N 的值 ( )
A、负数
B、正数
C、非负数
D、可正可负
7、计算 14 6 5 14 6 5 的值为 ( )
A、1
B、 5
C、 2 5
D、 3 5
(全国初中数学联赛试题)
8、设 a , b , c 为实数, x a2 2b , y b2 2c , z c2 2a ,则 x,y,z 中
2
配方法在代数式的求值,解方程、求最值等方面有较广泛的应用,运用配方解题的关键 在于:
(1) 具有较强的配方意识,即由题设条件的平方特征或隐含的平方关系,如 a ( a )2 能
联想起配方法. (2) 具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配方法
把一个式子或一个式子的部分改写成完全平方式或者几个完全平方式的和的形式,这种解题方法叫配方法。
配方法的作用在于揭示式子的非负性,是挖掘隐含条件的有力工具;配方法的实质在于改变式子的原有结构,是变形求解的一种手段。
运用配方法解题的关键在于“配凑”,“拆”与“添”是配方中常用的技巧。
熟悉以下基本等式:
1.2
2
2
)(2b a b ab a ±=+±
2.2
2
2
2
)(222c b a ac bc ab c b a ++=+++++; 3.[]
2222
2
2
)()()(2
1
a c c
b b a ca b
c ab c b a ±+±+±=
±±±++ 4.a b ac a b x a c bx ax 44222
2
-+
⎪⎭⎫ ⎝
⎛+=++ 【例1】已知y x ,实数满足0332
=-++y x x ,则y x +的最大值为
(镇江市中考题)
思路点拨 把y 用x 的式子表示,通过配方法求出y x +的最大值。
【例2】已知c b a 、、,满足722
=+b a ,122
-=-c b , 1762
-=-a c ,则c b a ++的
值等于( )
A.2
B.3
C.4
D.5
(河北省竞赛题)
思路点拨 由条件等式的特点,从整体叠加配方入手
【例3】已知a 是正整数,且a a 20042
+是一个正整数的平方,求a 的最大值。
(北京市竞赛题)
思路点拨 设2
2
2004m a a =+(m 为正整数),解题的关键是把等式左边配成完全平方式。
【例4】已知c b a 、、是整数,且01,422
=-+=-c ab b a ,求c b a ++的值
(浙江省竞赛题)
【例5】若y x 、是实数,且y x y xy x m 44642
2
--+-=,确定m 的最小值
(北京市竞赛题)
分析与解 选择x 为主元,将条件等式重新整理成x 的二次三项式,利用配方求m 的最小值。
练习
1.设mn n m n m 4,02
2
=+>>,则mn
n m 2
2-的值等于( )
A.32
B.3
C.6
D.3
(2011年南通市中考题)
2.已知m m Q m P 15
8
,15172-=-=
(m 为任意实数)
,则Q P 、的大小关系为( ) A.Q P > B.Q P = C.Q P < D.不能确定
(泰州市中考题)
3.若实数z y x 、、,满足0))((4)(2
=----z y y x z x ,则下列式子一定成立的是( )
A.0=++z y x
B.02=-+z y x
C.
D.02=-+y x z
(2011年天津市中考题)
4.化简
2
12172
2321217223---
++的结果是( ) A.2 B.2- C.2 D.2-
(2011年江西省竞赛题)
5.已知实数c b a 、、满足016,72
=++++=+-c b bc ab c b a ,则
a
b
的值等于 (天津市竞赛题)
6.当2>x 时,化简代数式1212--+-+x x x x 得
(“希望杯”邀请赛试题)
7.已知z y x 、、为实数,且满足52,352-=--=-+z y x z y x ,则2
2
2
z y x ++的最小值
为 。
(2011年“《数学周报》杯”全国初中数学竞赛题)
8.满足方程()()33222
=-+++y x y x 的所有实数对为 。
(“新知杯”上海市竞赛题)
9.设实数y x 、为实数,求代数式428452
2
++-+x xy y x 的最小值。
(江苏省竞赛题)
10.如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴上,点E 是AB 边上的一个动点(不与B A 、重合),过点E 的反比例函数)0(>=x x
k
y 的图象与边BC 交于点F .
(1)若OCF OAE ∆∆、的而积分别为21S S 、.且221=+S S ,求k 的值. (2)若4,2==OC OA ,当四边形AOFE 的面积最大时,求点F E 、的坐标.
(2011年莆田市中考题)
11.求满足)1(22
2
2
+=++yz z y x 且4018=++z y x 的所有整数解。
(英国首相奥林匹克试题)
12.试确定:对于怎样的正整数a ,方程029)3(452
2
=-++-a x a x 有正整数解?并求出
方程的所有正整数解。
(2011年江西省竞赛题)。